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Abstract. The systems of linear equations (homogeneous or inhomogeneous) that
are partition regular, over N or Z or Q, were characterized by Rado. Our aim here is
to characterize those systems for which we can guarantee a nonconstant, or injective,
solution. It turns out that we thereby recover an equivalence between N and Z that is
normally lost when one passes from homogeneous to inhomogeneous systems.

1. Introduction

We say that a u×v matrix A, with entries from Q, is partition regular (or kernel partition
regular) if whenever the positive integers N are finitely colored there is a vector x ∈ Nv

that is monochromatic (meaning that all its entries are from the same color class)
such that Ax = 0. We may also speak of the ‘system of equations Ax = 0’ being
partition regular. Many of the classical results of Ramsey Theory may be interpreted as
statements that particular matrices are partition regular. For example, Schur’s Theorem
[9], that whenever N is finitely colored there exist x, y, z of the same color with x+y = z,
is precisely the assertion that the 1× 3 matrix ( 1 1 −1 ) is partition regular.

The partition regular matrices were characterized by Rado in the 1930s [7]. To
give the characterization, we need to introduce another definition. Let the matrix A

have columns c1, c2, . . . , cv. Then we say that A has the columns property if there is a
partition of {1, 2, . . . , v} as I1 ∪ I2 ∪ . . . ∪ Im (some m ≥ 1) such that

(1)
∑

i∈I1
ci = 0; and

(2) for each t > 1,
∑

i∈It
ci is a (rational) linear combination of {ci : i ∈ I1∪. . .∪It−1}.

Note that the columns property can be checked in finite time. Rado showed that
a matrix is partition regular if and only if it has the columns property. (Although this
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paper is self-contained, the reader who wishes for background information may see [3]
or [4].)

What happens over different spaces? We say that A is partition regular over Z
(respectively Q) if whenever Z \ {0} (respectively Q \ {0}) is finitely colored there is a
monochromatic vector x with Ax = 0. Then trivially if A is partition regular over N, it is
partition regular over Z, and in fact the converse holds as well: indeed, if we have a bad
k-coloring of N (meaning a coloring with k colors such that there is no monochromatic
x with Ax = 0), then we may extend this to Z by coloring −N the same way as N, but
with k new colors – it is easy to check that this is a bad 2k-coloring of Z. It also turns
out that partition regularity over Z and Q coincide, by a simple compactness argument
(see [3] for details).

Rado went on to consider inhomogeneous linear equations. Let A be a u×v matrix,
and let b ∈ Qu. Then we say that the system of equations Ax = b is partition regular
over S (where S is one of N, Z, Q) if whenever S \ {0} is finitely colored there is a
monochromatic vector x with Ax = b. In this inhomogenous setup, partition regularity
over N, Z and Q are definitely not the same. For example, the system x+ y + z = −6
is partition regular over Z (just take x = y = z = −2) but not partition regular over N.

Rado’s characterization of partition regularity in the inhomogeneous case is as
follows. If S is Z or Q, then the system Ax = b (with b 6= 0) is partition regular over S
if and only if there is a constant solution. More precisely, writing c for the vector of the
appropriate size all of whose coordinates are c, Ax = b (with b 6= 0) is partition regular
over S if and only if there exists d ∈ S \ {0} such that Ad = b. In a sense, this is saying
that if an inhomogeneous system is partition regular over Z or Q then it is partition
regular for a trivial reason. Rado also showed that, over N, the situation is ‘halfway in
between’: the system Ax = b (b 6= 0) is partition regular if and only if either there is a
d ∈ N with Ad = b or A has the columns property and there is a d ∈ Z with Ad = b.
(These results are in [7] and [8]. To be precise, the cases of N and Z are in [7], while
the case of Q, although not appearing explicitly, may easily be obtained from results in
[8].)

