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ABSTRACT. An n ×m rational matrix A is said to be partition regular if for
every finite coloring of N there is a monochromatic vector ~x ∈ Nm with A~x = ~0. A set
D ⊆ N is said to be partition regular for A (or for the system of equations A~x = ~0) if
for every finite coloring of D there is a monochromatic ~x ∈ Dm with A~x = ~0.

In this paper we show that for every n there is a set that is partition regular for
every partition regular system of n equations but not for every system of n+1 equations.
We give several related results and we also prove a “uniform” extension of this result: for
each n we give a set D which is uniformly partition regular for n equations in the sense
that given any finite coloring of D some one class solves all partition regular systems of
n equations, but D is not partition regular for (and in fact contains no solution to) a
particular partition regular system of n + 1 equations, namely that system describing
a length n + 2 arithmetic progression with its increment. We give applications to the
algebraic structure of βN, the Stone-Čech compactification of the discrete set N.

1 The first two authors acknowledge support received from the National Science Foun-
dation via grants DMS 9103056 and DMS 9025025 respectively.
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1. Introduction. Theorems in Ramsey Theory often state that whenever a suffi-
ciently large structure of some kind is partitioned into k cells (or “k-colored”) a smaller
structure of the same kind must be contained in one cell (or be “monochrome”). For
example, the simplest non-trivial version of Ramsey’s Theorem itself says that when-
ever the edges of a complete graph on 6 vertices (a K6) are 2-colored, there must be a
monochrome triangle. One can naturally ask (so Erdös did) whether any graph with the
property that whenever it is 2-colored there will necessarily be a monochrome triangle
must contain a K6. In fact it turned out [3] that there is a graph with this property
which contains no K4.

In [14], Spencer gave a similar result for van der Waerden’s Theorem. He provided
a simple elegant proof that given any n and k there is a set A such that whenever A
is k-colored there is a monochrome length n arithmetic progression, but A contains no
length n+ 1 arithmetic progression. See [12] for some extensions of Spencer’s result.

In a similar vein, it was shown in [11] that given any n and k in Nthere is a sequence
C1, C2, . . . , Cn of pairwise disjoint sets with FU(〈Ci〉ni=1) monochrome, but S contains
no FU(〈Ci〉n+1

i=1 ). (Here FU(〈Ci〉ni=1) = {
⋃

t∈F Ct : ∅ 6= F ⊆ {1, 2, . . . , n}}.) As a
consequence, one obtains (see [10, Corollary 3.8]) the fact that for any n ∈ N there is
a subset A of Na sequence 〈xt〉nt=1 with FS(〈xt〉nt=1) monochrome, but A contains no
FS(〈xt〉n+1

t=1 ). (Where FS(〈xt〉nt=1) = {
∑

t∈F xt : ∅ 6= F ⊆ {1, 2, . . . , n}}.)
We describe this situation (where the number of colors is unrestricted) by saying

that A is “partition regular” for FS(〈xt〉nt=1).

1.1 Definition. Let C be any set of sets. A set B is partition regular for C if
whenever B is partitioned into finitely many cells, one cell contains some member of C.

We are concerned in this paper with solving systems of equations of the form
A~x = ~0 where A is a rational matrix. (It would be equally general, but less convenient,
to assume that all entries of A are integers.) Such a system is said to be partition regular
if in the sense of Definition 1.1 N is partition regular for the set C of all solution sets for
the given system. That is, the given system is partition regular if and only if whenever
N is finitely colored there is a monochrome solution to the given system.

The problem of which systems are partition regular was completely solved by Rado
[13]. The solution involves a notion known as the “columns condition”.

1.2 Definition. Let n, v ∈ N and let A be an n × v matrix with rational entries.
Then A satisfies the columns condition if the columns ~c1,~c2, . . . ,~cv of A can be ordered
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so that there exist m ∈ N and k1, k2, . . . , km in N with 1 ≤ k1 < k2 . . . < km = v such
that

(1)
∑k1

i=1

(2) if m > 1 and t ∈ {2, 3, . . . ,m}, there exist α1,t, α2,t, . . . αkt−1,t in Q such that∑kt

i=kt−1+1

1.3 Theorem (Rado [13]). Let u, v ∈ N and let A be a u× v matrix with rational
entries. Let ~x = (x1, x2, . . . , xv)T . The system of equations A~x = ~0 is partition regular
(over N) if and only if A satisfies the columns condition. []

Our aim in this paper is to investigate how “independent” are the notions of par-
tition regularity for various systems of equations. We will show in Section 3 that for
each n ∈ N there exist a subset D of N and a partition regular system of n + 1 linear
equations B~x = ~0 such that D contains no solutions to B~x = ~0 but given any finite
coloring of D and any partition regular system of n linear equations (with rational coef-
ficients) A~x = ~0, D will contain a monochrome solution to A~x = ~0. (We remark to the
interested reader that the partition regular system of n+1 equations that we use is the
system describing a length n+ 2 arithmetic progression together with its increment.)

Our constructions in Section 3 are somewhat complicated. We will introduce much
of the machinery in a simpler setting in Section 2. There we will establish the following
fact. Given any s ∈ Q+ = {q ∈ Q : q > 0} and any finite set F ⊆ Q+\{1, s} there is a
set D that is partition regular for the equation x = y + s · z but contains no solution
to x = y + t · z for any t ∈ F . (We do not know whether one can allow 1 ∈ F .) In
particular, given t /∈ {1, s} there is a set partition regular for x = y+ s · z containing no
solution to x = y + t · z. As a consequence, we obtain a set E that is partition regular
for each single partition regular equation but contains no solution to the system

x3 = x1 + 2x2

x4 = x1 + 3x2 .

One might ask for the stronger conclusion that whenever E is finitely colored some
one cell will contain solutions to all single partition regular equations. The sets we
construct in Section 2 specifically fail to satisfy this requirement – indeed, the reader
will see that this failure is absolutely built in to the way we construct these sets.

However, it is possible to insist on the far stronger requirement, and in Section 4
we give a proof of this result. This result has consequences for the algebraic structure

3



of βN, the Stone-Čech compactification of N. For a survey of numerous applications of
the structure of βN to combinatorial number theory see [8].

All of our equations will have rational coefficients and all of the numbers with
which we will deal will be rational – we will sometimes not mention this fact in order
to improve the flow of the prose.

2. Solving single equations. As a simple consequence of Rado’s Theorem
(Theorem 1.3), a single equation is partition regular if and only if some subset of its
non-zero coefficients sums to 0. (This special case is much simpler than the general
result. See [5, Section 3.2]. We remark also that it can be derived using recurrence
of sets of positive density in a fashion similar to that used in [1].) The following well
known lemma says that the only “interesting” single partition regular equations are
x = y + s · z for positive rationals s.

2.1 Lemma. Let c1 ·x1+c2 ·x2+...+cv ·xv = 0 be a partition regular equation. Then
there exists a positive rational s such that any set containing a solution to x = y + s · z
also contains a solution to c1 · x1 + c2 · x2 + ...+ cv · xv = 0.

