Image partition regular matrices and
concepts of largeness

Neil Hindman and Dona Strauss

ABSTRACT. We show that for several notions of largeness in a semi-
group, if u,v € N, A is a u X v matrix satisfying restrictions that
vary with the notion of largeness, and if C is a large subset of N, then
{# € N : AZ € C"} is large in N”. We show that in most cases the
restrictions on A are necessary. Several other results, including some
generalizations, are also obtained. Included is a simple proof that if
u > 1, then 8(N") is not isomorphic to (8N)".
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The starting point of this investigation is the notion of image partition

regularity of matrices over the set N of positive integers.

Definition 1.1. Let u,v € N and let A be a u X v matrix with rational
entries. The matrix A is image partition reqular over N (denoted IPR/N) if
and only if whenever N is finitely colored, there exists £ € NV such that the

entries of AZ are monochromatic.
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Some of the major old results in Ramsey Theory are naturally represented
by image partition regular matrices. For example, van der Waerden’s The-
orem is the assertion that for any k£ € N, the matrix

1 0
11
1 k

is image partition regular and Schur’s Theorem is the assertion that the
matrix

=
e )

is image partition regular.

The first characterizations of matrices that are IPR/N were obtained in
1993 in [9]. Other characterizations have been obtained over the years. The
one of these that most concerns us involves the notion of central. Central
subsets of N were introduced by Furstenberg in [5], defined in terms of
notions from topological dynamics. Furstenberg proved the original version
of the Central Sets Theorem [5, Proposition 8.21] and showed that any
central subset of N contains a kernel of every kernel partition regular matrix.
That is, if the w x v matrix A has the property that whenever N is finitely
colored, there exists a monochromatic & € NY such that AZ = 0, then every
central subset of N contains all of the entries of such an .

We use a different, but equivalent, definition of central set, which we will
present in the next section. (The equivalence was established in [17] by H.
Shi and H. Yang.)

Theorem 1.2. Let u,v € N and let A be a u X v matriz with entries from
Q. The following statements are equivalent.
(a) A is image partition regular.
(b) For every central set C in N, there exists ¥ € NV such that AZ € C".
(c) For every central set C in N, {¥ € NV : A¥ € C"} is central in NY.

Proof. These are the first three statements of [10, Theorem 2.10]. Unfor-
tunately, as published there were some gaps in the proof. See [14, Theorem
15.24] or the version of [10] posted on nhindman.us/reprint.html for a
complete proof. ([l

Statement (c) of Theorem 1.2 is an example of a common phenomenon
in Ramsey Theory. One wants to know that a set is nonempty, and one
shows that in some sense it is large. For example, Furstenberg [4] proved
Szemerédi’s Theorem, namely that any subset of N with positive upper
density contains arbitrarily long arithmetic progressions, by showing that
the set of starting points of a length &k arithmetic progression in such a set
is large.
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Of particular interest to us for this phenomenon is the notion of C-set.

We write NS for the set of sequences in S and Py(X) for the set of finite
nonempty subsets of a set X.

Definition 1.3. Let (S,+) be a commutative semigroup and let A C S.
Then A is a C-set in S if and only if there exist functions « : Pf(NS ) — S
and H : Pf(NS) — P¢(N) such that
(1) if F,G € Pf(NS) and F C G, then max H(F') < min H(G) and
(2) whenever m € N, G1,G,...,Gm € Ps(NS), G1 C G2 € ... C G,
and for each i € {1,2,...,m}, f; € G;, one has

> (a(Gi) + ZteH(G,-) fi(t)) € A

The currently strongest version of the Central Sets Theorem for a com-
mutative semigroup (S, +) is the assertion that any central subset of S is a
C-set. Many of the strong properties of central sets are derivable from the
fact that they satisfy the Central Sets Theorem. It is natural to ask whether
Theorem 1.2 remains true if “central set” is replaced by “C-set”.

In fact, in [3, Theorem 1.10], the following theorem was stated without
proof.

Theorem 1.4. Let u,v € N and let A be a u X v matriz with entries from
Q. The following statements are equivalent.

(a) A is image partition regular.

(b) For every C-set C' in N, there exists ¥ € N such that AZ € C*.

(c) For every C-set C'in N, {Z e NV : A¥ € C"} is a C-set in N.

We will provide a proof of Theorem 1.4 in Section 4.

In addition to central sets and C-sets, there are several other notions of
size that make sense in any commutative semigroup. We shall define these
notions in Section 2, and describe the relationships that hold among them.
In Section 3, we will establish several preliminary results. In Section 4 we
will prove, if ¥ is any one of seventeen of the notions, a theorem of the
following form, where X is Q, Z, {x € Q : © > 0}, or w = NU {0} and Y is
“Ais IPR/N”, “A has no row equal to 07, or “A is IPR/N and rank(A) = v”.

Theorem 1.5. Let u,v € N, let A be a u X v matriz with entries from X,
and assume that A satisfies Y. Let C be a subset of N which is a U-set in
N. Then {Z € NV : AZ € C"} is a U-set in N.

We shall also show that in each case, the restriction on entries of A is
necessary.

Section 5 consists of some more general results, as well as some other
observations.

We conclude the introduction with the background expected of the reader.
The proofs of results in Sections 2, 3, and 4 rely heavily on results in the
book [14], and all of the results needed in these sections can be found in
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that book. In Section 5 we assume a knowledge of some of the concepts of
functional analysis and we use some of the well known theorems of functional
analysis, such as the Riesz Representation Theorem and Day’s Fixed Point
Theorem.

2. Definitions

For all but two of the notions that we are studying, we will utilize a
characterization in terms of the algebraic structure of the Stone-Cech com-
pactification of a discrete commutative semigroup (S,+). For this paper
except for Theorem 5.2, S will always be N, Z, NV, or ZY for some v € N.
We give a very brief introduction to this structure now. For a detailed
introduction see [14, Part 1.

We let S = {p : p is an ultrafilter on S}, identifying the principal
ultrafilters on S with the points of S so that we may assume that S C 5.
Given A C S, A = {p € BS : A € p}. While A is the closure of A in
S, more importantly, {4 : A C S} is a basis for the topology of 3S. The
operation + on S extends to an operation, also denoted 4+, on 55 so that
(8S,+) is a right topological semigroup with S contained in the topological
center of 8S. That is, for each p € 85, the function p, : 55 — BS defined by
pp(q) = q + p is continuous and for each x € S, the function A\, : S — 35
defined by A;(q) = x+ ¢ is continuous. Despite the fact that it is denoted by
+, the operation on £S5 is not commutative. In fact, if S = NY or § = Z?,
the topological center of 45 is equal to S; that is, if p € S* = 85\ S, then
Ap is not continuous. Given p,q € 8S and A C S, A € p+ ¢ if and only if
{reS:—x+Acq}ep, where s+ A={yeS:x+yec A}

As does any compact Hausdorff right topological semigroup, 55 has idem-
potents and a smallest two sided ideal, denoted K (3S), which is the union
of all of the minimal left ideals of 8.5 and also the union of all of the minimal
right ideals of 5S. An idempotent in 3S is an element of K (35S) if and only
if it is mimimal with respect to the ordering of idempotents wherein p < ¢ if
and only if p + ¢ = ¢ + p = p. Such idempotents are simply said to be min-
imal. Minimal left ideals of 8S are closed. The intersection of any minimal
left ideal with any minimal right ideal is a group, and any two such groups
are isomorphic. Given a subset X of 85, welet E(X) ={p € X : p+p = p}.
We will use the fact that if L is a minimal left ideal of SN, then it is also a
minimal left ideal of SZ.

Given a property ¥ of a subset of S, there is a dual property ¥* defined
as follows. If A C S, then A has property ¥* if and only if A has nonempty
intersection with any subset B of S which has property ¥. All of the notions
we will consider are closed under supersets. In that situation, A has property
U* if and only if S\ A does not have property . Further, under the same
assumption, property ¥ implies property @ if and only if property 6* implies
property ¥* and property W** is the same as property V.
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Two of our basic notions involve the property of positive Banach density
introduced by Bergelson in [1].

Definition 2.1. Let v € N, let S = NY or § = Z?, and let A C S. Then the
Banach density of A,
d(A) =sup{a € [0,1] : (Vn € N)(Tky, ko, ..., ky € {m € N:m > n})
(32 € SYIAN @+ X101, ki — 1D = a- [0y ki)}

Note that if v = 1, the Banach density of A is commonly denoted d*(A),
reserving the notation d(A) for the asymptotic density of A.

In some papers such as [13] we have used the more general notion of Folner
density, which is also more complicated. It is a recent result of Bergelson
and Glasscock [2, Theorem 3.5 and Corollary 3.6] that for subsets of Z" or
NY| the Banach density and Fglner density are equal.

Definition 2.2. Let v € N and let S = N? or S = ZY. Then A(S) = {p €
BS : (VA € p)(d(A) > 0)}.

We shall show in Theorem 3.1 that A(S) is a closed two sided ideal of
BS.

As we define the notions, we will frequently give equivalent characteriza-
tions. For the proofs (or references to the proofs) see [8].

Definition 2.3. Let v e N, let S=N"or S =7Z", and let AC S.

(1) Aisa @Q-set if and only if there exists a sequence (Z,,)>°; in S such
that whenever m < n, Z, € ¥, + A.

(2) Ais a P-set if and only if for cach k € N, there exist @,d € S such
that {@,@+d,...,d+ kd} C A.

(3) A is an IP-set if and only if there exists a sequence (Zp)>°, in
S such that FS({Z,)52;) € A, where FS({(Z)521) = {D nern :
F € P¢(N)}. Equivalently, A is an IP-set if and only if there is an
idempotent p € 55 such that A € p.