Our main aim in this paper is to consider what happens when we restrict our
attention to nonconstant solutions (Ax = b with x not a constant vector). There are
two natural reasons for wanting to consider this question. Our first reason is that in fact
some statements only appear artificially as partition regularity statements. Consider
for example van der Waerden’s Theorem [10], which says that whenever N is finitely
colored there exist arbitrarily long monochromatic arithmetic progressions. A natural
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statement of the length 5 instance of this theorem is that the equations

x3 − x2 = x2 − x1

x4 − x3 = x3 − x2

x5 − x4 = x4 − x3

have a monochromatic solution which is not constant . The matrix corresponding to this
system of equations is  1 −2 1 0 0

0 1 −2 1 0
0 0 1 −2 1


which satisfies the columns condition with m = 1, so Rado’s Theorem only guarantees
a constant solution to this system. (It can be made to guarantee a nonconstant solution
by adding the equation x5 − x4 = x6, that is by requiring that the increment also be
the same color as the terms of the progression.) So, apart from the strengthening to
insist that the increment is the same color, the natural way to have van der Waerden’s
Theorem as a partition regularity statement would be to introduce ‘nonconstant’ as an
extra condition.

Our second reason concerns the inhomogeneous results over Z and Q. The fact
that the only way for a system Ax = b to be partition regular is for there to be trivial
(constant) solutions suggests that one is not asking the right question. Removing the
constant solutions stops this particular phenomenon (and, as we shall see, gives a much
richer structure to the characterization).

One rather unexpected consequence of restricting to nonconstant solutions is that
it turns out that, even in the inhomogeneous case, partition regularity over N and Z now
coincide. This will follow from our characterizations. Curiously, this rather pleasant
feature seems not to have a direct proof. It seems remarkable that the equivalence could
not be ‘trivially obvious’, given that it is true, but we have been unable to find a direct
argument.

Instead of asking for nonconstant monochromatic solutions, one could also ask
whether there are injective monochromatic solutions. (In a sense, this is what one really
wants in the case of van der Waerden’s Theorem. However, any nonconstant solution
of those equations is automatically injective.) More generally, one can ask that certain
specific coordinates in a monochromatic solution be distinct. We give characterizations
here as well.

The plan of the paper is as follows. In Section 2 we present some preliminary
results, including a proof of the case S = Q of the result of Rado on partition regularity
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of Ax = b over Q – we include this for completeness, and to make the paper more
readable. Then Section 3 contains our main results characterizing the existence of
monchromatic nonconstant or injective solutions to Ax = 0 and Ax = b in N, Z and Q.

2. Preliminaries

We begin by presenting a proof of the characterization of partition regularity of the
system Ax = b (where b 6= 0) over Q. The proof is based on [4, Lemma 22 and
Corollary 24, pp. 87-88] and [8, Lemma 4].

2.1 Lemma. Let v ∈ N. There is a coloring χ of R in 2v colors such that there do
not exist 〈xj〉vj=1 and 〈yj〉vj=1 in R with χ(xj) = χ(yj) for each j ∈ {1, 2, . . . , v} and∑v

j=1(xj − yj) = 1.

Proof. Define χ : R → {0, 1, . . . , 2v− 1} by χ(x) = i if and only if there is some m ∈ Z

such that 2m +
i

v
≤ x < 2m +

i+ 1
v

. Suppose one has 〈xj〉vj=1 and 〈yj〉vj=1 in R with
χ(xj) = χ(yj) for each j ∈ {1, 2, . . . , v} and

∑v
j=1(xj − yj) = 1. Then given j one

has some mj ∈ Z such that 2mj − 1
v < xj − yj < 2mj + 1

v . Let n =
∑v

j=1mj . Then
2n− 1 < 1 < 2n+ 1, a contradiction.

2.2 Lemma. Assume that the equation
∑v

j=1 cjxj = b is partition regular over Q where
b ∈ Q and each cj ∈ Q. Then there is some d ∈ Q such that d

∑v
j=1 cj = b. In particular,

if
∑v

j=1 cj = 0, then b = 0.