Proof. If
∑v

i=1 ci = 0 then any x1 = x2 = ... = xv solves the equation, so we may
assume we have

∑v
i=1 ci 6= 0. Since c1 · x1 + c2 · x2 + ...+ cv · xv = 0 is partition regular

we may presume we have k ≥ 2 such that c1 is nonzero and c1 + c2 + ...+ ck = 0. Let
s = |(

∑v
i=1 ci)/c1|. Note that also s = |(

∑v
i=k+1 ci)/c1|. Assume we have x, y, and z

such that x = y + s · z. If (
∑v

i=1 ci)/c1 < 0, let x1 = x, x2 = x3 = ... = xk = y, and
xk+1 = xk+2 = ... = xv = z. If (

∑v
i=1 ci)/c1 > 0, let x1 = y, x2 = x3 = ... = xk = x,

and xk+1 = xk+2 = ... = xv = z. []

As a consequence of Lemma 2.1, we are interested in solutions to equations of the
form x = z + s · w. Note that x, z, and w are the three entries of the matrix product 1 s

1 0
0 1

 (
z
w

)
. The matrix

 1 s
1 0
0 1

 is of a special kind which we will use throughout

this paper.

2.2 Definition. Let u, v ∈ N. A u× v matrix C is a monic first entries matrix if
all entries of C are rational, no row of C is ~0 and the first (leftmost) nonzero entry in
each row is 1.

Now we start to describe some sets that will be useful as building blocks for us.
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2.3 Definition. Let C be a u×v monic first entries matrix. A sequence 〈Qm〉∞m=1 is
C-useful if

(1) for each m ∈ N, Qm is a finite set of positive rationals,
(2) for each m ∈ N, Qm ⊆ Qm+1, and
(3) for each m ∈ N, each q ∈ Qm, and each i ∈ {1, 2, . . . , v} there exists ~x ∈

(Qm+1 ∪ {0})v such that xi = q and xi+1 = xi+2 = ... = xv = 0 and all entries of C~x
are in Qm+1 ∪ {0}.

Given any equation x = z + s · w we will construct a special C-useful sequence

where C =

 1 s
1 0
0 1

. The set D defined below will assist in this construction.

2.4 Definition. Let C be a u × v monic first entries matrix, let 〈Qm〉∞m=1 be a
C-useful sequence, and let 〈ym〉∞m=1 be a sequence in N such that for each m ∈ N and
each q ∈ Qm, q · ym ∈ N. Then D(〈Qm〉∞m=1, 〈ym〉∞m=1) =

{
∑
m∈F

qm · ym : F is a finite nonempty subset of N and qm ∈ Qm for each m ∈ F}.

Our next result is the most difficult result in the paper. It is the “workhorse” of
this paper. In a sense, having proved it, a lot of the rest of the work is some (admittedly
rather delicate) fine tuning. To be more precise, it is Theorem 2.5 that we shall use
when proving the “positive” parts of statements – that certain sets are partition regular
for certain equations.

Because the proof is rather complicated, we postpone it until the end of this section.
After stating Theorem 2.5 we shall immediately give an example of how to apply it.

The statement deals with the notion of “image partition regularity”. (What we
have been calling “partition regular”, namely finding monochrome ~x with A~x = ~0, is
“kernel partition regular”.) A matrix is image partition regular if whenever N is finitely
colored there is some ~x with the entries of A~x monochrome.

2.5 Theorem. Let C be a u × v monic first entries matrix, let 〈Qm〉∞m=1 be a
C-useful sequence, and let 〈ym〉∞m=1 be a sequence in N such that for each m ∈ N and
each q ∈ Qm, q · ym ∈ N. Then D = D(〈Qm〉∞m=1, 〈ym〉∞m=1) is image partition regular
for C. That is, whenever D is finitely colored, there exists ~x ∈ Nv such that the entries
of C~x belong to D and are monochrome.
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As an application of Theorem 2.5, let us find one of the sets claimed in the Introduc-
tion. Given s ∈ Q+ and a finite F ⊆ Q+\{1, s} we wish to produce a set that is partition
regular for the equation x = y+s·z but contains no solution to x = z+t·w for any t ∈ F .

Given such s and F our strategy is simple. We let C =

 1 s
1 0
0 1

 and produce a C-useful

sequence 〈Qm〉∞m=1 and a sequence 〈ym〉∞m=1 such that D(〈Qm〉∞m=1, 〈ym〉∞m=1) contains
no solution to x = z + t · w for any t ∈ F . We see now that by choosing the sequence
〈ym〉∞m=1 to be thin enough, we are able to concentrate entirely on the individual Qm’s.

2.6 Lemma. Let C be a monic first entries matrix and let 〈Qm〉∞m=1 be a C-useful
sequence. Let F be a finite set of positive rationals and let c = maxF . For each m ∈ N,
let dm = maxQm and let

bm = min{|x− (z + t · w)| : t ∈ F and x, z, w ∈ Qm ∪ {0} and x 6= z + t · w}.

Assume that for each m ∈ N we have ym · q ∈ N for all q ∈ Qm and if m > 1 then
ym · bm > (c + 1) ·

∑m−1
k=1 yk · dk. Let {t1, t2, . . . , t`} ⊆ F and consider the system of

equations

x3 = x1 + t1 · x2

x4 = x1 + t2 · x2

·

·

x`+2 = x1 + t` · x2

If there is a solution to this system in D(〈Qm〉∞m=1, 〈ym〉∞m=1), then for some m there is
a solution in Qm ∪ {0} with x2 6= 0.

Proof. For each x ∈ D = D(〈Qm〉∞m=1, 〈ym〉∞m=1), pick q(x) ∈ 〉〈∞m=1(Qm∪{0}) such
that x =

∑∞
m=1 q(x)m · ym. Assume we have a solution to the specified system in D. It

suffices to show that q(xi+2)m = q(x1)m+ti ·q(x2)m for each m ∈ N and i ∈ {1, 2, . . . , `}
– for then one simply chooses any m ∈ N with q(x2)m 6= 0. So let x = xi+2, z = x1,
w = x2, and t = ti and suppose one has some m ∈ N such that q(x)m 6= q(z)m+t·q(w)m,
and pick the largest such m. Note that |q(x)m − q(z)m − t · q(w)m| ≥ bm.
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Case 1. q(x)m > q(z)m + t · q(w)m. Then we have

0 = x− z − t · w

= (q(x)m − q(z)m − t · q(w)m) · ym +
m−1∑
k=1

(q(x)k − q(z)k − t · q(w)k) · yk

≥ bm · ym −
m−1∑
k=1

(dk + t · dk) · yk

≥ bm · ym − (1 + c) ·
m−1∑
k=1

dk · yk

> 0,

a contradiction.
Case 2. q(x)m < q(z)m + t · q(w)m. Then

0 = z + t · w − x

= (q(z)m + t · q(w)m − q(x)m) · ym +
m−1∑
k=1

(q(z)k + t · q(w)k − q(x)k) · yk

≥ bm · ym −
m−1∑
k=1

dk · yk

> 0,

again a contradiction. []

We are now ready to construct a set that was promised in the Introduction.

