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Abstract. The Rudin-Keisler (and in the case the space S is countable, the Rudin-
Froĺık) order of the Stone-Čech remainder βS\S of the discrete space S has often been
studied, yielding much useful information about βS. More recently, the Comfort order
has been introduced. If (S, ·) is a semigroup, then the operation · extends naturally
to βS, and the study of the semigroup (βS, ·) is both fascinating in its own right and
useful in terms of applications to Ramsey Theory.

In this paper, we study the Rudin-Keisler and Comfort orders on βS\S when S
is a semigroup. We show, for example, that the set of Comfort predecessors of a given
point p ∈ βS\S is always a subsemigroup of βS, while if S is cancellative, the set of
Rudin-Keisler predecessors of a point p is never a subsemigroup.

1. Introduction.

Given a discrete space S, we take the points of βS, the Stone-Čech compactification
of S, to be the ultrafilters on S, with the points of S identified with the principal
ultrafilters. The topology of βS can be defined by stating that the sets of the form
{p ∈ βS : A ∈ p}, where A is a subset of S, are a base for the open sets. We note that
the sets of this form are clopen and that, for any p ∈ βS and any A ⊆ S, A ∈ p if and
only if p ∈ A, where A denotes clβSA. If A is a subset of S, we shall use A∗ to denote
A \A.

If X is any compact Hausdorff space, then any function f : S → X has a continuous
extension f : βS → X.

The Rudin-Keisler order ≤RK on βS is defined by agreeing that p ≤RK q if and
only if there is a function f : S −→ S such that f(q) = p, where f : βS −→ βS is the
continuous extension of f . A great deal has been learned about this order, especially in
the case of countable discrete spaces. (See [6],[7] and [20] for much of what is known.)
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This information has been a powerful tool in studying the structure of βS, showing in
a dramatic fashion that it is not true that all ultrafilters were created equal.

We shall use p <RK q to denote that p ≤RK q and q 6≤RK p, and p ≈RK q to
denote that p ≤RK q and q ≤RK p. We may simply use ≤ and < respectively, instead
of ≤RK and <RK .

Any binary operation ∗ defined on S can be extended in a natural way to a binary
operation defined on βS. This can be done by using the using the notion of p-limit
introduced in [9]. Given a point p ∈ βS and a function f taking S to a Hausdorff
topological space X, p-lim

x∈S
f(x) = y if and only if for every neighborhood U of y,

f−1[U ] ∈ p. This is equivalent to stating that lim
x→p

f(x) = y. It is also equivalent to

stating that f̄(p) = y in the case in which X is compact.

Then, given p, q ∈ βS, we define p ∗ q = p-lim
s∈S

q-lim
t∈S

s ∗ t= lim
s→p

lim
t→q

s ∗ t, where s and

t denote elements of S. For any A ⊆ S, A ∈ p ∗ q if and only if {s ∈ S : s−1A ∈ q} ∈ p,
where s−1A = {t ∈ S : s ∗ t ∈ A}. If ∗ is associative on S, its extension to βS is
also associative and so (βS, ∗) is a semigroup. It has the property that that, for every
p ∈ βS, the map ρp : βS → βS defined by ρp(q) = q ∗ p is continuous and thus
(βS, ∗) is a compact right topological semigroup. Furthermore, for every s ∈ S, the
map λs : βS → βS defined by λs(q) = s∗ q is continuous as well. (The reader should be
warned that the extension of ∗ is sometimes carried out in the opposite order, making
(βS, ∗) a left topological semigroup. In fact this is the case in some of the references to
this paper.)

In the case in which S is a semigroup, some relationships between the order ≤RK

and the semigroup operation on βS are known, primarily the fact that the points p

of βN at which right cancellation holds in the semigroup (βN,+) are characterised by
the property that p <RK q + p for all q ∈ βN [5]. However, one would not expect an
intimate relationship because permutations of a semigroup do not normally respect the
semigroup operation.

Recently, at the suggestion of W. Comfort, one of us initiated a study of a different
order relation on elements of βS. (See [11] and [12].)

In [2], a space Hausdorff X is called p-compact provided that whenever f : S −→ X,
p-lim

x∈S
f(x) exists in X. In the Comfort order, one says that p ≤C q if and only if every

q-compact space is p-compact. It is easy to check that p ≤RK q implies that p ≤C q.
We shall write p <C q if p ≤C q and q 6≤C p, and p ≈C if p ≤C q and q ≤C p.