Proof. If
∑v

j=1 cj 6= 0, let d =
b∑v

j=1 cj
. So assume that

∑v
j=1 cj = 0 and suppose that

b 6= 0. Define a coloring χ∗ of Q by χ∗(x) = χ∗(y) if and only if for each j ∈ {1, 2, . . . , v},
χ( cjx

b ) = χ( cjy
b ), where χ is as guaranteed by Lemma 2.1 for v − 1. Pick monochrome

x1, x2, . . . , xv such that
∑v

j=1 cjxj = b. Then
∑v

j=2

(cjxj

b
− cjx1

b

)
= 1, contradicting

Lemma 2.1.

2.3 Lemma. Assume that A is a 2 × v matrix with entries from Q, b ∈ Q2, and the
equation Ax = b is partition regular over Q. Then for any choice of t1, t2 ∈ Q, there is
some d ∈ Q such that d(t1

∑v
j=1 a1,j + t2

∑v
j=1 a2,j) = t1b1 + t2b2.

Proof. Let cj = t1a1,j + t2a2,j and let b = t1b1 + t2b2. We claim that the equa-
tion

∑v
j=1 cjxj = b is partition regular over Q. So let Q be finitely colored and pick

monochrome x such that Ax = b. Then
∑v

j=1 cjxj = t1
∑v

j=1 a1,jxj + t2
∑v

j=1 a2,jxj =
t1b1 + t2b2 = b. Pick d as guaranteed by Lemma 2.2.
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2.4 Lemma. Assume that A is a 2×v matrix with entries from Q, b ∈ Q2, the equation
Ax = b is partition regular over Q, s1 =

∑v
j=1 a1,j 6= 0, and s2 =

∑v
j=1 a2,j 6= 0. Then

b1
s1

=
b2
s2

.

Proof. By Lemma 2.3, if s1t1 + s2t2 = 0, then b1t1 + b2t2 = 0 so the system

s1t1 + s2t2 = 0

b1t1 + b2t2 = 1

is not solvable so
∣∣∣∣ s1 s2
b1 b2

∣∣∣∣ = 0. Thus
b1
s1

=
b2
s2

as required.

2.5 Theorem (Rado). Let u, v ∈ N, let A be a u× v matrix with entries from Q, let
b ∈ Qu \ {0}. The system Ax = b is partition regular over Q if and only if there exists
d ∈ Q \ {0} such that Ad = b.

Proof. Given any i ∈ {1, 2, . . . , u} if
∑v

j=1 ai,j = 0, then by Lemma 2, bi = 0 so any
choice of d will work for that row. If for all i ∈ {1, 2, . . . , u},

∑v
j=1 ai,j = 0, then we

are done. So assume we have some i ∈ {1, 2, . . . , u} such that
∑v

j=1 ai,j 6= 0 and let

d =
bi∑v

j=1 ai,j
. By Lemma 4, Ad = b.

We shall use the notion of a first entries matrix , a notion based on the mpc-sets
introduced by Deuber in [2]. Let u, v ∈ N and let A be a u×v matrix with entries from Q.
Then A is a first entries matrix if and only if no row of A is 0 and whenever i, j ∈ {1, 2,
. . . , u} and k = min{t ∈ {1, 2, . . . , v} : ai,t 6= 0} = min{t ∈ {1, 2, . . . , v} : aj,t 6= 0}, then
ai,k = aj,k > 0.

2.6 Lemma (Deuber). Let u, v ∈ N and let A be a u×v first entries matrix. Whenever
N is finitely colored, there exists x ∈ Nv such that all entries of Ax are monochrome.

Proof. This is essentially in [2]. The proof may also be found in [6, Theorem 15.24].

A matrix satisfying the conclusion of Lemma 2.6 is said to be image partition
regular.