2.7 Theorem. Let s be a positive rational and let F be a finite subset of Q+\{1, s}.
Then there is a set D ⊆ N that is partition regular for the equation x = z + s · w but
contains no solutions to x = z + t · w for any t ∈ F.

Proof. Let C be the matrix

 1 s
1 0
0 1

. By Lemma 2.6 it suffices to produce a C-

useful sequence 〈Qm〉∞m=1 such that for all t ∈ F and all m ∈ N, Qm∪{0} does not con-
tain a solution to x = z+t ·w with w 6= 0. Indeed, assume we have done this and choose
a sequence 〈ym〉∞m=1 as required by Lemma 2.6 and let D = D(〈Qm〉∞m=1, 〈ym〉∞m=1). By
Theorem 2.5 D is partition regular for the equation x = z + s · w. By Lemma 2.6 D
contains no solution to x = z + t · w for any t ∈ F.
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So we set out to construct 〈Qm〉∞m=1 . Let

c = max(F ∪ {1/t : t ∈ F} ∪ {2/(1− t) : t ∈ F} ∪ {t/s : t ∈ F}) ∪ {s/t : t ∈ F})

and let

d = min({t ∈ F : t > 1} ∪ {1/t : t ∈ F and t < 1} ∪ {t/s : t ∈ F and t > s}

∪ {s/t : t ∈ F and t < s} ∪ {2/(1 + t) : t ∈ F and t < 1}).

Note that d > 1.
We show next that it suffices to produce the sequence 〈Qm〉∞m=1 so that
(*) for each m ∈ N and each a and b in Qm with a < b, one has that b/a < d

or b/a > 1+ c ·d, and moreover if b/a < d then there is some q ∈ Qm such
that b− a = q · s.

Indeed, assume that we have constructed 〈Qm〉∞m=1 satisfying (*), and suppose that
we have some m ∈ N and some x, z, w in Qm ∪ {0} and some t ∈ F with x = z + t · w
and w 6= 0. Note that z 6= 0 since if it were we would have x/w = t. This is forbidden
by (*) because if t > 1 one has d ≤ t ≤ c and if t < 1 one has d ≤ 1/t ≤ c.

Next we claim that w/z ≤ d. Suppose instead w/z > d. Then w/z > 1+c·d > 2. If
t > 1 we have x/w = z/w+t ≥ d and x/w = z/w+t < 1/2+t < 1+c·d, a contradiction.
If t < 1 we have w/z > c ≥ 2/(1− t) so z/w < (1− t)/2 so x/w = z/w + t < (1 + t)/2
and hence w/x > 2/(1 + t) ≥ d; but w/x = 1/t− z/(x · t) < 1/t ≤ c, a contradiction.

Thus we have w/z ≤ d. Consequently x/z = 1+ t · (w/z) ≤ 1+ c ·d. Hence we may
pick q ∈ Qm such that x − z = s · q, that is t · w = s · q. But then q 6= w since t 6= s,
while the ratios t/s and s/t are forbidden for two members of Qm.

It thus suffices to produce a C-useful sequence 〈Qm〉∞m=1 satisfying (*). But this
is essentially a triviality. We let Q1 = {1}. (Or insert any other positive rational.)
Given Qm, which is finite, write Qm = {q1, q2, . . . , q`}. We need to choose for each qj

some rj and add rj and rj + s · qj to Qm+1. (In the definition of C-useful, the i = 1

requirement has no content so we are making sure all entries of

 1 s
1 0
0 1

 (
rj
qj

)
are

in Qm+1 ∪ {0}.) To start out we may assume q` = maxQm, we choose r1 such that
r1 > q` · (1 + c · d) and (r1 + s · q1)/r1 < d. Given that we have chosen rj−1, we pick rj
such that rj > (rj−1 + s · qj−1) · (1 + c · d) and (rj + s · qj)/rj < d. []

Observe that the proof does not work if one allows 1 ∈ F . There is a good reason
for this. Sets of the form D = D(〈Qm〉∞m=1, 〈ym〉∞m=1) are always partition regular for
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the equation x = y + z. One way to see this is to pick any qm ∈ Qm and note that
FS(〈qm ·ym〉∞m=1) ⊆ D, where FS(〈xn〉∞n=1) = {

∑
n∈F xn : F is a finite nonempty subset

of N}. Consequently, any finite partition of D will have one cell containing FS(〈xn〉∞n=1)
for some sequence 〈xn〉∞n=1. (See for example [7, Lemma 3.8].)

However, we believe that this fault is due merely to our inability to construct
“better” sets than D.

2.8 Conjecture. For each positive rational s 6= 1 there is a set D that is partition
regular for x = y + s · z but contains no solution to x = y + z.

In fact, we believe that a much stronger statement is true. Let A and B be partition
regular matrices. Say that A Rado-dominates B if every set which is partition regular
for A is partition regular for B. Say that A solution-dominates B if every solution to
A~x = ~0 contains a solution to B~y = ~0. To be more precise, if A is an n×m matrix and
B is an r× k matrix, A solution-dominates B if there is a function f : {1, 2, . . . , k} −→
{1, 2, . . . ,m} such that whenever A~x = ~0 we have

B


xf(1)

xf(2)

·
·

xf(k)

 = ~0.

Thus we trivially have that if A solution-dominates B then A Rado-dominates B.

2.9 Conjecture. Let A and B be partition regular matrices. Then A Rado-
dominates B if and only if A solution-dominates B.

Let us remark that to ask, as we did in Conjecture 2.8, for a set that is partition
regular for one matrix and contains no solution to the second is the same as asking for
a set that is partition regular for one but not for the other. (To see this, assume D is
partition regular for A but not for B. Pick a finite partition F of D, no cell of which
contains a solution to B. Some one cell must be partition regular for A.)

We now turn our attention to constructing a set that is partition regular for every
single partition regular equation but not for a certain partition regular system of 2
equations. Before we start, however, let us point out that the situation just described
is not so clear when one deals with a set which is partition regular for several, perhaps
infinitely many matrices but is not partition regular for some other specified matrix.
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However, the specified matrix which we will deal with subsequently will in all cases
be the matrix for the terms of an arithmetic progression together with its increment.
One can derive in this case (as a consequence of Lemma 2.10) using a construction like
that in the proof of Theorem 2.11, that for such a matrix it is equivalent to ask for a
set not partition regular for the matrix or to ask for a set containing no solution for
the matrix. However, we will not spell out this argument, because the sets we produce
always satisfy the stronger conclusion anyway.

We now start to work towards a set, as mentioned above, that is partition regular
for every single partition regular equation but not for a certain partition regular system
of 2 equations. The next lemma will be used again in Section 3. It will provide us with
a way to piece together partition regular sets is a useful fashion.

2.10 Lemma. Let ` ∈ N, let a ∈ {1, 2}, and let 〈Dn〉∞n=1 be a sequence of finite
subsets of N. Assume that no Dn contains a solution to the system:

xa+2 = x1 + a · x2

xa+3 = x1 + (a+ 1) · x2

·

·

x`+1 = x1 + (`− 1) · x2 .