(4) Ais a J-set if and only if for every F € Pf(NS), there exist @ € S
and H € Py(N) such that for each f € F, a+ ), .y f(n) € A.

(5) J(S)={pe pS:(VAep)(Aisa Jset)}.

It is shown in [14, Section 14.4] that J(S) is a two sided ideal of 5S and
that a subset A of S is a C-set if and only if there is an idempotent in
AN J(S). (The proof of Theorem 14.14.4 should be moved to after Lemma
14.14.6, since one needs to know J(S) # 0.)

Lemma 2.4. Letv €N, let S=N" or S =7, and let AC S. If d(A) > 0,
then AN A(S) # 0.

Proof. It is a routine exercise to establish that if B and C' are subsets of
S, then d(BUC) < d(B) + d(C). The conclusion is then an immediate
consequence of [14, Theorem 3.11]. O

Definition 2.5. Let v e N, let S =NV or S =Z", and let A C S.
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(1) Ais a B-set if and only if d(A) > 0. Equivalently A is a B-set if
and only if AN A(S) # 0.

(2) Ais a D-set if and only if there is an idempotent in A N A(S).

(3) Aisa PS-set if and only if there exists G € P(S) such that for every
F € Py(S) there is some Z € S such that F + & C Upo(—t + A).
Equivalently A is a PS-set if and only if AN K (3S) # 0.

(4) Ais a QC-set if and only if there is an idempotent in AN clK(BS).

(5) A is central if and only if there is an idempotent in AN K(B9).

(6) A is syndetic if and only if there exists G € Py(S) such that § =
U;eG(—f + A). Equivalently A is syndetic if and only if for every left
ideal L of 85, AN L # 0.

(7) Ais an SC-set if and only if for every left ideal L of 85, there is an
idempotent in AN L.

(8) Ais thick if and only if for every F' € P(S5), there exists Z € S such
that '+ Z C A. Equivalently A is thick if and only if there exists a
left ideal L of S such that L C A.

The names Q, P, IP, PS, QC, and SC come from quotient, progression,
infinite dimensional parallelepiped, piecewise syndetic, quasi central, and
strongly central respectively. (If quotient seems confusing, consider that
when written multiplicatively, x,, € x,, - A says that :f—; € A.) The names
C, J, B, and D, have no particular significance.

The implications in Figure 1 are established in [8] and examples are given
in S = N showing that the only implications that hold in general are those
that follow from the diagram and transitivity.

Recall that a property of subsets of a set X is partition regular over X
if and only if whenever the union of two subsets of X has that property, at
least one of them does.

Theorem 2.6. A property listed in Figure 1 is partition reqular over N if
and only if it is one of the properties implied by central.

Proof. Each of central, QC, PS, D, C, and IP is determined by membership
in an ultrafilter, so is partition regular. As remarked in the proof of Lemma
2.4, it is a routine exercise to establish the partition regularity of B. The
partition regularity of J is [14, Lemma 14.14.6]. The partition regularity of
P and Q are easy consequences of van der Waerden’s Theorem and Ramsey’s
Theorem for pairs respectively.

If B =J2,{2?",2%" +1,...,22»"1 — 1}, then neither B nor N\ B is
syndetic, so no property that implies syndetic is partition regular.

Neither 2N nor 2N—1 is thick, so no property that implies thick is partition
regular. (This fact will also follow from the fact that SC* is not partition
regular, but is much simpler.)

Let H = (72, ¢fsn2"N. For z € N, let supp(z) = F where z = >, 2".

n=1

And let B = {z € N: minsupp(z) is even}. By [14, Lemma 6.8] BN H and
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H\ B are right ideals of H. We show now that B and N\ B are both SC-sets,
so neither is SC*. So let L be a left ideal of AN. Then L NH is a left ideal
of H so LNHN B contains a subgroup of H hence has an idempotent. Also
LNH\ B contains a subgroup of H hence has an idempotent. ([

3. Preliminary results

The following theorem is known, but the proof used the notion of Fglner
density. Since it has a simple proof using Banach density, we present it. (The
notions are equivalent, but the proof of that fact in [2] is not particularly
easy.)

Theorem 3.1. Letv € N and let S = N" or S =Z". Then A(S) is a closed
two sided ideal of BS.

Proof. By Lemma 2.4, A(S) # (). From the definition it is immediate
that A(S) is closed. Let p € A(S) and let ¢ € 3S. To see that A(S)
is a left ideal, let A € ¢+ p. Then {¥ € S : -+ A € p} € q so pick
Z € S such that —F+ A € p. Let 0 < o < d(—% + A). To see that
d(A) > a, let n € N and pick k1,kg,...,ky € {m eN:m >n}and d € S
such that |(—Z + A) N (@ + X;_;{0,1,....k; — 1})| > a - [[;_; k;. Then
AN (F+a+ X 1{0,1,.. . ki — 1D > o - T, ki

To see that A(S) is a right ideal, let A € p+ ¢ and let B = {¥ € S :
-7+ A € q}. Let 0 < a < d(B). To see that d(4A) > «, let n € N
and pick ki, ko,....k, € {m € N : m > n} and @ € S such that [BnN
@+ X_1{0,1,....k; =1} > a-[[;{_ k. Pick j e ({-¥+A:7 ¢
Bn(d+ X;_1{0,1,...,k;—1}) Then |[AN(y+a+ X;_1{0,1,..., k;—1})| >
a-Hle ki. ([

Lemma 3.2. Let v € N and for j € {1,2,...,v} let 7j : B(Z°) — BZ
be the continuous extension of the projection onto the jth coordinate. Let
©={peB(N):(Vje{l,2,...,v})(m(p) € N*)}. Then © is a left ideal
of B(Z") and a right ideal of B(NV).

Proof. First let p € O, let ¢ € 5(Z"), and let j € {1,2,...,v}. It isa
routine exercise to show that for each k € N, N\ {1,2,...,k} € (¢ + p).
Now assume that p € 0, ¢ € S(N’), and j € {1,2,...,v}. Suppose that
7j(p +q) ¢ N* and pick £ € N such that 7;(p + ¢) = k. The fact that
N\ {1,2,...,k} € 7j(p) leads quickly to a contradiction. O

Lemma 3.3. Let F € Pf(NZ) and let k € N. There exists a sequence
(Kn)p2q in Pg(N) such that for each n € N, max K,, < min K, 1 and for
each f € F and eachn €N, >, f(t) € KZ.

Proof. This is a routine proof by induction on |F|, using the fact that if

fe N7 and K is a set of k elements of N such that for i,je K, fi)= f(4)
mod k, then & divides >, f(t). O
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Figure 1: Implications for S = N or Z".

P



IMAGE PARTITION REGULAR MATRICES AND CONCEPTS OF LARGENESS 9

Lemma 3.4. Letv € N, let 0 # H C {1,2,...,v} and for j € H, let b; € N.
Let B C NY and assume that d(B) > o > 0. Let vy = & Then

|H| - ZjeH bj
d({>_jen bjzj T € B}Y) = 7.

Proof. Suppose that d({}_,c bjz; : ¥ € B}) <~ and pick n € N such that
for all kK > n and all a € N,

{2 jenbjzj:2€ BN (a+{0,1,....k -1} <7y-k.
Pick k1, ko, ..., ky € {k € N: k >n} and @ € NY such that
BN (@+ X524{0,1,...,k; =1} > a- T[T k5.
Since ey bja; € Nand 37,y bjk; > n, we have that

< ’Y'ZjGHbjkj'

Let D = BN (d+ X;4{0,1,...,k; —1}). If ¥ € D, then >y bja; <
D jen bt < jem biaj + 2 e bikj so

HZ]’EH bjl‘j 1T E D}|
=2 jen bjzj - £ € DY N (X ey bja; +1{0,1,..., > 5y bjk; — 11|
< WX jen bz T € BYN (X jembjas +1{0,1,... 3 e bk — 1})]
<7 EjEH bjk‘j .

k
Pick » € H such that k, = max{k; : t € H}. Let m = Htlth If

u € {> ey bjr; @ € D}, then {F € D1 Y cpybjaz; = u}| < m because

the value of z; is determined once other values of z; have been determined.
. D]

Therefore [{}_;cpbjz; : & € D}| > ot And [D| > a-T[jo kj > o

[Licn ki =amkyso {3 ;cpbjaj: @€ DY > aky =7 |H[-kp3icpbj >

Y- (jen ki) (X jem bi) = v X jem kibj- This contradiction completes the

proof. O

Lemma 3.5. Let u,v € N and let A be a u X v matrix with entries from w
and no row equal to 0. Define T : NV — N* by T'(¥) = AZ. Let B be a subset
of NV such that d(B) > 0. Then for each i € {1,2,...,u}, d(m; o T[B]) > 0.

Proof. Let i € {1,2,...,u}. Let H = {j € {1,2,...,v} : a;; > 0} and for
Jj € H, let bj = a;j. By Lemma 3.4, d({>_,cy bjz; : © € B}) > 0 and for
T e B, Y jepbiri =25 aijry = mi(T(D)). O

Lemma 3.6. Let u,v € N and let A be a u X v matriz with entries from
w and no row equal to 0. Define T : N — N* by T(¥) = AZ and let
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T : B(NY) — (BN)“ be its continous extension. Let ¢ € J(NY) and let
b1

T(q) = : |. Foreachie{1,2,...,u}, p; € J(N).
Pu

Proof. Let i € {1,2,...,u} and let B € p;. We need to show that B is a

J-set in N. Let F € Py(NN) be given. Let k = 32"_; a; ;. Then k € N. Pick

a sequence (K,)>°; in Pr(N) as guaranteed by Lemma 3.3. For f € F' and
hg(n)

n € N, define hy(n) = %Etel{n f(t) and define G¢(n) = : . Now

hy(n)
7' B] is a neighborhood of T(¢) so pick D € g such that T[D] C 7 B].