In this paper, we invesigate some of the connections between the relations ≤RK

and ≤C on βS and the semigroup structure of βS.
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In Section 1 we consider the tensor product p⊗ q of two elements p and q and show
that p ∗ q ≤RK p⊗ q for every binary relation ∗ defined on S. We also show that every
≤RK minimal ultrafilter in βω is ≤C minimal.

In Section 2 we establish a strong relationship between the Comfort order and the
semigroup structure on βS. That is, we show that for any infinite discrete semigroup
(S, ·) and any point p ∈ βS, the set of Comfort predecessors of p is a subsemigroup
of (βS, ·). We also show that if (S, ·) is cancellative, then the corresponding statement
about the Rudin-Keisler order fails dramatically: the set of Rudin-Keisler predecessors
of any element p ∈ S∗ is not a semigroup. (The restriction that p /∈ S is necessary,
because, if p ∈ S, the set of Rudin-Keisler predecessors of p is just S.) We also show
that there are no ultrafilters which are maximal for the Comfort order. We prove that
the right cancellable elements of ω∗ preserve order properties in the following sense: for
any right cancellable element p of βω and for any x, y ∈ ω∗, x ≤RK y if and only if
x + p ≤RK y + p, and x ≤C y implies that x + p ≤C y + p.

In Section 3 we present some other results connecting order relations with the
semigroup operation of βS. We show that there is a rich set of elements p in βS with
the property that p <RK p+ q and q <RK p+ q for every q ∈ S∗. We prove that for any
subset C of βN with at most c elements, there is a left ideal L of βN and a right ideal
R of βN such that x <RK y for every x ∈ C and every y ∈ L∪R. This implies that the
≤C successors of a given ultrafilter in βN do not normally form a subsemigroup of βN.
We finally observe that, if p is a P -point in ω∗ and if x ∈ ω∗, then x ≤RK p implies that
x is a P -point in ω∗ and x ≤C p imples that x is right cancellable in ω∗. It follows that
the set of elements of ω∗ which are Comfort equivalent to p is a subsemigroup of ω∗.

We shall use some of the basic algebraic properties of compact right topological
semigroups, whose proofs can be found in [1]. Any such semigroup T has a smallest
two-sided ideal K(T ), which is the union of all the minimal left ideals, as well as being
the union of all the minimal right ideals of T . Any minimal left (right) ideal of T is of
the form Te (eT ) for some idempotent e.

We conclude this introduction with some well known facts whose proofs have not
been previously published in the generality in which we shall use them.

1.1 Definition. Let S be a discrete space and let p, q ∈ β(S). The tensor product of p

and q is
p⊗ q = {A ⊆ S × S : {s : {t : (s, t) ∈ A} ∈ q} ∈ p}.

Then p⊗ q is an ultrafilter on S ×S which can be considered as an ultrafilter on S

via any fixed bijection. Notice that, if τ is a bijection from S × S to S, and for s, t ∈ S
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one defines s ∗ t = τ(s, t), then for any p and q in βS, one has {τ [A] : A ∈ p⊗ q} = p ∗ q

and thus results obtained here about the extensions of arbitrary binary operations on S

apply to ⊗. For other properties not included here and some historical notes concerning
⊗ see [6].

1.2 Lemma. Let S be a discrete space and let p, q ∈ S∗. Then p < p⊗ q and q < p⊗ q.

Proof. If π1 and π2 are the projection maps from S × S onto S, it is easy to see that
π̄1(p⊗ q) = p and π̄2(p⊗ q) = q. Since there is no member of p⊗ q on which π1 or π2

is injective, it follows from [6, Theorem 9.2] that p 6≈RK p⊗ q and q 6≈RK p⊗ q.

1.3 Lemma. Let S be a discrete space and let p, q ∈ βS. Then

p⊗ q = lim
s→p

lim
t→q

(s, t)

where s and t denote elements of S and the limits are taken to be in β(S × S).

Proof. For each s ∈ S and q ∈ βS, let fs : S → β(S × S) and gq : S → β(S × S) be
defined by fs(t) = (s, t) and gq(s) = f̄s(q). Now f̄(q) = lim

t→q
fs(t) and lim

t→q
fs(t) = s⊗ q,

because, for every U ∈ s ⊗ q, we have f−1
s [U ] ∈ q. So gq(s) = s ⊗ q. Also, ḡq(p) =

lim
s→p

gq(s) = p⊗ q because, for every V ∈ p⊗ q, we have g−1
q [V ] ∈ p.