Then there is a sequence 〈rn〉∞n=1 in N such that
⋃∞

n=1 rn ·Dn contains no solution to
the same system.

Proof. Let r1 = 1 and inductively given n > 1, let kn = max
⋃n−1

j=1 rj ·Dj and let
rn = kn · `+ 1. Now we claim that if t ∈ {1, 2, . . . , `− 1} and {x, z, w} ⊆

⋃∞
n=1 rn ·Dn

with x = z + t · w, then there exists n with {x, z, w} ⊆ rn · Dn. To see this pick
the largest n such that {x, z, w} ∩ rn · Dn 6= ∅ and suppose {x, z, w}\rn · Dn 6= ∅.
Since x > z and x > w there are three possibilities for {x, z, w} ∩ rn · Dn, namely
{x}, {x,w}, and {x, z}. Suppose for example that {x, z, w} ∩ rn · Dn = {x}. Then
0 < x = z + t · w ≤ (1 + t) · kn ≤ ` · kn < rn while rn divides x, a contradiction. The
other two cases are handled similarly.
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Now suppose we have {x1, x2, x3, . . . , x`+1} ⊆
⋃∞

n=1 rn ·Dn satisfying the system:

xa+2 = x1 + a · x2

xa+3 = x1 + (a+ 1) · x2

·

·

x`+1 = x1 + (`− 1) · x2 .

For t ∈ {a, a + 1, . . . , ` − 1}, pick n(t) ∈ N such that {xt+2, x1, x2} ⊆ rn(t) · Dn(t).
Since x1 ∈ rn(t) · Dn(t) for all t we have n(t) = n(a). Let n = n(a). Then we have
{x1, x2, . . . , x`+1} ⊆ rn ·Dr so {x1/rn, x2/rn, . . . , x`+1/rn} ⊆ Dn, a contradiction. []

Note that by Rado’s Theorem the system of Lemma 2.10 with a = 1 is partition
regular. (This is the strengthening of van der Waerden’s Theorem which requires that
the increment belong to the chosen color class as well.)

2.11 Theorem. There is a subset E of N which is partition regular for every single
partition regular homogeneous linear equation with rational coefficients but contains no
solution to the system

x3 = x1 + 2 · x2

x4 = x1 + 3 · x2 .

Proof. By Lemma 2.1 it suffices to produce a set E which is partition regular for
every equation of the form x = z + s · w for s ∈ Q+ but contains no solution to

x3 = x1 + 2 · x2

x4 = x1 + 3 · x2 .

Given s ∈ Q+\{2}, pick by Theorem 2.7 a set Hs ⊆ N which is partition regular for
x = z + s ·w but contains no solution to x = z + 2 ·w. Also pick a set H2 ⊆ N which is
partition regular for x = z + 2 · w but contains no solution to x = z + 3 · w.

Given s ∈ Q+ and k ∈ N, pick by compactness (see [5, Section 1.5]) a finite subset
Hs,k of Hs such that whenever Hs,k is k-colored there is a monochrome solution to
x = z+ s ·w. (Strictly speaking, we don’t need to appeal to compactness, since we have
built up our set in Theorem 2.5 using finite sets.)
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Let 〈Dn〉∞n=1 enumerate {Hs,k : s ∈ Q+ and k ∈ N} and choose a sequence 〈rn〉∞n=1

as guaranteed by Lemma 2.10 with a = 2 and ` = 4. Let E =
⋃∞

n=1 rn ·Dn. Then by
Lemma 2.10 E contains no solution to

x3 = x1 + 2 · x2

x4 = x1 + 3 · x2 .

It is clear that E is partition regular for every single partition regular equation. Indeed,
let E be finitely colored, say with k colors, and let s ∈ Q+ and pick n such that
Dn = Hs,k. Color x in Hs,k by the color given to rn · x in E. Pick monochrome x, z, w
in Hs,k with x = z + s · w. Then rn · x, rn · z, and rn · w are monochrome in E and
rn · x = rn · z + s · rn · w. []

We complete this section by providing the postponed proof of Theorem 2.5. For
those who are familiar with such arguments, we point out that in the special case where,
in the definition of C-useful, we actually always have x1 = ... = xi−1 = 0, one could
view what we are doing as in some sense reproving Ramsey’s Theorem, but replacing
the appeals to the pigeon-hole principle by appeals to the Hales-Jewett Theorem. We
first state the form of the Hales-Jewett Theorem which we will be using.

By an n-variable word over an alphabet A we mean a word over the alphabet
A ∪ {v1, v2, . . . , vn} in which each vi actually occurs, where v1, v2, . . . , vn are sym-
bols not in A. Given an n-variable word w(v1, v2, . . . , vn) and (a1, a2, . . . , an) ∈ An,
w(a1, a2, . . . , an) has its obvious meaning – it is the word obtained from w(v1, v2, . . . , vn)
by replacing each occurrence of vi by ai.

2.12 Lemma. (Hales-Jewett). Let A be a finite alphabet and let k, n ∈ N. Then
there exists p ∈ N such that whenever the length p words over A are k-colored, there is
an n-variable word w(v1, v2, . . . , vn) of length p, all of whose instances w(a1, a2, . . . , an)
for (a1, a2, . . . , an) ∈ An have the same color.

Proof. The usually stated version of the Hales-Jewett Theorem ([6], or see [5]) is
for a single variable. Apply this version to the alphabet An. []

2.13 Definition. Given finite subsets Q and S1, S2, . . . , Sp of N and a sequence
〈ym〉∞m=1 in N, the Q-span of (S1, S2, . . . , Sp) with respect to 〈ym〉∞m=1 is
{
∑p

t=1 `t ·
∑

m∈St
ym : `t ∈ (Q ∪ {0}) for each t ∈ {1, 2, . . . , p} and ` 6= ~0}.

2.14 Lemma. Let C, 〈Qm〉∞m=1 and 〈ym〉∞m=1 be as in Theorem 2.5 and let
α, k, n ∈ N. Then there exists p ∈ N such that, given any pairwise disjoint nonempty
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subsets S1, S2, . . . , Sp of N with min
⋃p

t=1 Sp ≥ α and any k-coloring ϕ of the set D =
D(〈Qm〉∞m=1, 〈ym〉∞m=1) there exist pairwise disjoint nonempty subsets H0,H1, . . . ,Hn

of {1, 2, . . . , p} and pairwise disjoint nonempty subsets T1, T2, . . . , Tn of N and x ∈ D

such that

(1) for all j ∈ {1, 2, . . . , n}, Tj =
⋃

t∈Hj
St,

(2) there exists ` ∈ 〉〈t∈H0
Qα such that x =

∑
t∈H0

`t ·
∑

m∈St
ym (so x is in the

Qα-span of (S1, S2, . . . , Sp) over 〈ym〉∞m=1 ), and

(3) for any z in the Qα-span of (T1, T2, . . . , Tn) over 〈ym〉∞m=1 , ϕ(x) = ϕ(x+ z).