7

Then D is a J-set in NY so pick b € N’ and H € P¢(N) such that for
each f € F, b+ Y,y dr(n) € D. Then Y0_; aij(bj + Ypep hy(n)) =
i © T(5+ >nen Gr(n)) € B. Let ¢ = > =1 aijbj and let G = U, e Kp-
Then for f € F, ¢+ Y ieq f(t) = ¢+ Xnen Dtex, f(t) - %Z;}:l @ij =
>io1aij(bj + X eq hy(n)) € B. O

Recall that we are interested in proving theorems of the form of Theorem
1.5.

Lemma 3.7. Let u,v € N. Let W be a property of subsets of N and of
NY which is closed under passage to supersets. Assume that whenever C is
a U-set in N and k € N, then kC is a V-set in N. Let Y be one of the
statements “A is IPR/N”, “A has no row equal to 07, or “A is IPR/N and
rank(A) =u”. Let X =7 or X = w. Then statement (a) implies statement
(b).
(a) Let A be a u x v matrix with entries in X and assume Y. Then
whenever C is a ¥-set in N, { € NV : A¥ € C"} is a ¥-set in NV.
(b) Let A be a u x v matriz with entries in {% : x € X and n € N} and
assume Y. Then whenever C is a ¥-set in N, { € NV : A¥ € C"}
1s a W-set in NY.

Proof. Assume that (a) holds, let A be a u X v matrix with entries in
{f 2 € X and n € N}, and let C be a W-set in N. Pick k € N such that the
entries of kA are in X. Then kC'is a U-set in Nso {Z € NV : (kA)Z € (kC)"}
is a W-set in N”. Since {¥ € NV : (kA)Z¥ € (kC)'} = {Z € NV : A¥ € C"},

we are done. O

Lemma 3.8. Let ¥ be any of C, D, QC, central, SC*, SC, central*, QC*,
D*, C*, IP* or Q* and let k € N. Whenever C is a U-set in N, one has
kC is a U-set in N.

Proof. If p is SN and kN € p, then %p € BN, where %p is computed in
(8Qg, ). Further, by [14, Lemma 5.19.2], if p is an idempotent, so are kp
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and %p and if p is a minimal idempotent, so are kp and %p. Given D C N
and p € AN, D € kp if and only if (D) NN € p and D € 4p if and only if
kD € p.

Case ¥ = C. Assume that C is a C-set. Pick an idempotent p € J(N)NC.
We claim that kp € J(N), so let D € kp. We will show that D is a J-set.
So let F' € Pf(NN). Let (K,,)22, be as guaranteed by Lemma 3.3. For each
feFandneN,let gf(n) = %EteKn f(t). Now k71D € p so pick a € N
and G € Pf(N) such that for each f € F, a+ >, .s97(n) € k7'D. Let
H =U,ec Kn- Then for f € F, ka+ >,y f(t) € D.

Thus kp is an idempotent in J(N) and kC € kp.

Case ¥ = D. Assume that C is a D-set. We first establish that if p €
A(N), then kp € A(N). So assume that p € A(N) and let D € kp. Then
(+D)NN € pso d((D) NN) > 0. A simple computation establishes that
d(D) > 1d((+D) NN).

Now pick an idempotent p € A(N) N C. Then kp is an idempotent in
A(N)NkC,

Case U = QC. Assume that C'is a QC-set. We claim that if p € ¢/ K (ON),
then kp € <«/K(SN). To see this, let D € kp. Then (%D) NN € pso
(%D) N N is piecewise syndetic so k((%D) N N) is piecewise syndetic and
k((%D) NN) C D.

Pick an idempotent p € C N ¢lK(BN). Then kp is an idempotent in
kC N clK(BN).

Case ¥ = central. This is [14, Lemma 15.23.2].

Case ¥ = SC*. Assume that C' is an SC*-set. Pick a left ideal L of SN
such that E(L) € C. We may assume that L is a minimal left ideal. Pick
an idempotent ¢ € L, so that L = fN+¢q. Then kq is a minimal idempotent
so BN + kq is a minimal left ideal of BN. We claim that F(AN + kq) C kC.
So let p € E(BN+ kq). Since kq is a right identity for SN+ kq, we have that
p+ kg = p and thus %p +q= %p so that %p € L. Therefore %p € C so that
p€kC.

Case ¥ = SC. Assume that C' is an SC-set. Let L be a minimal left ideal
of BN. We want to show that E(L) N kC # . Pick an idempotent q € L.
Then %q is a minimal idempotent in SN so SN+ %q is a minimal left ideal of
BN. Pick p € E(ﬁN—I—%q)ﬂé. Then p = p+%q, so kp = kp+q € E(L)NkC.

Case ¥ = central®*. Assume that C is a central® set. Let p be a minimal
idempotent in SN. Then %p is a minimal idempotent so C € %p and thus
kC € p.

Case ¥ = QC*. Assume that C is a QC*-set. Let p be an idempotent in
c¢!K(PN). Then %p is an idempotent. Further, if D € %p, then kD € p so
kD is piecewise syndetic and thus D is piecewise syndetic so %p € /K (PN).
Thus C' € %p and so kC € p.
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Case ¥ = D*. Assume that C is a D*-set. Observe that if p € A(N)NkN,
then %p € A(N). To see this, let D C N with D € %p, then kD € p so
d(kD) > 0 and thus d(D) > 0.

Let p be an idempotent in A(N). Then 7p is an idempotent in A(N) so
Ce %p and thus kC' € p.

Case ¥ = C*. Assume that C is a C*-set. We claim that if p € J(N)NkN,
then 1p € J(N). To see this, let D € }p and let F € Pf(NN). Then

{kf:feF}ePrAN)and kD € pso pick a € N and H € P;(N) such that
for each f € F, a+ Y,y kf(t) € kD. Note that a = kb for some b € N.
Then for each f € F, b+, .y f(t) € D.

Now, if p € E(J(N)), then %p € E(J(N)) so C € %p so kC' € p.

Case W = IP*. Assume that C is an IP*-set. Given p € F(SN), %p €
E(BN) so C € %p and thus kC € p.

Case U = Q*. Assume that C is a Q*-set. We need to show that N\ kC
is not a Q-set so that for any increasing sequence (x,)5>; in N, there exist
m < n such that z, — x,, € kC. So let such a sequence be given. Choose
i €{0,1,...,k— 1} and a subsequence (y,)5; of (x,)5% such that y; > i
and for each n € N, y,, = ¢ ( mod k). For n € N, pick z, € N such that
Yn = i + kzy,. Since C is a Q*-set, pick m < n such that z, — 2z, € C. Then
Yn — Ym = kzp — kzm € kC. O

The following lemma tells us that if ¥ is any of the properties that imply
“thick”, and Theorem 1.5 holds for ¥, then A cannot have any entries that
are not in Z.

Lemma 3.9. Let u,v € N, let A be a u X v matriz with entries from Q. If
A has some entry which is not in Z, then {¥ € NV : AZ € N“} is not thick
in NV,

Proof. Assume that A has an entry which is not in Z. Pick ¢ € {1,2,...,u}
and j € {1,2,...,v} such that a;; € Q\ Z. Suppose that B = {Z €
NY : A¥ € N%} is thick in NY. Define ¥ € N” by 2y = 1 if t # j and
zj = 2. Let 1 be the vector with all entries equal to 1. Pick @ € NY such
that {#,1} + & C B. Let ¥ = A(1 + &) and let 2 = A(Z + @). Then
Vi =y g ait(1+we) and z; = > (@ + wy) = y; + a;; so one can’t
have both y; € N and z; € N. O

In a fashion similar to Lemma 3.9 we see that if W is any of the properties
that imply “syndetic”, and Theorem 1.5 holds for ¥, then A cannot have
any negative entries.

Lemma 3.10. Let u,v € N, let A be a u X v matriz with entries from Q.
If A has some entry which is negative, then {Z € NV : AZ € N"} is not
syndetic in NY.

Proof. Assume that A has a negative entry, and pick i € {1,2,...,u} and
Jj €{1,2,...,v} such that a;; < 0. For n € N, define ™ e N by, for
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te{l,2,...,v}, xgn) =1ift#j andx§n) =n. Form € N, let C,,, = {z(™ :
n € Nand n > m}. Pick ¢ € B(NY) such that {C), : m € N} C ¢q. Then
B(NY) 4 ¢ is a left ideal of B(NV). Let B = {w € N* : Awj € N*} We claim
that (B(NY) + ¢) N B = 0, showing that B is not syndetic. Suppose that we
have z € (B(NY) + ¢) N B and pick r € 3(NV) such that z = r + q.

Define T : N — Z* by T(Z) = A% and let T : S(N?) — (BZ)" be its
continuous extension. Now z € B = cfﬁ(Nv)T_l[N“] and it is a routine
exercise to show that clgn) T~ NY] = f‘l[(NﬁN)“] so T(z) € (BN)" so that
mi(T(2)) € BN. Pick D € z such that m; 0 T[D] C BN. Since D € r + ¢,
pick i € NY such that —§+ D € ¢q. Pick m > Zte{1,2,...,v}\{j} a;t+(y+1) and
pick n > m such that #™ € Cp, N (=7 + D). Then m;(T(§ + £™)) € N.