1.4 Lemma. Let S be a discrete space and let ∗ be a binary operation defined on S.
Let p, q, x, y ∈ βS. If p ≤ q and x ≤ y, then p ∗ x ≤ q ⊗ y.

Proof. Let f, g : S → S be functions for which f̄(q) = p and ḡ(y) = x. We define
h : S × S → S by h(s, t) = f(s) ∗ g(t). Then

h̄(q ⊗ y) = lim
s→q

lim
t→y

h(s, t) = lim
s→q

lim
t→y

f(s) ∗ g(t) = f̄(q) ∗ ḡ(y) = p ∗ x.

1.5 Corollary. Let S be a discrete space and let ∗ be a binary operation defined on
S. For every p, q ∈ βS, p ∗ q ≤ p ⊗ q. Furthermore, if h : S × S → S is defined by
h(s, t) = s ∗ t, we have h̄(p⊗ q) = p ∗ q.

Proof. The proof is the same as that of Lemma 1.4, with f and g taken to be the
identity maps.

Corollary 1.5 shows that p⊗ q is an RK-upper bound of the set of elements of the
form p∗ q, where ∗ denotes any binary operation on S and p, q ∈ S∗. We now show that
we frequently have p⊗ q ≈RK p ∗ q.
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We remind the reader that a subset D of a topological space X is said to be discrete
if no point x of D is in c`X(D \ {x}). It is said to be strongly discrete if each point x of
D has a neighbourhood Ux in X for which the family 〈Ux〉x∈D is pairwise disjoint. If
X is regular and D is countable, these two concepts are equivalent.

1.6 Theorem. Let S be a discrete space and let ∗ be a binary operation defined on S

with the property that, for each s ∈ S, the map t 7→ s ∗ t is injective. Then, for every
p, q ∈ βS, the following are equivalent.

(1) p ∗ q ≈RK p⊗ q.

(2) There exists D ∈ p such that D ∗ q is strongly discrete.

Proof. (1) ⇒ (2). If p ∗ q ≈RK p ⊗ q, there is a set A ∈ p ⊗ q on which the mapping
(s, t) 7→ s ∗ t from S × S to S is injective (by Corollary 1.5 and [6, Theorem 9.2]). We
may suppose that A has the form

⋃
s∈D({s} × Es), where D ∈ p and Es ∈ q for every

s ∈ D. Then, for each s ∈ D, s ∗ Es ∈ s ∗ q and (s ∗ Es) ∩ (s′ ∗ Es′) = ∅ if s and s′ are
distinct elements of D.

(2) ⇒ (1). Let D ∈ p be such that D ∗ q is strongly discrete. Then, for each
s ∈ D, there exists Us ∈ s ∗ q such that Us ∩ Us′ = ∅ whenever s and s′ are distinct
elements of D. For each s ∈ D, there exists Es ∈ q such that s ∗ Es ⊆ Us. Then
{(s, t) ∈ D × S : t ∈ Es} ∈ p⊗ q and the mapping (s, t) 7→ s ∗ t is injective on this set.
So p ∗ q ≈RK p⊗ q.

We shall need the following result, which is a consequence of [16, Corollary 2.6].

1.7 Lemma. If (S, ·) is a cancellative discrete semigroup, then, for every s, t ∈ S and
every p ∈ βS, s · p = t · p implies that s = t.

1.8 Corollary. Let (S, ·) be a countable cancellative semigroup. If q ∈ S∗ is right
cancellable in βS, then p · q ≈RK p⊗ q for every p ∈ βS.

Proof. This follows from Theorem 1.6 and the fact that S · q is discrete in S∗ (by [16,
Theorem 2.2]).

The following corollary generalizes a portion of [5, Theorem 2.1], where it was
established for (N,+).

1.9 Corollary. Let (S, ·) be a countable cancellative semigroup. If q is a right can-
cellable element of S∗, then p < p · q and q < p · q for every p ∈ S∗.

Proof. This follows from Lemma 1.2 and Corollary 1.8.
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The following example contrasts with the fact that, for any p, q ∈ βS, we have
p⊗ q ≈Cq ⊗ p (Cf. Corollary 2.3 below). We shall need to use a lemma, due to Froĺık,
which is valid in any F-space. A proof can be found in [16], where it occurs as Lemma
1.1.