Proof. Let A = Qα∪{0}. Pick p as guaranteed by Lemma 2.11 for A,n, and k+1.
Let W be the set of length p words over A. Define ψ : W\{~0} −→ D by

ψ(w) =
p∑

t=1

`t ·
∑

m∈St

ym,

where w = `1`2 . . . `p and each `t ∈ A. Color W\{~0} using k colors by ϕ ◦ ψ, and give
~0 its own color. Pick w(v1, v2, . . . , vn) such that all occurrences are monochrome. Note
that not all occurrences are ~0 so w(0, 0, . . . , 0) 6= ~0. Let w = `1`2 . . . `p, where each
`t ∈ A ∪ {v1, v2, . . . , vn}. Let H0 = {t ∈ {1, 2, . . . , p} : `t ∈ Qα}. By the observation
above, H0 6= ∅. For j ∈ {1, 2, ..., n}, let Hj = {t ∈ {1, 2, . . . , p} : `t = vj} and let
Tj =

⋃
t∈Hj

St. Let x =
∑

t∈H0
`t ·

∑
m∈St

ym. Since min
⋃p

t=1 St ≥ α we have x ∈ D.
Conclusions (1) and (2) hold directly.

To verify (3) let q = s1s2 . . . sn be a length n word over A with q 6= ~0 and let
z =

∑n
t=1 st ·

∑
m∈Tt

ym. Then x = ψ(w(0, 0, . . . , 0)) and x + z = ψ(w(s1, s2, . . . , sn))
so ϕ(x) = ϕ(x+ z). []

Finally we have:

Proof of Theorem 2.5. Let ϕ be a finite coloring of D, say with k colors. Let
γ = k · (v − 1) + 1 (so γ is the pigeon-hole number to obtain v objects of one color).
Define numbers n(1), n(2), . . . , n(γ) by reverse induction as follows. Given n, α ∈ N let
p(n, α) be the number guaranteed by Lemma 2.14 for α, k, and n. Let n(γ) = 1 and
for i ∈ {1, 2, . . . , γ − 1}, let n(γ − i) = p(n(γ − i + 1), i + 1). For i ∈ {1, 2, . . . , n(1)}
let S0,i = {γ + i}. Pick pairwise disjoint nonempty subsets H1,0, H1,1, . . . ,H1,n(2) of
{1, 2, . . . , n(1)} and `(1) ∈ 〉〈t∈H1,0

Qγ as guaranteed by Lemma 2.14. Define x(1) =∑
t∈H1,0

`(1)t ·
∑

m∈S0,t
ym and for j ∈ {1, 2, . . . , n(2)}, let S1,j =

⋃
t∈H1,j

S0,t. Then for

13



any z in the Qγ-span of (S1,1, S1,2, . . . , S1,n(2)) over 〈ym〉∞m=1 we have that ϕ(x(1)) =
ϕ(x(1) + z).

Inductively, given r ∈ {2, 3, . . . , γ − 1} and pairwise disjoint Sr−1,1, Sr−1,2, . . . ,

Sr−1,n(r), recall that n(r) = p(n(r+ 1), γ − r+ 1) and so we may pick pairwise disjoint
nonempty subsets Hr,0, Hr,1, . . . ,Hr,n(r+1) and `(r) ∈ 〉〈t∈Hr,0

Qγ−r+1 as guaranteed by
Lemma 2.14. Let x(r) =

∑
t∈Hr,0

`(r)t ·
∑

m∈Sr−1,t
ym and for j ∈ {1, 2, . . . , n(r+1)} let

Sr,j =
⋃

t∈Hr,i
Sr−1,t. Then for any z in the Qγ−r+1-span of (Sr,1, Sr,2, . . . , Sr,n(r+1))

over 〈ym〉∞m=1 one has ϕ(x(r)) = ϕ(x(r) + z).
Finally we have Sγ−1,1. Let Hγ,0 = {1}. Pick `(γ) ∈ Q1, and let

x(γ) = `(γ) ·
∑

m∈Sγ−1,1

ym =
∑

t∈Hγ,0

`(γ) ·
∑

m∈Sγ−1,t

ym.

Pick by the pigeon-hole principle some δ(1) < δ(2) < . . . < δ(v) such that ϕ(x(δ(1))) =
ϕ(x(δ(2))) = . . . = ϕ(x(δ(v))) and let c = ϕ(x(δ(1))).

For r ∈ {1, 2, . . . , v}, let α(r) = γ − δ(r) + 1, so that `(δ(r)) ∈ 〉〈t∈Hδ(r),0
Qα(r).

Then if r < v and z is in the Qα(r)-span of (Sδ(r),1, Sδ(r),2, . . . , Sδ(r),n(δ(r)+1)) over
〈ym〉∞m=1 one has ϕ(x(δ(r))) = ϕ(x(δ(r)) + z) = c.

Now given r ∈ {2, 3, . . . , v} and t ∈ Hδ(r),0 we have `(δ(r))t ∈ Qα(r). Since
〈Qm〉∞m=1 is a C-useful sequence, we may pick some ~wr,t ∈ (Qα(r)+1 ∪ {0})v such that
wr,t(r) = `(δ(r))t and wr,t(r + 1) = wr,t(r + 2) = . . . = wr,t(v) = 0 and all entries of
C ~wr,t are in Qα(r)+1 ∪ {0}.

Now let zv = x(δ(v)), and for j ∈ {1, 2, . . . , v − 1} let

zj = x(δ(j)) +
v∑

r=j+1

∑
t∈Hδ(r),0

wr,t(j) ·
∑

m∈Sδ(r)−1,t

ym.

To complete the proof we show that for each entry µ of C~z one has ϕ(µ) = c. To this
end let (a1, a2, . . . , av) be a row of C and let µ =

∑v
j=1 aj ·zj . Let i be the coordinate of

the first nonzero entry of (a1, a2, . . . , av), so that ai = 1. Thus µ = zi +
∑v

j=i+1 aj · zj .

If i = v, then µ = zv = x(δ(v)) so δ(µ) = c as required. Thus we assume that
i < v. Then

µ = x(δ(i)) +
v∑

r=i+1

∑
t∈Hδ(r),0

wt,t(i) ·
∑

m∈Sδ(r)−1,t

ym +
v∑

j=i+1

aj · zj .