But m; (T'(y + j:’(”))) — Zte{lz,...,v}\{j} ai+(y + 1) + aiyja:;n) <m-— xg-n)

m —n < 0, a contradiction. O
n)

The main point of the following lemma is that for f € F and n € N, f(
is allowed to be negative.

Lemma 3.11. Assume that C is a C-set in N and k € N. For each F €
Pf(NZ), there exist a € kN and H € Pf(N) such that for each f € F,

a+Y eqft)eC.

Proof. Let F' € Pf(NZ) and pick (K)o, as guaranteed by Lemma 3.3.

For f € F define g5 € Nz by gr(n) = > ek, f(t). For each n € N pick
b(n) € N such that for each f € F, b(n)+gs(n) € N. For each f € F, define
hy € NN by h¢(n) = b(n) + g¢(n). Pick an idempotent p € J(N) N C. Let
C" = CNEkN. Then C’ € p so pick ¢ € N and G € P¢(N) such that for each
fEF, c+) cahfn)eC . Leta=c+)  ,.-bn)let H=J, K, and
let feF. Thena+) ey f(t)=c+ ,cqb(n)+> caier, [(t) =c+
Yonea D)+ cagr(n) =c+> 0, cahp(n) € C'. Since a+", .y f(t) € kN
and ), f(t) € kZ, we have a € kN. O
Lemma 3.12. Let u,v € N and let A be a u X v matriz with entries from
Z. Given C CN, let D(C) ={Z € NV : AZ¥ € C"}. Let p be an idempotent
in J(N). If for every C € p, D(C) is a J-set in N, then for every C' € p,
D(C) is a C-set in NV.

Proof. Define T : N¥ — Z* by T(Z) = AZ and let T : B(N?) — (BZ)" be

p
the continuous extension of 7. Let p = | : | € (BN)*. We claim that

p
T~{p}NJ(N?) # 0. Given C € p we have that T-1[C¥] = D(C) is a J-set
in NV so T-1{C%] N J(NY) # 0. Consequently (e, (T~1[CU] N J(N)) # 0.
Further, it is routine to verify that (g, 77 1C"] C T-{p}] so T [{p}] N

J(NY) # 0 as claimed. Then T-![{p}] N J(NV) is a compact subsemigroup
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of B(NY) so pick an idempotent ¢ € TL[{p}] N J(NY). _Given C € p, we
have C" is a neighborhood of p. Pick B € ¢ such that T[B] € C". Then
B C T~ YCY = D(C). O

Definition 3.13. Let u,v € N and let A be a u X v matrix with entries
from Q. Then A is a first entries matriz if and only if
(1) A has no row consisting of all zeroes;
(2) for i € {1,2,...,u} and j € {1,2,...,v}, if a;; is the first nonzero
entry in row 4, then a; ; > 0; and
(3) if i,k e {1,2,...,u}, j € {1,2,...,v}, a;; is the first nonzero entry
in row ¢, and ay,; is the first nonzero entry in row k, then a; ; = ay ;.

Lemma 3.14. Let u,v € N and let A be a u X v matrix with entries from Z
such that rank(A) = u. There exists k € N such that kZ"* C {AZ : ¥ € Z"}.

Proof. We may presume that the first u columns of A are linearly indepen-
dent and let B consist of those columns. Let k& be the determinant of B.
We may presume that £ > 0. Let y € kZ". Pick £ € Q" such that BZ = y.
By Cramer’s rule, & € Z*. Define Z € Z" by z; = z; if i € {1,2,...,u} and
z; =0if ¢ > u. Then AZ =17. O

Lemma 3.15. Let u,v € N and let A be a u X v matriz with entries from
Z. Let X = N or X = Z. Define T : XV — Z" by T(Z) = AT and let
T : B(XY) = (BZ)" be its continuos extension. Let p be an idempotent in
BN. If for every P € p there exists ¥ € N such that AZ € P", then there
p
is an idempotent q € B(NY) such that T(q) = P = : e (BN)v. If
_ _ p
p e K(BN), then T[K (3(N))] = T[B0W)] N (K(8N))".

Proof. We have that € cl(57.T[N] = T[B(N")], so T~ [{p}| N B(N") # 0.
Since T' is a homomorphism, T~[{p}] N B(N?) is a compact subsemigroup
of 3(N”) and thus has an idempotent g.

Now assume that p € K(BN). Then T[3(NY)] N (K(ﬁN))u # 0. By
[14, Theorem 2.23], (K(BN))" = K((8N)") so by [14, Theorem 1.65],
K(T[@(Nv)]) = T[@(Nv)] NK ((BN)"). By [14, Exercise 1.7.3], T[K (5(N?))]
= K(T[B(N)]) = T[BN")] N (K(BN))". O

Lemma 3.16. Let u,v,d € N, let A be a u X v matrix with entries from Z,
let B be a u X d matriz with entries from Z, and assume that whenever C

is a C-set in N and (b(n))>, is a sequence in Z%, there exist T € NV and
ye FS(( 5(71)}%":1) such that all entries of A¥+ By are in C. Then whenever
C is a C-set in N and (l;(n)ﬁ’lo:l is a sequence in Z%, there exist a sequence
(Hp)o2q in Py(N) and a sequence (Z(n))p>, in N such that max H, <

min Hy, 11 for each n € N and FS((AZ(n) + B~y b(t))e2,) C O



IMAGE PARTITION REGULAR MATRICES AND CONCEPTS OF LARGENESS 15

Proof. Let a C-set C in N and a sequence (5(n)>%°:1 in Z% be given. Pick an
idempotent p € J(N) such that C' € p and let C* = {x € C : —z + C € p}.
By [14, Lemma 4.14], if z € C*, then —z + C* € p. Then C* is a C-set

in N, so pick Z(1) € N” and (1) € FS({b(n))>>,) such that all entries of
AZ(1) + By(1) are in C*. Pick H; € Py(N) such that (1) = 3,5, b(t).
Let n € N and assume we have chosen (Z(¢))7_; in N” and (H)j~, in
Pr(N) such that max H; < min Hyy for all t € {1,2,...,n—1} and for each
F € Pr({1,2,...,n}), all entries of Y, (AZ(t) + B - > keH, E(k)) are in
C*.
For F € P;({1,2,...,n}), let EF be the set of entries of Y-, p (AZ(t) +

B Y b(k)), and let D = J{Ep : F € Ps({1,2,...,n})}. Let G =
C* N Nyep(—y + C*) and let m = maxH,. Then G is a C-set so pick

—

Zn +1) € NV and ¢(n + 1) € FS((b(t)){2,, 1) such that all entries of
AZ(n+1)+By(n+1) arein G. Pick H,, 1 € Pf(N) such that min H,, 1 > m

-

and §(n+1)=3",cqy ., b(t). The induction hypothesis is satisfied. O

If C is a central subset of N, then the following theorem follows from [15,
Theorem 4.4].

Theorem 3.17. Let u,v,d € N, let A be a u X v matriz with entries from
Z which is IPR/N, and let B be a u x d matriz with entries from Z. Let C
be a C-set in N and let U be an IP-set in Z%. There exist £ € NV and §j € U
such that all the entries of AZ + By are in C.

Proof. It will be sufficient to prove that, given any sequence <5(n)>7‘3°:1 in
72, there exist & € N” and § € FS({b(n))22,) such that all the entries of
AZ + By are in C so let (5(72))%11 be given.

We shall first prove our theorem for the case in which A is a first entries
martrix.

(1) Suppose that the first column of A is a constant vector whose entries
are all equal to ¢ € N. Let §1,89,...,5, denote the rows of B. Assume
first that v = 1. For i € {1,2,...,u}, define f; € Nz by fi(n) = 5 - b(n)
and pick by Lemma 3.11, m € ¢N and H € Pf(N) such that for each
i€{1,2,...,u}, m+> g fi(t) € C. The conclusion holds with & = (m/c)
and ¢ =), b().

Now assume that v > 1, let M consist of the last v — 1 columns of A,
let 7,7, ..., 7, denote the rows of M, and pick any vector @ € N*~!. For
i€ {1,2,...,u}, define f; € Nz by fi(n) = 7 - @+ 5 - b(n) and pick by
Lemma 3.11, m € ¢N and H € P;(N) such that for each i € {1,2,...,u},

m + > e fi(t) € C. The conclusion holds with ¥ = (?%2) and § =

-

2tem b(D)-
(2) It follows from (1) that our claim holds if v = 1. So we shall assume
that w > 1 and that our claim holds for all smaller values of u, with i €
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—

FS(b(n)). We may suppose that v > 1, because a first entries matrix with a
single column consists of a constant column, in which case (1) applies. We
may also suppose that the first column of A is not identically zero, because
we can ensure this, if necessary, by interchanging the first column of A and
the first column which is not identically zero. We may also suppose that
the first column of A is not a constant vector, because otherwise our claim
follows from (1).

So by rearranging rows, we can write A in block form as A = (2 §>7

where D is a first entries w x (v — 1) matrix over Z for a positive integer
w<u, Bisa (u—w)x (v—1) matrix over Z, 0 is a column vector with w
entries all equal to 0 and ¢ is a column vector with « — w entries all equal
to a positive integer c.

Let B; denote the matrix formed by the first w rows of B, and let By
denote the matrix formed by the last u — w rows of B. It follows from
our inductive assumption and Lemma 3.16 that we can select a sequence
(Hy)o2q in Pyp(N) with max H,, < min H,, for every n € N, and a sequence
(7(n))o2; of vectors in N*~1, such that FS((Dt(n)+B1-> ey b)) ) C
cv.