2.7 Lemma. Let u, v ∈ N and let A be a u × v first entries matrix. Whenever N is
finitely colored, there exists x ∈ Nv such that all entries of Ax are monochrome and
entries of Ax corresponding to unequal rows of A are distinct.

Proof. By Lemma 2.6 A is image partition regular, so by [5, Theorem 2.10] the con-
clusion holds. (Statement (n) of [5, Theorem 2.10] refers to finding the image in a given
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central set. One only needs to know that given any finite partition of N, one cell must
be central.)

3. Nonconstant Monochromatic Solutions

In this section we determine precisely those systems of homogeneous and those sys-
tems of inhomogeneous solutions which always have nonconstant or injective solutions
whenever N, Z or Q are finitely colored. Our characterizations typically state that a
condition that is clearly necessary is in fact also sufficient. For example, for a matrix
A to be nonconstant partition regular (over N, Z or Q) we certainly require that A has
the columns property and also that there is some nonconstant linear dependence among
the columns of A, and statement (e) of Theorem 3.2 asserts that this condition is also
sufficient.

A key idea in the proofs will be the general Ramsey philosophy of ‘if something can
be forced, then it can be forced in a monochromatic way’. Thus for example if we wish
to find solutions in which two particular variables x and y are distinct, we do not find
such solutions directly, but rather we introduce a new variable z and a new equation
x+ z = y, so that in any solution of the new system we must have x 6= y.

3.1 Theorem. Let u, v ∈ N, let A be a u × v matrix with entries from Q, and let
F ⊆ {1, 2, . . . , v}. The following statements are equivalent.

(a) Whenever N is finitely colored there exists monochromatic x ∈ Nv such that Ax = 0
and xi 6= xj whenever i and j are distinct members of F .

(b) Whenever Z \ {0} is finitely colored there exists monochromatic x ∈ Zv such that
Ax = 0 and xi 6= xj whenever i and j are distinct members of F .

(c) Whenever Q \ {0} is finitely colored there exists monochromatic x ∈ Qv such that
Ax = 0 and xi 6= xj whenever i and j are distinct members of F .

(d) The matrix A satisfies the columns condition and there exists x ∈ Qv such that
Ax = 0 and xi 6= xj whenever i and j are distinct members of F .

Proof. That (a) implies (b) and (b) implies (c) is trivial. That (c) implies (d) follows
immediately from Rado’s Theorem.

To see that (d) implies (a) pick m, 〈Ij〉mj=1 and 〈δi,t〉i∈Jt
for t ∈ {2, 3, . . . ,m} such

that (as guaranteed by the columns condition) we have

(1) {I1, I2, . . . , Im} is a partition of {1, 2, . . . , v};
(2)

∑
i∈I1

ci = 0; and
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(3) if m > 1 and t ∈ {2, 3, . . . ,m}, then
∑

i∈It
ci =

∑
i∈Jt

δi,t · ci, where Jt =
⋃t−1

j=1 Ij .

Define a v ×m matrix B by, for i ∈ {1, 2, . . . , v} and j ∈ {1, 2, . . . ,m},

bi,j =

 1 if i ∈ Ij
−δi,j if i ∈ Jj

0 otherwise.

Then B is a first entries matrix and AB = 0. Pick y ∈ Qv such that Ay = 0 and yi 6= yj

whenever i and j are distinct members of F . Let C be the v × (m + 1) matrix whose
first m columns are the columns of B and whose final column is y. Then C is a first
entries matrix and the rows of C corresponding to members of F are distinct. Let N be
finitely colored and pick by Lemma 2.7 some x ∈ Nm+1 such that all entries of Cx are
monochrome and entries of Cx corresponding to unequal rows of C are distinct. Let
z = Cx. Then Az = ACx = Ox = 0.

Notice that statement (d) of Theorem 3.1 is a computable condition. Notice also
that by taking F = {1, 2, . . . , v} in Theorem 3.1 one has a characterization of matrices
that are injectively kernel partition regular over N, Z, or Q.