1.10 Lemma. Let S be a discrete space and let A and B be σ-compact subsets of βS.

If A ∩B 6= ∅, then A ∩B 6= ∅ or A ∩B 6= ∅.

1.11 Theorem. Let S be a countable discrete space and let ∗ be a binary operation
defined on S with the property that, for every a ∈ S, the mapping b 7→ a ∗ b from S to
itself is injective. Suppose that p, q ∈ S∗ and that there is a member A of p for which
a∗q 6= a′ ∗q whenever a and a′ are distinct elements of A and for which A∗q is discrete
in βS. Then p ∗ q ≤ q ∗ p implies that p and q are RK-comparable.

Proof. For each a ∈ A we can choose Ua ∈ a∗q with the the property that Ua∩Ua′ = ∅
whenever a 6= a′. We can then choose Ba ∈ q satisfying a ∗ Ba ⊆ Ua. We put V =⋃

a∈A a ∗ Ba and note that V ∈ p ∗ q. Each v ∈ V has a unique expression of the form
v = a∗b with a ∈ A and b ∈ Ba. We can define φ1, φ2 : S → S by stating that φ1(v) = a

and φ2(v) = b if v ∈ V is expressed in this form and then extending these functions
arbitrarily to S \ V. We observe that, for any x ∈ A, we have

φ̄1(x ∗ q) = lim
a→x

lim
b→q

φ1(a ∗ b) = lim
a→x

a = x

and
φ̄2(x ∗ q) = lim

a→x
lim
b→q

φ2(a ∗ b) = lim
a→x

lim
b→q

b = q.

(In these expressions, a denotes an element of A and b an element of Ba.)
Let f : S → S be a function for which f̄(q ∗ p) = p ∗ q. Let P ∈ p and Q ∈ q,

with P ⊆ A. Then p ∗ q belongs to each of the sets P ∗ q and f̄ [Q ∗ p]. It follows (from
Lemma 1.10) that one of the two following alternatives must hold:

i) f̄(b ∗ p) = x ∗ q for some b ∈ Q and some x ∈ P ;
ii) a ∗ q ∈ f̄(Q ∗ p) for some a ∈ P.

Now i) implies that the mapping s 7→ φ2f(b ∗ s) from S to itself has a continuous
extension to βS which maps p to q. Thus i) implies that q ≤ p, and we shall therefore
assume that ii) holds for every P ∈ p and every Q ∈ q.

Statement ii) implies that a ∈ φ̄1f̄(Q ∗ p). Since a is isolated in βS, this implies that
a = φ̄1f̄(b ∗ p) for some b ∈ Q. Let B = {b ∈ S : φ̄1f̄(b ∗ p) ∈ S}. Then B ∈ q because
B meets every member of q. We can define θ : S → S by stating that θ(b) = φ̄1f̄(b ∗ p)
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if b ∈ B and then extending θ arbitrarily to S \ B. We have seen that, for every P ∈ p

and Q ∈ q, θ[Q] ∩ P 6= ∅. Thus θ[Q] ∈ p and so θ̄(q) = p and p ≤ q.

1.12 Corollary. Let S be a countably infinite discrete space and let p, q ∈ S∗. If
p⊗ q ≤ q ⊗ p, then p and q are RK-comparable.

Proof. Let τ be a bijection from S × S to S and define an operation ∗ on S by
s ∗ t = τ(s, t). Then as we have observed p ∗ q = {τ [A] : A ∈ p⊗ q} and the hypotheses
of Theorem 1.11 are clearly satisfied.

1.13 Corollary. Let (S, ·) be a countable cancellative semigroup and let q be a right
cancellable element of S∗. If p ∈ S∗ and p · q ≤ q · p, then p and q are RK-comparable.

Proof. This follows from Theorem 1.11 and the fact that S · q is discrete in S∗ (by [16,
Theorem 2.2]).

1.14 Lemma. Let (S, ·) be a countable cancellative semigroup. Then for every p ∈ S∗

there exists q ∈ S∗ such that q ≈RK p and q · p ≈RK p⊗ p.

Proof. We can choose an infinite subset D of S for which D ·p is discrete and can choose
q ∈ D∗ such that q ≈RK p. Using Theorem 1.6, we have q · p ≈RK q ⊗ p ≈RK p⊗ p.

1.15 Lemma. Let (S, ·) be a countable cancellative semigroup. For every p ∈ S∗, there
exists q ∈ S∗ such that q ≈RK p and r · q ≈RK r ⊗ p for every r ∈ S∗.