Let €yt1,€wt2,--.,€E, denote the rows of E and let Syi1,Swto,..., S8,
denote the rows of By. For eachi € {w+1,w+2,...,u}, wedefineg; : N — 7Z
by gi(n) = € -9(n) + 8- D> icq, b(t). Pick by Lemma 3.11, m € ¢N and
K € Py(N) such that m+> . gi(t) € C for every i € {w+1,w+2,...,u}.

It follows that our theorem holds with Z = ( m/e > and 7 = S°{b(¢) :

ZnEK ﬁ(n)
t € Uper Hn}-

(3) Finally, assume that A is any u x v matrix with entries in Z, which is
IPR/N. By [14, Theorem 15.24(g)], there exists m € N and a v x m matrix
G with entries in w and no row equal to 0, such that AG is a first entries
matrix. The fact that our theorem holds for AG, implies that it holds for
A. O

Corollary 3.18. Let u,v € N and let A be a u X v matrix with entries from
Q which is image partition reqular over N. Then for any C-set C in N,
{Z e N": AZ € C"} is a C-set in NV.

Proof. By Lemmas 3.7 and 3.8 it suffices to assume that the entries of
A are in Z. By Lemma 3.12, it suffices to show that for any C-set C' in
N, {# € N : A¥ € C"} is a J-set in N”. So let C' be a C-set in N, let
m € N, and let fi, fo,..., fin be functions from N to NY. We show that
there exist ¥ € NY and H € P;(N) such that for each i € {1,2,...,m},

AF+ ey fi(n)) € C
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Define mu x mv matrices M and B by

A A ... A A O 0]
A A ... A O A ... O
M=1. . . and B=1| . . A
A A ... A O o0 ... A
A
where O denotes the zero u x v matrix. Trivially the matrix | . | is IPR/N,
A
so by [14, Theorem 15.24(k)], M is IPR/N. Define g : N — N by g(n) =
fi(n)
fa(n)

Since FS({g(n))p5,) is an IP set in Z™", it follows from Theorem 3.17
that there exist 71, 2o, ..., %, € N” and H € P;(N) such that all the entries

it
T
of M| . | +B->,cy 9(n) are in C. This implies that all the entries of
T,
A@1+To+ ...+ T+ Y ey fi(n)) arein C for every i € {1,2,...,m} as
required. O

We now see that Theorem 3.17 characterizes C-subsets of N.

Theorem 3.19. Let C be a subset of N which satisfies the conclusion of
Theorem 3.17. Then C is a J-set. Hence, if p is an idempotent in ON,
every member of p satisfies the conclusion of Theorem 3.17 if and only if
every member of p is a C-set.

Proof. Let v € N and let f1, fo,..., fu be functions from N to N. Define
fi(n)

fa(n)
g: N —= N“by g(n) = , for every n € N. Let A denote the u x 1
matrix whose entries are all 1, and let B denote the identity u X u matrix.
Since F'S((g(n))22,) is an IP set in Z", it follows that there exists x € N and

H € P¢(N) such that Az +B-) yg(n) € C* Le. x4+ _py fi(n) € C
for every i € {1,2,...,u}. So C is a J-set in N. O

Lemma 3.20. Let u,v € N and let A be a u x v matriz with entries from
Z which is IPR/N. Define T : 2V — Z* by T(Z) = AZ and let T : B(Z") —
(BZ)" be its continuous extension. Assume that k € N and whenever P C kN
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with d(P) > 0, d(T1[P%]) > 0, where the latter density is computed in Z°.
Then for every D-set C C N, {# € NV : A¥ € C"} is a D-set in N,

Proof. Let C be a D-set in N and pick an idempotent p € A(N) N C. Since
p is an idempotent, kN € p. Thus for every P € p, d(P N kN) > 0 so by
assumption d(T~[(PNEkN)“]) > 0 and thus by Lemma 2.4, T—1[(P N kN)¥]N
A(Z°) # 0. Pick r € A(ZY) N Npe, T (P NEN)¥] and note that T(r) =
p
p=1| : | €(BN)"
p

Given any P € p, P is a D-set, hence a C-set, in N so by Corollary 3.18,
NV N T~PY is a C-set in NY and consequently J(NV) N T-1[Pu] # . If
s € Npep T7HP], then T(s) =P, so {s € J(N) : T(s) = p} is a compact
semigroup, so has an idempotent gq.

Let © = {p e S(NV) : (Vj € {1,2,...,v})(7;(p) € N*)}. Note that g € ©
since if we had j € {1,2,...,v} such that 7;(¢) = k € N, we would have
k=m;(q) =7j(q¢+q) = k+k. Thus by Lemma 3.2, r+¢ € © C f(N"). By
Theorem 3.1, r+¢q € A(Z") so r+q € A(Z”) N B(NY). It is routine to verify
that if B C NV, then its Banach density is the same whether it is computed
in NV or in Z, so r + ¢ € A(NV).

Now f(r +q)=Dp+p=p,so{se AN): f(s) =p} # () so there is an
idemmpotent s € A(N?) such that T'(s) = p. Then T-1[C%] € s so T~ 1[C"]
is a D-set in NY. O

4. Large preimages of matrices

We begin by proving Theorem 1.4. As we noted in the introduction, this
theorem was stated in [3]. However, for the proof, the reader was referred
indirectly to a proof of Theorem 1.2. The known proofs of that theorem
all utilize strongly the fact that a central set is a member of an idempotent
which is minimal with respect to the usual ordering of idempotents, so they
cannot be simply adapted to prove Theorem 1.4.

Theorem 1.4. Let u,v € N and let A be a u X v matriz with entries from
Q. The following statements are equivalent.

(a) A is image partition regular.

(b) For every C-set C in N, there exists ¥ € NV such that AZ € C".

(c) For every C-set C' in N, {Z € N’ : A¥ € C"} is a C-set in N,

Proof. It is trivial that (b) implies (a) and that (c) implies (b). The fact
that (a) implies (c) is Corollary 3.18. O

We now set out to prove theorems of the form of Theorem 1.5 for each
of our notions for which such a theorem is possible. In each case, assuming
that the entries of A are rational, the restrictions on the entries of A are
necessary by Lemmas 3.9 and 3.10.
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Theorem 4.1. Let u,v € N and let A be a u X v matriz with entries from
Q which is IPR/N. Let U be any of C, central, or SC*. If C' is a U-set in
N, then {Z € NV : AZ € C"} is a U-set in NV.

Proof. By Lemmas 3.7 and 3.8 we may assume that the entries of A are
integers.

The case ¥ = C is Corollary 3.18 and the case U = central is [14, Theorem
15.24(i)] so assume that ¥ = SC* and let C' be an SC*-set in N.

Define T : NV — Z* by T(Z) = A% and let T : B(N?) — (BZ)" be its
continuous extension. Pick a minimal left ideal L of AN such that E(L) C C
and note that L is also a left ideal of BZ. Pick an idempotent p € L and

p
let p = : € (BN)*. Since every member of p is central, we have by

p

[14, Theorem 15.24(h)] that (VP € p)(3% € NV)(AZ € P*). By Lemma 3.15,
pick an idempotent ¢ € S(NY) such that f(q) =p. Let M = 5(N") + q. We
claim that E(M) C clgmw)T~[C"] so that T—1[C¥] is an SC* set in N”.

S1

To this end, let » € E(M) and note that r = r + ¢. Let T(r) =

SU
Since T is a homomorphism, we have that each s; is an idempotent. At this
point we only know that it is an idempotent in Z. But T(r) = T(r)+T(q) =
T(r) 4+ P, so each s; + p € L. So T(r) € € (BE(L)" sor € T (B(WL)"]
T1C"] = elgamyTH[C). 0

It is interesting to note that by Theorem 2.6 all of the properties for which
the entries of A are allowed to be arbitrary rationals are partition regular
except SC*.

Theorem 4.2. Let u,v € N and let A be a u X v matriz with entries from Q
which is IPR/N such that rank(A) = u. Let ¥ be D or QC. If C is a V-set
in N, then {¥ € NV : AZ¥ € C"} is a U-set in NV.

Proof. By Lemmas 3.7 and 3.8 we may assume that the entries of A are
integers.

Case ¥ = D. Assume that C is a D-set in N. We will assume that v > u;
if v = u, let § =0 in the argument that follows. We assume that the first u
columns of A are linearly independent, let B consist of these first « columns,
let D consist of the last v —u columns of A, let k = det(B), which we assume
is positive, and let F = B~!. Let P C kN with d(P) > o > 0. By Lemma
3.20, it suffices to show that d(T~[P%]) > 0.

Let § = max{]a2-7j| c1€{1,2,...,u} and j € {u+ 1,u—|—2,...,v}}. For
1 € {1,2,...,u}, let S; = {] S {1,2,...,u} : f@j > 0}, let M; = {] S
{12, ut t fiy <O}, let s; =3 i fig, let my = 3 .0y fij, and let
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ri = (si —m;)(1+ 20k). (Note that S; or M; could be empty. We take
2ept = 0.)
Let v = P ) We shall show that d(T~![P%]) > ~. To this

end, let n € N. Pick I € kN and a € N such that | > n and |P N {a,a +
1,...,a+1—1}| > a-l. Since P C kN, we may presume that a € kN. Let
R=Pn{a,a+1,...,a+1—1}.