Observe that the single equation a1x1 + a2x2 = 0 is partition regular if and only
if a1 = −a2, in which case there are no nonconstant solutions (unless a1 = a2 = 0).
On the other hand Theorem 3.1 tells us that if n > 3, a1, a2, . . . , an ∈ Q \ {0}, and the
equation a1x1 +a2x2 + . . .+anxn = 0 is partition regular, then it is injectively partition
regular.

We have the following characterization of nonconstant partition regularity which
includes a second (much more easily) computable condition.

3.2 Theorem. Let u, v ∈ N and let A be a u × v matrix with entries from Q. The
following statements are equivalent.

(a) Whenever N is finitely colored there exists monochromatic nonconstant x ∈ Nv such
that Ax = 0.

(b) Whenever Z is finitely colored there exists monochromatic nonconstant x ∈ Zv such
that Ax = 0.

(c) Whenever Q is finitely colored there exists monochromatic nonconstant x ∈ Qv such
that Ax = 0.

(d) The matrix A satisfies the columns condition and there exists nonconstant x ∈ Qv

such that Ax = 0.

(e) The matrix A satisfies the columns condition and if the sum of the columns of A
is 0, then there exists nonempty D ⊆6 {1, 2, . . . , v} and for each j ∈ D there exists
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αj ∈ Q \ {0} such that
∑

j∈D αjcj = 0, where cj is column j of A.

Proof. As in the proof of Theorem 3.1 we have that (a) implies (b), (b) implies (c),
and (c) implies (d).

To see that (d) implies (e), assume that
∑v

j=1 cj = 0 and pick nonconstant x ∈ Qv

such that
∑v

j=1 xjcj = 0. Then
∑v

j=2(xj −x1)cj = 0. Let D = {j ∈ {2, 3, . . . , v} : xj 6=
x1} and for j ∈ D let αj = xj − x1.

To see that (e) implies (a) let m, 〈Ij〉mj=1, and B be as in the proof that (d) implies
(a) in Theorem 3.1. If m > 1, pick i ∈ I1 and t ∈ I2, note that rows i and t of B are
unequal, and let C = B. If m = 1, then pick nonempty D ⊆6 {1, 2, . . . , v} and for each
j ∈ D pick αj ∈ Q \ {0} such that

∑
j∈D αjcj = 0. Define y ∈ Qv by

yj =
{
αj if j ∈ D
0 if j ∈ {1, 2, . . . , v} \D

and let C be the single column of B followed by y. Given i ∈ D and t ∈ {1, 2, . . . , v}\D,
rows i and t of C are unequal.

In either case C is a first entries matrix with two unequal rows such that AC = 0.
Let N be finitely colored and pick by Lemma 2.7 some x ∈ Nm+1 such that all entries of
Cx are monochrome and entries of Cx corresponding to unequal rows of C are distinct.
Let z = Cx. Then Az = ACx = 0x = 0.

We now turn our attention to nonconstant monochromatic solutions to inhomoge-
neous systems of linear equations.

3.3 Theorem. Let u, v ∈ N, let A be a u×v matrix with entries from Q, let b ∈ Qu\{ 0 },
and let F ⊆ {1, 2, . . . , v} with |F | ≥ 2. If S = Z or S = Q, then the following statements
are equivalent.

(a) Whenever S \ {0} is finitely colored there exists monochromatic x ∈ Sv such that
Ax = b and xi 6= xj whenever i and j are distinct members of F .

(b) There exists d ∈ S \ {0} such that Ad = b, A satisfies the columns condition, and
there exists x ∈ Qv such that Ax = b and xi 6= xj whenever i and j are distinct
members of F .

Proof. To see that (a) implies (b), note that we may pick d ∈ S \ {0} such that Ad = b

by Theorem 1.4 and trivially x ∈ Qv exists as required. So it suffices to show that the
system Ax = 0 is partition regular over S. So let r ∈ N and let ϕ : S\{0} → {1, 2, . . . , r}.
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Define ψ : S \ {0} → {1, 2, . . . , r + 1} by

ψ(x) =
{
ϕ(x− d) if x 6= d
r + 1 if x = d .