So, putting

τ =
v∑

r=i+1

∑
t∈Hδ(r),0

wr,t(i) ·
∑

m∈Sδ(r)−1,t

ym +
v∑

j=i+1

aj · zj ,
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it suffices to show that either τ belongs to theQα(i)-span of (Sδ(i),1, Sδ(i),2, . . . , Sδ(i),n(δ(i)+1))
over 〈ym〉∞m=1 or else τ = 0. Now, we have

v∑
j=i+1

aj · zj

= av · x(δ(v)) +
∑v−1

j=i+1 aj · (x(δ(j)) +
∑v

r=j+1

∑
t∈Hδ(r),0

wr,t(j) ·
∑

m∈Sδ(r)−1,t
ym)

=
∑v

r=i+1 ar · x(δ(r)) +
∑v

j=i+1

∑v
r=j+1

∑
t∈Hδ(r),0

aj · wr,t(j) ·
∑

m∈Sδ(r)−1,t
ym

=
∑v

r=i+1

∑
t∈Hδ(r),0

ar · `(δ(r))t ·
∑

m∈Sδ(r)−1,t
ym+∑v

r=i+2

∑r−1
j=i+1

∑
t∈Hδ(r),0

aj · wr,t(j) ·
∑

m∈Sδ(r)−1,t
ym

=
∑v

r=i+1

∑
t∈Hδ(r),0

ar · wr,t(r) ·
∑

m∈Sδ(r)−1,t
ym+∑v

r=i+2

∑r−1
j=i+1

∑
t∈Hδ(r),0

aj · wr,t(j) ·
∑

m∈Sδ(r)−1,t
ym

=
∑

t∈Hδ(i+1),0
ai+1 · wi+1,t(i+ 1) ·

∑
m∈Sδ(i+1)−1,t

ym+∑v
r=i+2

∑
t∈Hδ(r),0

∑r
j=i+1 aj · wr,t(j) ·

∑
m+Sδ(r)−1,t

ym.

Therefore τ =
∑v

r=i+1

∑
t∈Hδ(r),0

wr,t(i) ·
∑

m∈Sδ(r)−1,t
ym+∑

t∈Hδ(i+1),0
ai+1 · wi+1,t(i+ 1) ·

∑
m∈Sδ(i+1)−1,t

ym+∑v
r=i+2

∑
t∈Hδ(r),0

∑r
j=i+1 aj · wr,t(j) ·

∑
m∈Sδ(r)−1,t

ym

=
∑v

r=i+2

∑
t∈Hδ(r),0

∑r
j=i aj · wr,t(j) ·

∑
m∈Sδ(r)−1,t

ym+∑
t∈Hδ(i+1),0

(wi+1,t(i) + ai+1 · wi+1,t(i+ 1)) ·
∑

m∈Sδ(i+1)−1,t
ym.

Now observe that if j > r then wr,t(j) = 0 and if j < i then aj = 0 so

wi+1,t(i) + ai+1 · wi+1,t(i+ 1) =
v∑

j=1

aj · wi+1,t(i)

and for r ≥ i+ 2 we have

r∑
j=i

aj · wr,t(j) =
v∑

j=1

aj · wr,t(j).
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Consequently, we have

τ =
v∑

r=i+1

∑
t∈Hδ(r),0

(
v∑

j=1

aj · wr,t(j)) ·
∑

m∈Sδ(r)−1,t

ym.

Now we are given that for r ≥ i+ 1 we have

v∑
j=1

aj · wr,t(j) ∈ Qα(r)+1 ∪ {0} ⊆ Qα(i) ∪ {0},

so we have τ = 0 or τ is in Qα(i)-span of (Sδ(i),1, Sδ(i),2, ..., Sδ(i),n(δ(i)+1)), provided we
can show that given (r1, t1) and (r2, t2) with r1, r2 ∈ {i+1, i+2, . . . , v} and t ∈ Hδ(r1),0

and t2 ∈ Hδ(r2),0, if (r1, t1) 6= (r2, t2) then Sδ(ri)−1,t1 ∩ Sδ(r2)−1,t2 = ∅. If r1 = r2 this is
immediate so assume r1 < r2. Then Sδ(r2)−1,t2 is a union of sets of the form Sδ(r1)−1,s

with s ∈ Hr1,q for some q > 0 while t1 ∈ Hr1,0. []

3. Solving systems of n equations for n ≥ 2. We show in this section that
given n ≥ 2, there is a set E ⊆ N which is partition regular for every partition regular
system of n equations, but fails to have any solution to a specified system of n + 1
equations, namely the equations describing a length n + 2 arithmetic progression and
its increment.

We show first that we can reduce the problem to one involving monic first entries
matrices. The proof is a minor variation of the standard method of converting kernel
partition regular matrices to image partition regular ones. (Recall that a matrix is
image partition regular if whenever N is finitely colored there is some ~x with the entries
of A~x monochrome. )

3.1. Lemma. Let n ∈ N. Let a partition regular system of n homogeneous linear
equations with rational coefficients be given. Then there is a monic first entries matrix
C with at most n rows having more than one nonzero entry, such that, for any y ∈ Nm,
the entries of C~y contain a solution to the given system.

Proof. Let A be the n× u coefficient matrix of the given system. Then A satisfies
the columns condition so assume the columns ~c1,~c2, . . . ,~cu of A have been ordered as
required by the columns condition. We assume no ~ci = ~0. Pick v ∈ N and k1, k2, . . . , kv

with 1 < k1 < . . . < kv = u so that
∑k1

i=1 ~ci = ~0 and for t ∈ {2, 3, . . . , v},
∑kt

i=kt−1+1 ~ci

is a linear combination of {~c1,~c2, . . . ,~ckt−1} over Q.
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Let I = {1} ∪ {i ∈ {2, 3, . . . , u} : ~ci /∈ Span{~c1,~c2, . . . ,~ci−1}} and note that since
rank A ≤ n we have |I| ≤ n. Given t ∈ {2, 3, . . . , v}, pick α1,t, α2,t, . . . , αkt−1,t in Q such
that

∑kt

i=kt−1+1 ~ci =
∑kt−1

i=1 αi,t ·~ci. By elementary linear algebra we may assume that if
i /∈ I, then αi,t = 0. Let k0 = 0. Now define the u× v matrix C by, for i ∈ {1, 2, . . . , u}
and t ∈ {1, 2, . . . , v},

ci,t =

αi,t if t > 1 and i ≤ kt−1

1 if kt−1 < i ≤ kt

0 if i > kt

.

Then C is a monic first entries matrix whose only rows with more than one nonzero
entries are labelled by members of I.

Further, given any y1, y2, . . . , yv in N and i ∈ {1, 2, . . . , u}, let xi =
∑v

t=1 ci,t · yt.
(So ~x = C~y.) Then one can routinely verify that A~x = ~0. (See [5, pp. 79 - 80].) []

Now we use a strategy similar to that used in Section 2. In outline, here is what
we will do. Given any monic first entries matrix C with at most n rows with more than
one nonzero entry, we produce a C-useful sequence 〈Qm〉∞m=1 such that for no m does
Qm ∪ {0} contain a solution to the system

x3 = x1 + x2

x4 = x1 + 2 · x2

·

·

xn+3 = x1 + (n+ 1) · x2

with x2 6= 0. Then using Lemma 2.6 we produce a sequence 〈ym〉∞m=1 so that the
existence of a solution to this system in D = D(〈Qm〉∞m=1, 〈ym〉∞m=1) would imply the
existence of a solution in some Qm ∪ {0} with x2 6= 0. Consequently D is partition
regular for C (by Theorem 2.5) but has no solution to the specified system of n + 1
equations. Finally we piece the solutions together as in the proof of Theorem 2.11.