Proof. By [14, Corollary 4.4] there is a dense open subset of βS all of whose elements
are right cancellable in βS. We can therefore choose an infinite subset D of S with the
property that every element of D is right cancellable in βS. We can then choose q ∈ D

such that q ≈RK p. Using Corollary 1.8, we then have r · q ≈RK r ⊗ q ≈RK r ⊗ p for
every r ∈ S∗.

1.16 Lemma. Let (S, ·) be a cancellative countable semigroup. Then, for every
p, q ∈ S∗ there exists r ∈ S∗ such that r ≤RK p · q and r ≤RK p.

Proof. We note that by Lemma 1.7 there is at most one element s ∈ S for which
s · q = p · q. Hence, if P = {t ∈ S : t · q 6= p · q}, we have P ∈ p.

Suppose that P is arranged as a sequence 〈sn〉∞n=1. For each s ∈ P, we shall define
a set As ⊆ P so that the following statements hold:

As ∈ s · q;
As /∈ p · q;
For every s, t ∈ P , either As = At or As ∩At = ∅.
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We define these sets inductively, first choosing As1 to be any member of s1 · q

which is not a member of p · q. We then suppose that Asi has been defined for every
i ∈ {1, 2, · · · , n} so that the required conditions hold. If sn+1 · q ∈

⋃n
i=1 Asi , we put

Asn+1 = Asi where i ∈ {1, 2, · · ·n} and sn+1 · q ∈ Asi . Otherwise, we choose Asn+1

satisfying Asn+1 ∈ sn+1 · q, Asn+1 ∩Asi = ∅ for every i ∈ {1, 2, · · · , n} and Asn+1 /∈ p · q.
Having defined the sets Asn , we put A =

⋃∞
i=1 Asi and define a mapping f : A → S

by stating that f(a) = si if i the first integer for which a ∈ Asi . We put r = f̄(p · q). It
is then immediate that r ≤ p · q. We observe that r ∈ S∗, because r ∈ S would imply
the existence of an integer i with the property that {t ∈ P : t · q ∈ Asi} ∈ p. This would
imply that Asi ∈ p · q – contradicting our choice of the sets Asn .

For each sn ∈ P , we can choose i to be the first integer for which sn · q ∈ Asi . We
then have f̄(sn · q) = si ∈ S. So the map s 7→ f̄(s · q) from P to S has an extension to
P̄ which maps p to r, and thus r ≤ p.

1.17 Definition. Let X be a completely regular Hausdorff space, let S be an infinite
discrete space, and let p ∈ βS. Then

βp(X) =
⋂
{Y : X ⊆ Y ⊆ βX and Y is p-compact} .

Notice that trivially βp(X) is p-compact. We remark that βp(X) has the following
universal property: If Y is any completely regular Hausdorff p-compact space, then any
continuous function from X to Y extends to a continuous function from βp(X) to Y .

We now see how to construct βp(X) from the inside out.

1.18 Lemma. Let X be a completely regular Hausdorff space, let S be an infinite
discrete space, let α = |S|, and let p ∈ βS. Let A0(p, X) = X. Inductively, let σ < α+

be given. If σ is a nonzero limit ordinal, let

Aσ(p, X) =
⋃
τ<σ

Aτ (p, X) .

If σ = τ + 1, let

Aσ(p, X) = {p-lim
x∈S

f(x) : f : S −→ Aτ (p,X) ⊆ βS} .

Then βp(X) =
⋃

σ<α+ Aσ(p, X).

Proof. Let Z =
⋃

σ<α+ Aσ(p, X). To see that Z ⊆ βp(X), suppose instead that
this inclusion fails and pick the first σ < α+ such that Aσ(p, X)\βp(X) 6= ∅ and pick

8



x ∈ Aσ(p, X)\βp(X). Since X ⊆ βp(X), σ > 0, and trivially σ = τ + 1 for some τ .
Pick f : S −→ Aτ (p,X) such that x = p-lim

t∈S
f(t). Since Aτ (p, X) ⊆ βp(X) and βp(X)

is p-compact, it follows that x ∈ βp(X), a contradiction.

To show that βp(X) ⊆ Z, it suffices to show that Z is p-compact. Let f : S −→ Z

and for each s ∈ S, pick σ(s) < α+ such that f(s) ∈ Aσ(s)(p, X). Let δ = sup{σ(s) :
s ∈ S}. Then δ < α+ and f : S −→ Aδ(p, X) so p-lim

s∈S
f(s) ∈ Aδ+1(p, X) ⊆ Z.