Define v : R* x {k, 2k, ..., 1k}"=% — ZV by, for 7 € R* and Z € {k, 2k, ...,

1k}v=u, o) <Z’> = <§,), where ¥ = F'- ( — DZ). Then T (i) =y e pr

Note that & € Z" since all entries of ¢/ and all entries of z" are divisible by k.
Note also that % is injective.
It now suffices to show that

Y[R x {k,2k,... 1k}
Co+ (X {01,y (r + 1) — 1} x {1,2,...,lk}*"")

where b; = (s; + m;)a + ml — (s; —m;)olk if i € {1,2,...,u} and b; = 0 if
ie{u+1l,u+2,...,v} for then

T PN (b4 X" {0,1, ..., (ri+1)1—1}x{1,2, ..., 1k}""%)| > [""4(al)¥ =
v (k)" TTiZy ((ri+1)1). For this, it in turn suffices to let 7 € R* and ' €
{k,2k,...,lk}""" let Z = F - (§ — DZ), and show that for i € {1,2,...,u},
b; <x; < b; + (TZ' + l)l.

Let h = DZ and note that for j € {1,2,...,u}, |hj| < 0lk and so a—dlk <
Yj — hj < a+1+0dlk Letie {1,2,.. . ,u}. Then z; = ZjGSi fi,j(yj —
hi) + > ienr Tig(ys — hy) so @i > si(a — dlk) + my(a + 1 + 6lk) = b; and
x; < si(a+ 1+ 0lk) +mi(a — 8lk) = b + ril < by + (r; + 1)1

Case ¥ = QC. Assume that C is a QC-set in N and pick an idempotent
p € CNelpnK (BN). Define T : ZY — Z* by T(Z) = A% and let T : B(Z") —
(BZ)" be its continuous extension. We claim that it suffices to show that
for each P € p, there exists r € K(B(NY)) such that T(r) € P". Suppose

we have done this. For P € p, let Dp = {r € /K (B(N")) : T(r) € P"}.

Then {Dp : P € p} is a collection of closed subsets of 5(NV) with the finite

intersection property so, lettin R = (\{Dp : P € p}, we have that R # 0.
p

If ¢ € R, then T (g =p= : |. Thus R is a compact subsemigroup of

p
cﬁK(ﬂ(N”)), so pick an idempotent ¢ € R. Then Tv(q) e C" = C* so that
T-1CY] is a QC-set.

We set out to show to that for each P € p, there exists r € K(B(N”))
such that f(r) e P", so let P € p be given. By Lemma 3.14, pick k € N
such that kZ" C T[Z"] so that (clgzkZ)" = cl(gzy(kZ") C T[B(Z")]. For
each P € p, by Corollary 3.18, {Z € NV : T'(¥) € P"} is a C-set in N” and in
particular is nonempty. Pick by Lemma 3.15 an idempotent ¢ € 5(N") such
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that f(q) =p. Let PP={x € P:—x+ P € p}. Then P*NkN € p so pick
r € K(SN) such that P* NkN € r.
r
Now 7 = 5 € (clpzkZ)* C T[B(Z")] and by [14, Theorem 2.23],
r
T € K((BN)*) € K(( BZ) ) so (
[14, Theorem 1.65], K (T[8(Z )]) = T[8(Z
cise 1.7.3], [K( ] = K(T[B(Z?))).
¢ € K(B(Z")) such that T(¢') = 7.

Now P* € rso P er+p. Then T(¢ +q) = T(¢)+T(q) =7 +p =
r+pe P’ Soit ﬁnally suffices to show that ¢’ + ¢ € K(B(N”)). We have
q € K(ﬁ(Z”)) soq +qe€ K(B(Z”)) Note that since ¢ is an idempotent in
B(N)¥ and N has no idempotents, for each j € {1,2,...,v}, 7j(¢) € N* and

“) # 0 and thus by
BZ)"). By [14, Exer-
T[K(B(Z”))] so pick

)] (6
K(
ST E

thus ¢ € © = {s € p(NV) : (Vj € {1,2,.. })( j(s) € N*)}. By Lemma
3.2, O is a left ideal of 3(Z") so ¢’ +q € GQK( )) C ﬂN”ﬂK(ﬁ(Z”)) =
K(ﬁ(N”)) U

Theorem 4.3. Let u,v € N and let A be a u X v matriz with entries from
{z € Q:x > 0} which is IPR/N such that rank(A) = u. If C is an SC-set
in N, then {Z € NV : AZ € C"} is an SC-set in N”.

Proof. By Lemmas 3.7 and 3.8 we may assume that the entries of A are in
w. Assume that C' is an SC-set in N. Let M be a minimal left ideal of 5(N")
and pick an idempotent ¢ € M. Define T : Z¥ — Z* by T(¥) = AZ and let
T : B(Z") — (BZ)" be its continuous extension. Note that, since the entries

b1
of A come from w, T[B(NY)] C (BN)“. Let T(¢) = | : | € (BN)“. For

Pu
each i € {1,2,...,u}, pick an idempotent p; € (3N + p;) N C. By Lemma
3.14, pick k € N such that kZ® C T[Z"]. Then (clszkZ)" = cligzyu (KZY) C
P
T[B(Z?)] so we have some ¢’ € 3(Z") such that T(¢') = p’ = :
Pl
Let © = {s € B(N”) : (Vj € {1,2,...,v})(7;(s) € N*)}. By Lemma
3.2, © is a left ideal of 3(Z") and a two sided ideal of S(N") so M C © so
geO®and ¢ +qe O CB(NY). Alsoqd +q=¢ +q+q € M. For each
i€{1,2,...,u}, p; € BN+ p; so p, + p; = p; and therefore T(d +q) = 7.
Thus, {re M : T(r) = p'}isa compact subsemigroup of M, which therefore
has an idemptoent r such that T'(r) € C". O

Theorem 4.4. Let u,v € N and let A be a u X v matriz with entries from
Z which is IPR/N. If C is a thick set in N, then {¥ € NV : A¥ € C"} is a
thick set in NY.
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Proof. Define T : NY — Z* by T(Z) = AT and let T : S(NY) — (8Z)" be
its continuous extension. Assume that C is a thick set in N, pick a minimal
left ideal L of SN such that L C C, and pick an idempotent p € L. Given
any P € p, P is central so by [14, Theorem 15.24(h)], there exists ¥ € N”
such that AZ € P“. By Lemma 3.15, pick an idempotent ¢ € S(N?) such
p
that T(q) =p = | : | e (V)
p
We claim that NY + ¢ C clgne) T [C"]. To see this, let # € NY. Then
T(ZF+q)=T(@) +P€L"so@+qe T LY CTC"] = clyum)TH[C).
Thus B(NY) +¢ = clgaw)(N” +q) € clgmeyT~H[C¥] so C* is thick in N”. [

Theorem 4.5. Let u,v € N and let A be a u X v matriz with entries from
w which is IPR/N. If C is a PS*-set in N, then {Z¥ € NV : AZ € C"} is a
PS*-set in NV.

Proof. Define T : NY — N* by T'(Z) = AZ and let T : B(NV) — (8N)* be its
continuous extension. Assume that C is a PS*-set in N. Pick an idempotent
p € K(pN). Given any P € p, P is central so by [14, Theorem 15.24(h)],
there exists # € NV such that AZ € P*. By Lemma 3.15, T[K(B(N”))] =
T[B(NY)] N (K(BN))" € C". Consequently K (B(N")) C clgpeyT[C"] s0
that T[C"] is a PS*-set in N?. O

Theorem 4.6. Let u,v € N and let A be a u X v matriz with entries from
{r € Q:z >0} which is IPR/N. Let U be central* or QC*. If C is a V-set
in N, then {Z € NV : AZ € C"} is a U-set in N.

Proof. By Lemmas 3.7 and 3.8 we may assume that the entries of A are in
w. Define T': N — N" by T'(Z) = AZ and let T : B(NV) — (BN)" be its
continuous extension.

Case W = central*. Assume that C is central* in N so that E(K(SN)) C
C. Pick an idempotent p € K(BN). By [14, Theorem 15.24(h)], for every
P € p there exists ¥ € N” such that A7 € P". By Lemma 3.15, we have
that T[K (B(NY))] = T[B(N?)]N (K (BN))". We claim that E(K (8(N"))) C
clgeyT~H[C"] so that T~C"] is central* in N¥. So let ¢ be an idempotent
in K(B(NY)). Then T(q) is an idempotent in (K(BN))"“ so T(q) € C" as
required.

Case ¥ = QC*. Assume that C' is a QC*-set in N. Pick an idempotent
p € clgnK(BN). Then for each P € p, P is a C-set so by Corollary 3.18,
there exists ¥ € NV such that AZ € P". By Lemma 3.15, we have that
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T[K(B(N")] = T[B(N")] N (K(BN))"). Thus

T [elsoem K (BNY))]
= cl(gn) ﬂK@ )]
= Cf(ﬁN) (T[BONY)] N (K (BN))")
gzwmmmwmw(wmv
= T[B(N")] N (clanK (BN))".

So, if ¢ is an idempotent in cﬁﬁ(Nu)K(,B(N”)). then f(q) is an idempotent
in (clenK(BN))" and is thus in C". O

Theorem 4.7. Let u,v € N and let A be a u X v matriz with entries from
{z € Q: x >0} which has no row equal to 0. Let ¥ be any of D*, C*, IP*
or Q* If C is a ¥-set in N, then {¥ € NV : A¥ € C"} is a ¥-set in NV.