The construction of the sequence 〈Qm〉∞m=1 is similar to the corresponding con-
struction in Section 2.

3.2 Definition. Let C be a u× v monic first entries matrix.
(a) Given ` ∈ {1, 2, . . . , u}, µ(`) = min{j ∈ {1, 2, . . . , v} : c`,j 6= 0}.
(b) Given n ∈ N, C is n-sparse provided that for each i ∈ {1, 2, . . . , v} we have

|{` ∈ {1, 2, . . . , u} : µ(`) = i and row ` of C has more than one nonzero entry }| ≤ n.
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The reader might wonder why we define n-sparse the way we do, since the matrices
we are considering in this section all have the stronger property that at most n rows
have more than one non-zero entry. It is true that, for this section, we do not need the
generality of n-sparse matrices as defined above. However, this generality will yield an
enormous payoff when we get to Section 4.

3.3. Lemma. Let n ∈ N and let C be a u× v n-sparse monic first entries matrix.
Then there is a C-useful sequence 〈Qm〉∞m=1 such that, for each m ∈ N and each r ∈ Qm,
we have |{s ∈ Qm : 1 ≤ s/r ≤ 2n+2}| ≤ n+1, and, given r, s ∈ Qm, if 1 ≤ s/r ≤ 2n+2,
then s/r < 2.

Proof. We construct 〈Qm〉∞m=1 analogously to the proof of Theorem 2.7 adding
new elements as required by the notion of C-useful, at each stage adding things much
bigger than we have added already.

We show that given any finite set Q of positive rationals and any q ∈ Q there is a
finite set F = F (q,Q) of positive rationals such that

(a) Given s ∈ F and r ∈ Q, s/r > 2n+ 2.
(b) Given r, s ∈ F with r < s, either s/r > 2n+ 2 or s/r < 2.
(c) Given r ∈ F , |{s ∈ F : 1 ≤ s/r ≤ 2n+ 2}| ≤ n+ 1.
(d) For all i ∈ {1, 2, . . . , v}, there exists ~x ∈ (Q ∪ F ∪ {0})v such that xi = q and

xi+1 = xi+2 = ... = xv = 0 and each entry of C~x is in Q ∪ F ∪ {0}.
(When we have shown we can do this we will proceed to the construction of the

sequence 〈Qm〉∞m=1 .)
We construct an upper triangular u× v matrix

A =


a1,1 a1,2 . . . a1,v

0 a2,2 . . . a2,v

. . . . . .

. . . . . .
0 0 . . . av,v


where for each j, aj,j = q. The off diagonal assignments proceed from left to right and,
within columns, from bottom to top: a1,2, a2,3, a1,3, a3,4, a2,4, .... When we have chosen
ai,j , we let

Ri,j = Gi,j ∪ {ai,j} ∪ {
j∑

t=1

c`,t · at,j : ` ∈ {1, 2, . . . , u} and µ(`) = i}

= Gi,j ∪ {ai,j} ∪ {αi,j +
j∑

t=i+1

c`,t · at,j : ` ∈ {1, 2, . . . , u} and µ(`) = i},
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where Gi,j is the set of values which have been chosen before step (i, j). (So G1,2 = Q,
Gi,j = R1,j−1 if 1 < i = j − 1, and Gi,j = Ri+1,j otherwise.) We then let F = R1,v.

Note that for any (i, j) one has |Ri,j\Gi,j | ≤ n+1. Indeed by assumption there are
at most n rows ` of C with µ(`) = i having more than one nonzero entry. If there is a
row ` of C with µ(`) = i having exactly one nonzero entry, ai,j +

∑j
t=i+1 c`,t ·at,j = ai,j .

Note also that the manner of the construction guarantees that (d) holds. To see
this, let j ∈ {1, 2, . . . , v} and let

~x =



a1,j

a2,j

.

.
aj,j

0
0
.
.
0


.

Then let a row ` be given. If µ(`) > j, then
∑v

t=1 c`,t · xt = 0. If µ(`) = j, then∑v
t=1 c`,t · xt = aj,j = q ∈ Q. If µ(`) = i < j, then we have

v∑
t=1

c`,t · xt = ai,j +
j∑

t=i+1

c`,t · at,j ∈ Ri,j .

It thus suffices to show that at step (i, j) we can choose ai,j ∈ Q+ so that:
(1) Given s ∈ Ri,j\Gi,j and r ∈ Gi,j , s/r > 2n+ 2; and
(2) Given r, s ∈ Ri,j\Gi,j with r < s one has s/r < 2.
To this end let b = maxGi,j and let

d = max{|
j∑

t=i+1

c`,t · at,j | : ` ∈ {1, 2, . . . , u} and µ(`) = i}.

Pick ai,j ≥ max{b · (2n + 2) + d, 4d}. Then given s ∈ Ri,j\Gi,j and r ∈ Gi,j one has
n ≤ b and s ≥ ai,j − d ≥ b · (2n+ 2) so (1) holds. Given r, s ∈ Ri,j\Gi,j with r < s one
has r ≥ ai,j − d and s ≤ ai,j + d so (2) holds.

We are now ready to choose our C-useful sequence. Let Q1 = {1}. Inductively
given Qm = {q1, q2, . . . , qk}, let Qm+1,0 = Qm and let Qm+1,1 = Qm ∪ F (q1, Qm+1,0)
and Qm+1,t+1 = Qm+1,t ∪ F (qt+1, Qm+1,t). Let Qm+1 = Qm+1,k.

By condition (d) the sequence 〈Qm〉∞m=1 is C-useful. Also, given m ∈ N and r, s ∈
Qm+1 with r ≤ s, one has some t, p ∈ {1, 2, . . . , k} with r ∈ Qm+1,t and s ∈ Qm+1,p.
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Immediately t ≤ p. If t < p then by (a) s/r > 2n + 2. Thus s ∈ F (qt, Qm+1,t−1). So
(c) guarantees that |{s ∈ Qm+1 : 1 ≤ s/r ≤ 2n+ 2}| ≤ n+ 1. []

The conditions on ratios given in Lemma 3.3 ensure that the sets Qm ∪ {0} do not
contain arithmetic progressions of n+ 2 terms with their common difference.

3.4 Lemma. Let n ∈ N and let C be an n-sparse monic first entries matrix. Then
there is a C-useful sequence 〈Qm〉∞m=1 such that for each m, Qm ∪{0} does not contain
a solution to the system

x3 = x1 + x2

x4 = x1 + 2 · x2

·

·

xn+3 = x1 + (n+ 1) · x2

with x2 6= 0.