Pick x ∈ Sv such that x is monochromatic with respect to ψ, Ax = b, and xi 6= xj

whenever i and j are distinct members of F . Since |F | ≥ 2, the constant value of ψ(xi)
cannot be r + 1. Let y = x − d. Then y is monochromatic with respect to ϕ, yi 6= yj

whenever i and j are distinct members of F , and Ay = Ax−Ad = 0.

To see that (b) implies (a), pick d ∈ S \{0} such that Ad = b and pick x ∈ Qv such
that Ax = b and xi 6= xj whenever i and j are distinct members of F . Let r ∈ N and
let ϕ : S \ {0} → {1, 2, . . . , r}. Define ψ : S \ {0} → {1, 2, . . . , r + 1} by

ψ(y) =
{
ϕ(y + d) if y 6= −d
r + 1 if y = −d .

Now x − d ∈ Qv and A(x − d) = 0 so by Theorem 3.1 we may pick z ∈ Sv such
that z is monochromatic with respect to ψ, Az = 0, and zi 6= zj when i and j are
distinct members of F . Since |F | ≥ 2, the constant value of ψ(zi) cannot be r + 1. Let
y = z + d. Then y is monochromatic with respect to ϕ, yi 6= yj whenever i and j are
distinct members of F , and Ay = Az +Ad = b.

Notice that Theorem 3.3 tells us that the single equation 2x1 − 2x2 + 2x3 = 1
is nonconstantly partition regular over Q but not over Z. On the other hand the next
theorem tells us that nonconstant partition regularity over Z is equivalent to nonconstant
partition regularity over N. As we stated earlier, we have been unable to find a trivial
proof of this equivalence.

3.4 Theorem. Let u, v ∈ N, let A be a u×v matrix with entries from Q, let b ∈ Qu\{ 0 },
and let F ⊆ {1, 2, . . . , v} with |F | ≥ 2. The following statements are equivalent.

(a) Whenever N is finitely colored there exists monochromatic x ∈ Nv such that Ax = b

and xi 6= xj whenever i and j are distinct members of F .

(b) Whenever Z \ {0} is finitely colored there exists monochromatic x ∈ Zv such that
Ax = b and xi 6= xj whenever i and j are distinct members of F .

(c) There exists d ∈ Z \ {0} such that Ad = b, A satisfies the columns condition, and
there exists x ∈ Qv such that Ax = b and xi 6= xj whenever i and j are distinct
members of F .

Proof. Trivially (a) implies (b) and (b) implies (c) by Theorem 3.3. To see that (c)
implies (a) pick d ∈ Z \ {0} such that Ad = b and pick x ∈ Qv such that Ax = b and
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xi 6= xj whenever i and j are distinct members of F . Let r ∈ N and let ϕ : N → {1, 2,
. . . , r}. If d > 0, define ψ : N → {1, 2, . . . , r} by ψ(y) = ϕ(y + d). If d < 0, define
ψ : N → {1, 2, . . . , r − d} by

ψ(y) =
{
ϕ(y + d) if y > −d
r + y if y ≤ −d .

Now x − d ∈ Qv and A(x − d) = 0 so by Theorem 3.1 we may pick z ∈ Nv such that
z is monochromatic with respect to ψ, Az = 0, and zi 6= zj when i and j are distinct
members of F . Since |F | ≥ 2, the constant value of ψ(zi) cannot be r+t for any t ≤ −d.
Let y = z + d. Then y is monochromatic with respect to ϕ, yi 6= yj whenever i and j

are distinct members of F , and Ay = Az +Ad = b.

We close by remarking that it would be very nice to find a direct short proof for
the fact proved above that the notions of nonconstant partition regularity for Ax = b

over N and Z are the same.
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