Proof. By Lemmas 3.7 and 3.8 we may assume that the entries of A are in
w. Define T : N’ — N* by T(#) = AT and let T : S(NY) — (BN) be its
continuous extension.
Case ¥ = D*. Assume that C' is a D*-set in N. Let ¢ be an idempotent
n
in A(N"). We need to show that {Z¥ € NV : T'(¥) € C*} € q. Let

Pu
f(q) Let i € {1,2,...,u}. Then p; is an idempotent. It suffices to show
that p; € A(N), for then p; € C. So let D € p; and pick B € ¢ such that
7o T[B] C D. Then d(B) > 0 so by Lemma 3.5, d(m; o T[B]) > 0 and so

d(D) > 0.
Case ¥ = C* Assume that C' is a C*-set in N. Let ¢ be an idempotent
b1
in J(NY) and let | : | = T(q). Let i € {1,2,...,u}. Then p; is an
pu

idempotent and by Lemma 3.6, p; € J(N) so C € p;.
Case ¥ = IP*. Asume that C is an IP*-set in N. Let ¢ be an idempo-
p1
tent in B(N?). Let | : | = T(q). Let i € {1,2,...,u}. Then p; is an

Pu
idempotent so C' € p;.

Case ¥ = Q*. Asume that C' is a Q*set in N. Let B = {x € NV :
AZ € C"} and suppose that B is not a Q*-set in N”. Then NV \ B is a
Q-set in N” so pick a sequence (5,)5%; in NY such that whenever m < n,

Sn,1
Sy € 8yn + (NY\ B). Write §, = : . For each n € N and each

Sn,v

j€e{1,2,...,v}, spt1,j > spj. Given m < n in N, we have that 5, — 35, ¢ B
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so we may pick impn € {1,2,...,u} such that m; o T(5, — 5,,) ¢ C. By
Ramsey’s Theorem for pairs, pick i € {1,2,...,u} and infinite M C N
such that whenever m < n in M, 4y, = i. Enumerate M in order as
(k(n))pZy. Forn € N, let 2, = 37| @; jS(n),;- Then whenever m < n in
N, 2, — z,, € N\ C, a contradiction. O

Theorem 4.8. Let u,v € N and let A be a u X v matriz with entries from
w which has no row equal to 0. Let W be any of B*, J*, or P*. If C is a
U-set in N, then {Z € NV : AZ € C"} is a V-set in NV,

Proof. Define T : NY — N* by T(Z) = AZ and let T : S(NY) — (BN)*
its continuous extension.
Case ¥ = B*. Assume that C' is a B*-set in N. Let ¢ € A(NY). We
b1
need to show that {# € NV : T(¥) € C"} € ¢. Let : = T(q). Let
Pu
i € {1,2,...,u}. It suffices to show that p; € A(N), for then p; € C. So
let D € p and pick B € ¢ such that m; 0 T[B] € D. Then d(B) > 0 so by
Lemma 3.5, d(m; o T[B]) > 0 and so d(D) > 0.
Case U = J*. Assume that C' is a J*-set in N. Let ¢ € J(N") and let
p1
: T(q). Let i € {1,2,...,u}. By Lemma 3.6, p; € J(N) so C € p;.

Pu

Case W = P*. Assume that C is P*-set in N. Pick k£ € N such that there
do not exist a,d € N such that {a,a +d,...,a+ (k—1)d} C N\ C. By
van der Waerden’s Theorem, pick m € N such that whenever {1,2,...,m}
is u-colored, there is a monochromatic length k£ arithmetic progression.

Let B = {# € N’ : A¥ € C"} and suppose that B is not a P*-set in
NY. Then N \ B is a P-set so pick § and d in NY such that {5+ d,5 +
2d,...,§+md} C N\ B. Then for t € {1,2,...,m}, A(§+td) ¢ C* so pick
i(t) € {1,2,...,u} such that m (A(5+td)) ¢ C. Pick i € {1,2,...,u},
and t,c € {1,2,...,m} such that t + ke <mand i(t+¢) =i(t+2c) =... =
i(t+ke) =1 Let b=)"_ja;js;+t-> % ja;;dj and e =c-3 7 a;;d;.
Then {b+e,b+2¢,...,b+ ke} CN\ C, a contradiction. O

We have no results of the form of Theorem 1.5 for the properties that are
implied by syndetic or IP. For those properties that are implied by syndetic,

none such are possible because 2N+ 1 is syndetic in N and if A = ( 2.0 >,

0 2
then {7 € N2 : A7 € (2N +1)2} = 0.

In the cases of IP and Q, if C = FS({22")%,), then C contains no length 3

—~

arithmetic progression, so if A = , then {Z € N? : AZ € C3} = 0.

== =
N = O
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This leaves open the possibility that there may be a positive result if one
adds the assumption that rank(A4) = u. We form the weakest version as a
question.

Question 4.9. Let u,v € N and let A be a u X v matriz with entries from
w which is IPR/N such that rank(A) = u.
(1) If C is an IP-set in N, must { € N : AZ € C"} be an IP-set in
Nv#
(2) If C is a Q-set in N, must {Z € N” : AZ € C"} be a Q-set in N”?

By Lemmas 3.9 and 3.10 we see that the restrictions on the entries of A
in all of the results of this section are needed.

For our results about C, D, QC, central, SC, SC*, thick, PS*, central*,
and QC* we assume that the matrix A is IPR/N. That assumption is
necessary for C, D, QC, and central because these are partition regular
notions. We do not know whether that assumption (rather than the weaker
assumption that no row is 6) is needed for the other listed notions. However,
the following result tells us that, if rank(A) = u, the IPR/N assumption is
needed in Theorem 4.4 for thick and in Theorem 4.1 for SC*.

Theorem 4.10. Let u,v € N and let A be a u X v matriz with entries from
Z such that rank(A) = u. If for every thick set C in N, {¥ € NV : A% €
C"} # 0, then A is IPR/N.

Proof. Define T’ : Z — Z* by T(Z) = AZ and let T : B(Z") — (BZ)" be
its continuous extension.

Pick a minimal left ideal L of SN and let D = {P C N: L C F} and
direct D by reverse inclusion. Given P € D, P is a thick set so we may pick
Zp such that AZp € P". Let g be a cluster point of the net (¥p)pep in
BNY. We claim that f(q) € L". To see this, let i € {1,2,...,u} and suppose
mi0T(q) ¢ L. Pick R € m; o T(q) such that RN L = § and pick B € ¢ such
that m; o T[B] C R. Pick P € D such that P C N\ R and Zp € B. Since
Zp € B, m(T(Zp)) € R while T(Zp) € P, a contradiction.

Since ¢ € T~[L¥] N B(N?), we have that T-[L¥] N S(NY) is a left ideal
of B(N”) so we may pick a minimal left ideal L’ of S(N") such that L' C

51
T-L*]NB(NY). Pick an idempotent w € L’ and let T'(w) = : |. Then
Su
each s; is an idempotent in L.

Pick an idempotent p € L. By Lemma 3.14, pick k& € N such that kZ" C

T[Z"], so that cﬁﬁ(zu)(kZ“) C f[ﬁ(Z”)]. Pick r € B(Z") such that TV(T’) =
p
p=
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Let © = {s € B(NV) : (V5 € {1,2,...,v})(7;(s) € N*)}. Then w € © so
by Lemma 3.2, r+w € © C S(NY). Since p+s; = pforeachi € {1,2,...,u}
we have that T(r +w) = p.

To see that A is IPR/N, let a finite coloring of N be given and pick a
color class B which is a member of p. Then T-}[BY NN’ € r + w so is
nonempty. (]

We note now that the assumption that no row of A is 0 is indeed weaker
than the assumption that A is IPR/N, even if the assumption that rank(A) =
u is added. The matrix A = ; ;) has nonnegative entries, no row
equal to 0, and rank(A) = 2 and A is not IPR/N. If it were, by [14,

Theorem 15.24(b)] there would exist positive rationals t; and to such that

2t 3ty 0 -1
ues of ¢t; and to making B satisfy the columns condition are ¢; = 2 and
to = —1.

For our results about D, QC, and SC we assume that rank(A) = u, the
number of rows of A. We do not know whether that assumption is needed
for any of these notions. In the case of SC we suspect it may be needed
since we cannot answer the following question.

B = ( bt =10 > satisfies the columns condition. The only val-

10
Question 4.11. Let A = 0 1 and let D be the set defined in [12,
11

Definition 4.1] (which was shown to be QC but not central). Is {¥ € N? :
A% € D3} a QC-set in N??

We remark that similar results are easily obtainable if the restrictions on
negative entries of A are deleted, the assumption that A is IPR/N is replaced
by the assumption that A is IPR/Z, and the conclusion that {# € NV : AZ €
C"} is a U-set in NV is replaced by the conclusion that {Z € Z" : A¥ € C"}
is a W-set in Z'. From a Ramsey Theoretic point of view, these results are
much less interesting because some of the entries of # are allowed to be zero.

10
(Consider AZ where A=| 1 1 | and &= ( é >)
1 2

5. Related results and generalizations

In the preceding sections, we studied the properties of a continuous ho-
momorphism 7T : S(ZY) — (BZ)", where u and v are positive integers. It
seems worth pointing out that no continuous function from 3(Z") to (8Z)"
can be bijective if u > 1. This was shown by Glicksberg [7] in 1959. An
easy way to see that 5(Z") and (8Z)" are not homeomorphic is to note that
by [6, Theorem 14.25], B(Z") is an F-space while by [6, Exercise 14Q(1)],
(BZ)" is not.
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We also realized that 5(Z") and (8Z)" are not algebraically isomorphic if
u > 1, after we received an email from Aninda Chakraborty asking whether
they might be. So no homomorphism from SZY to (8Z)" can be bijective.
We checked with some experts and the following result appears to be new.

Theorem 5.1. Let u,v € N with w > 1. Then S(Z") and (SZ)" are not
isomorphic and B(NY) and (BN)* are not isomorphic .