Proof. Let 〈Qm〉∞m=1 be as guaranteed by Lemma 3.3. Let m be given and suppose
Qm ∪ {0} contains a solution to the specified system with x2 6= 0. If we had x1 = 0
we would have x4 = 2 · x2 so x4/x2 = 2 contradicting Lemma 3.3. Thus x1 > 0. Now
suppose x1 > (n+ 1) · x2. Then given j ∈ {3, 4, . . . , n+ 3} we have

xj = x1 + (j − 2) · x2 ≤ x1 + (n+ 1) · x2 < 2 · x1,

so
{x1, x3, x4, . . . , xn+3} ⊆ {s ∈ Qm : 1 ≤ s/x1 ≤ 2n+ 2},

a contradiction to Lemma 3.3. Thus we must have 0 < x1 ≤ (n+1) ·x2. But then given
j ∈ {3, 4, . . . , n+ 3} we have

xj = x1 + (j − 2) · x2 ≤ 2 · (n+ 1) · x2,

so
{x2, x3, x4, . . . , xn+3} ⊆ {s ∈ Qm : 1 ≤ s/x2 ≤ 2n+ 2},

again a contradiction to Lemma 3.3. []

Analogously to the case of kernel partition regular matrices, we say that a set D is
image partition regular for a u × v image partition regular matrix C provided that for
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any finite coloring of D there is some ~x ∈ Nv with the entries of C~x belonging to D and
monochrome.

3.5 Theorem. Let n ∈ N and let C be an n-sparse first entries matrix. Then there
is a set D which is image partition regular for C but contains no solution to the system

x3 = x1 + x2

x4 = x1 + 2 · x2

·

·

xn+3 = x1 + (n+ 1) · x2 .

Proof. Pick 〈Qm〉∞m=1 as guaranteed by Lemma 3.4. Choose a sequence 〈ym〉∞m=1

as in Lemma 2.6 (where F = {1, 2, . . . , n+ 1}). Let D = D(〈Qm〉∞m=1, 〈ym〉∞m=1). Then
by Theorem 2.5, D is partition regular for C. By Lemmas 2.6 and 3.4, D contains no
solution to the specified system. []

We now mimic the proof of Theorem 2.11.

3.6 Theorem. Let n ∈ N. There is a set E which is image partition regular for
every n-sparse monic first entries matrix but contains no solution to the system

x3 = x1 + x2

x4 = x1 + 2 · x2

·

·

xn+3 = x1 + (n+ 1) · x2 .

Proof. For each n-sparse monic first entries matrix C there is, by Theorem 3.5, a
set which is partition regular for C and contains no solution to the specified system so
by compactness there is, for each k ∈ N, a finite set HC,k which contains no solution to
the specified system and is such that whenever HC,k is k-colored, there is some ~x with
the entries of C~x monochrome. (See the discussion of the use of compactness in the
proof of Theorem 2.11.)
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Let 〈Ds〉∞s=1 enumerate {HC,k : k ∈ N and C is an n-sparse monic first entries
matrix}. Choose a sequence 〈rs〉∞s=1 as guaranteed by Lemma 2.10 with a = 1 and
` = n+ 2. Let E =

⋃∞
s=1 rs ·Ds. Then as in the proof of Theorem 2.11 we see that E

is as required. []

3.7 Corollary. Let n ∈ N. There is a set E which is partition regular for every
partition regular system of n linear homogeneous equations but contains no solution to
the system

x3 = x1 + x2

x4 = x1 + 2 · x2

·

·

xn+3 = x1 + (n+ 1) · x2 .

Proof. By Lemma 3.1, the set E produced in Theorem 3.6 is as required. []

We shall see in Theorem 4.2 that in fact Theorem 3.6 implies a rather stronger
conclusion.

4. Uniform partition regularity and some subsemigroups of βN. The
Stone-Čech compactification βN of the discrete set N supports operations + and ·
extending ordinary addition and multiplication and making (βN,+) and (βN, ·) compact
left topological semigroups. These structures, and the interactions of various ideals and
subsemigroups of (βN,+) and (βN, ·), have had several combinatorial consequences. We
take the points of βN to be the ultrafilters on N. (For a general background about
βN and its applications, see the survey [8].)

We will see here that our results, specifically Theorem 3.6, have consequences for
some special subsemigroups of βN.

4.1 Definition. For n ∈ N, let Gn = {p ∈ βN : for every B ∈ p and for every
m ∈ N and every n ×m kernel partition regular matrix A, there exists ~x ∈ Bm with
A~x = ~0}

Thus Gn is the set of ultrafilters, every member of which contains solutions to every
partition regular system of n equations. Each Gn is a subsemigroup of (βN,+) and a
two-sided ideal of (βN, ·), and each Gn+1 ⊆ Gn. Our aim in this section is to show that
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for every n, this inclusion is strict. (We remark that it is not at all obvious that for
each n there exists an m > n with Gm 6= Gn. Indeed, it is not even obvious that we do
not have Gn = G1 for all n.)

We need to strengthen Corollary 3.7 in a “uniform” way, by insisting that, in any
finite coloring of E, some class should actually contain solutions to all partition regular
systems of n equations. Now it would seem that our methods so far, involving “piecing
together” finite sets, are absolutely useless for this, since by their very nature we may
need different color classes for different partition regular matrices. However, it is now
that our rather general definition of “n-sparse” pays off.

4.2 Theorem. Let n ∈ N. There is a set E which contains no solution to the
system

x3 = x1 + x2

x4 = x1 + 2 · x2

·

·

xn+3 = x1 + (n+ 1) · x2,

and whenever E is partitioned into finitely many cells, one of these cells contains a
solution to every partition regular system of n homogeneous linear equations.

Proof. Pick E as guaranteed by Theorem 3.6. Suppose the conclusion fails and
let F = {F1, F2, . . . , Fk} be a partition of E no cell of which contains solutions to every
partition regular system of n equations. For each i ∈ {1, 2, . . . , k} pick Ai, a n × mi

kernel partition regular matrix such that for no ~x ∈ Fi
mi is Ai~x = ~0. Pick by Lemma

3.1 an n-sparse monic ui×vi first entries matrix Ci such that for any ~y ∈ Nvi , the entries
of Ci~y contain a solution to Ai~x = ~0. Let C be the diagonal sum of C1, C2, . . . , Ck.
That is,

C =


C1 O . . . O
O C2 . . . O
. . . . . .
. . . . . .
O O . . . Ck

 .

Let u =
∑k

i=1 ui and v =
∑k

i=1 vi. Then C is a u×v monic first entries matrix. Further,
a brief consideration shows that C is n-sparse. Pick some i and some ~z ∈ Nvi such that
all entries of C~z are in Fi. Then there is some ~y ∈ Nvi such that all entries of Ci~y are
in Fi and hence Fi contains a solution to Ai~x = ~0, a contradiction. []
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We wish to remark that it is very fortunate that the diagonal sums constructed
above are indeed n-sparse.

4.3 Corollary. For each n ∈ N, the set Gn+1 is strictly contained in Gn.

Proof. Let E be as guaranteed by Theorem 4.2, and let C = {A ⊆ E : A contains
a solution to every partition regular system of n homogeneous linear equations}. Now,
by Theorem 4.2, whenever E is partitioned into finitely many cells, one of these contains
a member of C. So by [5, Theorem 6.2.3], there is an ultrafilter q on E, every member
of which contains a member of C. Let p = {A ⊆ N : A∩E ∈ q}. Then p is an ultrafilter
on N, and E ∈ p. Thus p ∈ Gn\Gn+1. []
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