Proof. By [14, Corollary 6.23], if e and f are idempotents in $(Z") and
(B(Z*)+e)N (B(ZY)+ f) # 0, then e+ f = e or f+ e = f; in particular if
e and f are idempotents in S(N") and (B(N") +e) N (B(NY) + f) # 0, then
e+ f=eor f+e= f. We show now that the corresponding statement is
not valid in (BN)* and thus not in (87Z)"*. To see this pick an idempotent p
in SN\ K(pN). By [14, Theorem 1.60] pick an idempotent ¢ in K (SN) such
that ¢ < p. Let e = (p,p,...,p,q) € (BZ)" and f = (q,q,...,q,p) € (BZ)".
Then e+ f = f+eso ((BN)"+¢e) N ((BN)“ + f) # 0. However, e + f # e
and f 4+ e # f, because ¢ = p+q=q+ p # p, since p ¢ K(ON). O

The case I = K(SN) of the following theorem was proved in [11, Theorem
2.12]. We remark that it follows from Theorem 5.2, that every member of
any idempotent in J(N) contains 2° idempotents in J(N), and every mem-
ber of any idempotent in A(N) contains 2¢ idempotents in A(N). We write
the operation additively in this theorem since we are mostly concerned with
additive semigroups in this paper, but we are not assuming that S is com-
mutative.

Theorem 5.2. Let (S, +) be a countable discrete left cancellative semigroup,
let I be an ideal of BS, let p be an idempotent in I N S*, and let P € p.
Then PN 1 contains 2° idempotents.

Proof. Let P* = {vr € P : —x + P € p}. Then by [14, Lemma 4.14],
P* € p and for each x € P*, —x + P* € p. For F € Py(P*), let Rp =
P*N(Nyep(—s+ P*). Let V.= {Rp : F € P;(P*)} and note that p € V.
We claim that V' is a subsemigroup of 5S. To see this, we use [14, Theorem
4.20]. Let F' € Ps(P*) and let x € Rp. Then x € P* and F + 2 C P~
Let G = {z} U (F + x). We show that x + Rg C R, so let y € Rg. Then
ye—zxz+Psox+yeP . Givenze F,z+xe€Gsoy € —(z+z)+ P*
and thus =z +y € —z + P* as required. By [14, Corollary 4.29], S* is a
subsemigroup of 58S and p € VN S*, so VNS* is a subsemigroup of 55. Let
Vi=vns*

Since S is countable, S* is a Gg set in 3S. So we have that V' is a
G5 subset of S*, so by [14, 6.32], V' contains a topological and algebraic
copy of H = (72, ¢lsn(2"N). By [14, Lemma 6.8], H contains all of the
idempotents of (BN,+). By [14, Theorem 6.9], SN contains 2° minimal
left ideals. Choosing one idempotent from each minimal left ideal of SN,
one has a set W of 2° idempotents with the property that if ¢ and r are
distinct members of W, then g + r # g and r + g # r. Therefore, there
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is a set T' of 2° idempotents in V’ with the same property. We claim that
(BS+q)N(BS+1r)=10if ¢ and r are distinct elements of T'. To see this,
suppose that (85 + ¢) N (B8S +r) # 0. By [14, Theorem 6.19] we may
suppose that there exists s € S and x € 55 such that s + ¢ =z + r. Then
s+q+r =xz+4+r =s+q. It follows [14, Lemma 8.1] that ¢ + r = g,
contradicting the choice of T

Since I is an ideal of 35S and p € I N V', we have that I NV’ is an ideal
of V' so that K(V') C I. Given ¢ € T, pick a minimal left ideal L, of V'
with L C V' + ¢. Then if ¢ and r are distinct members of T, Ly N L, = {)
and each L, contains an idempotent which is a member of I N P. U

By a dynamical system we mean a pair (X, (Ts)ses), where X is a compact
Hausdorff space, S is a discrete semigroup, T : X — X is a continuous
function for every s € S and TsoT; = Ty for every s,t € S. If X is a compact
space, C'(X) will denote the space of continuous real-valued functions defined
on X, with the uniform norm, and C'(X)’ will denote its dual space. Given a
probability measure u defined on the Borel subsets of X, we shall also view
p as a linear functional defined on C(X) by u(f) = [ fdu. If (X, (Ts)ses)
is a dynamical system, we shall say that a Borel measure u defined on X is
S-invariant if p(f) = p(f o Ts) for every f € C(X) and every s € S. It is
well known, and easy to prove, that this is equivalent to the condition that
w(T;YB]) = u(B) for every s € S and every Borel subset B of X.

s

Theorem 5.3. Let (X, (Qr)rer) and (Y, (Ts)ses) be dynamical systems, and
assume that S is left amenable. Let ¢ : Y — X be a continuous surjection
and let i denote a probability measure on X which is R invariant. Assume
that, for each s € S, there exists r € R such that poTs = Qro¢p. Then there is
a probability measure v on'Y which is S-invariant, such that v(fo¢) = u(f)
for every f € C(X).

Proof. Let L denote the linear subspace {f o ¢ : f € C(X)} of C(Y).
Observe that the map f — f o ¢ is an isometry mapping C'(X) into C(Y),
and that L contains the constant function 1 equal to 1 at every point of Y.
Define p on L by putting p(f o ¢) = u(f) for every f € C(X). Then p is
a linear functional of norm 1 on L, and v(1) = 1. By the Hahn Banach
Theorem, p can be extended to a linear functional of norm 1 on C(Y).

Let K = {v € CY) :v(1) =1, |v| =1 and v(fo¢) = u(f)(Vf €
C(X ))} We have seen that K is nonempty. For every s € S and every
v e C(Y), we define 05(v) € C(Y)' by putting (65(v))(g) = v(g o Ts) for
every g € C(Y). We claim that, for every s € S, 05(v) € K if v € K. To see
this, let f € C(X), let s € S and let v € K. We are assuming that ¢ o Ts =
Q06 for some 1€ R. So v(fo60Ty) = v(foQrod) = u(foQr) = u(f),
and so 05(v) € K. Since K is a convex weak® compact subset of C(Y)',
it follows from Day’s fixed point theorem ([16, Theorem 1.14]) that we can
choose a member v of L with the property that v = 05(v) for every s € S.
So v(g) = v(goTs) for every g € C(X) and every s € S. By the Riesz
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Representation Theorem, v can de regarded as a probability measure on
Y. O

In the following corollary, we use the relationship between the concept of
density for subsets of a discrete semigroup .S and probability measures on 3.5
which are invariant under translation by elements of S. This is a powerful
tool in analyzing the Ramsey theoretic properties of subsets of S of positive
density. If S is left cancellative and left amenable, it is well-known that a
subset A of S has positive Fglner density if and only if there is a probability
measure g on .S, invariant under translation by elements of S, for which
pu(A) > 0. See [13, Theorem 2.14].

We conclude by proving the case ¥ = D of Theorem 4.2 as a corollary
of Theorem 5.3. Our motive for doing so is that the proof is fairly short
and applies to semigroups other than N. For example, it is clear that the
proof applies to Z and to any commutative group in which multiplication
by rationals is defined.

Corollary 5.4. Let u,v € N and let A be a u X v matriz with entries from
Q which is IPR/N such that rank(A) = u. If C is a D-set in N, then
{Z e N": AZ € C"} is a D-set in NV.

Proof. By Lemmas 3.7 and 3.8 we may assume that the entries of A are
integers. Let T" denote the mapping from Z" to Z" defined by A, and let
T : BZY — (BZ)" denote its continuous extension. Assume that C' is a D-set
in N and pick an idempotent p € A(N) such that C' € p. We note from
Figure 1 that every member of p is a C-set. So, for every P € p, there exists
Zp € NY such that AZp C P“. Direct p by reverse inclusion and let ¢ be a

p
limit point of the net (Zp)pe, in B(NY). Then T(¢) =p= | : | € (BN)™
p
By Lemma 3.14, there exists k € N such that kZ" C T(Z"). By [14,
Lemma 6.6], kN € p. Let P € p, with P C kN. Since P has positive density
in N, there is a probability measure y on SN, invariant under translations
by elements of Z, such that u(P) > 0. Let p* denote the product measure
PR p® ... R u defined on (BN)“. Observe that u* is a probability measure
invariant under translations by elements of Z". We shall apply Theorem 5.3
with Y = g(Z%), X =T[Y], o =T, S =Z°, R = 7", Tz = Xz for every
ZeZV, and Qz = Az for every 2 € Z". The hypotheses of Theorem 5.3 are
satisfied because, for every i and Z in ZY, T(Z + ¢) = T(%2) + T(¥) and so
(b o )\5 = )‘T(E) o ¢
So, by Theorem 5.3, there is an S-invariant probability measure v on SZ"
for which v(¢~1[P]*) > 0. It follows that T~![P“] has positive density in
B(ZY) and hence that T—1[P*] N A(Z") # () by Lemma 2.4. Let P denote
the set of all members of p contained in kBN. Then T-![{p}] N A(Z") =

Npep T7HPYNA(ZY) # (. Since A(Z”) is an ideal in SZ" by Theorem 3.1,
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K(T[{p}]) C A(Z"). We can choose a minimal idempotent ¢’ of T-[{p}]
in the left ideal T~1[{p}] + ¢q of T~[{Pp}]. Let

O ={scBIN): (Vje{l,2,...,0})F(s) € N)}.

Then ¢ € © so by Lemma 3.2, ¢ € © C B(N"). We have shown that

T-1(C%) is a D-set in NV. O
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