As a consequence of Lemma 1.18 we see that βp(S) is always relatively small.
(Recall [13, Theorem 9.2] that if |S| = α, then |βS| = 22α

.)

We remark that A1(p, S) as defined in Lemma 1.18, is equal to {x ∈ βS : x ≤RK p}.

1.19 Theorem. Let S be an infinite discrete space and let |S| = α. Then for all p ∈ βS,
|βp(S)| ≤ 2α.

Proof. We show by induction on σ < α+ that |Aσ(p, S)| ≤ 2α and hence by Lemma
1.18 that |βp(S)| ≤ 2α · α+ = 2α. We have |A0(p, S)| = α. Given σ < α+, such
that |Aσ(p, S)| ≤ 2α, note that |{f : f : S −→ Aτ (p, S)}| ≤ (2α)α = 2α and hence
|Aσ+1(p, S)| ≤ 2α. Given a limit ordinal τ with 0 < τ < α+ we have that |Aτ (p, S)| ≤
2α · |τ | = 2α.

We omit the routine proof of the following lemma.

1.20 Lemma. Let S be an infinite discrete space, let p ∈ βS, let X be a p-compact
space, let Y be a Hausdorff space, let Z be a p-compact subspace of Y and let f : X −→ Y

be continuous. Then f−1[Z] is p-compact.

The following theorem provides several convenient characterizations of the Comfort
order. It was stated without proof in [12].

1.21 Theorem. Let S be an infinite discrete space and let p, q ∈ βS\S. The following
statements are equivalent.

(1) p ≤C q.

(2) βp(S) ⊆ βq(S).

(3) p ∈ βq(S).

(4) There is a function f : S −→ βq(S) such that f(q) = p /∈ f [S].

(5) βq(S) is p-compact.

(6) βq(S)\S is p-compact.
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Proof. (1) implies (2). βq(S) is q-compact, hence p-compact.
(2) implies (3). p = p-lim

s∈S
s ∈ A1(p, S) ⊆ βp(S) ⊆ βq(S).

(3) implies (4). Let α = |S|. Pick the first σ < α+ such that p ∈ Aσ+1(q, S). Then
p = q-lim

s∈S
f(s) = f(q) for some function f : S −→ Aσ(q, S).

(4) implies (3). One has p = q-lim
s∈S

f(s) ∈ βq(S).

(3) implies (1). Let X be a q-compact space and let f : S −→ X and denote the
continuous extension from βS to βX by f . By Lemma 1.20 f

−1
[X] is q-compact so

that p ∈ βq(S) ⊆ f
−1

[X] so f(p) ∈ X. Thus p-lim
s∈S

f(s) = f(p-lim
s∈S

s) = f(p) ∈ X.

The assertions that (1) implies (5), that (5) implies (2), and that (5) implies (6)
are trivial.

(6) implies (1). Let α = |S| and enumerate S as 〈sσ〉σ<α. Let 〈Sσ〉σ<α be a sequence
of pairwise disjoint subsets of S, each of cardinality α such that S =

⋃
σ<α Sσ. For each

σ < α, pick rσ ∈ βS such that Sσ ∈ rσ and rσ ≈RK q, that is there is a permutation of
S whose extension from βS to βS takes q to rσ. Notice that each rσ ∈ βq(S)\S since
βq(S)\S is q-compact. Define f : S −→ βq(S)\S by f(sσ) = rσ and define g : S −→ S

by agreeing that g(x) = sσ if and only if x ∈ Sσ. Now, since each Sσ ∈ rσ, we have that
g
(
f(sσ)

)
= g(rσ) = sσ so that g◦f is the identity on S and hence g◦f is the identity on

βS. In particular, g
(
f(p)

)
= p and hence p ≤RK f(p). Also, f(p) ∈ βq(S)\S ⊆ βq(S)

so, since (3) implies (1), f(p) ≤C q and thus p ≤C q.

We see as a consequence of Theorem 1.21 that Lemma 1.4 remains valid if the
Rudin-Keisler order is replaced by the Comfort order.

1.22 Corollary. Let S be a discrete space and let ∗ be a binary operation defined on
S. Let p, q, x, y ∈ βS. If p ≤C q and x ≤C y, then p ∗ x ≤C q ⊗ y.

Proof. Let α = |S|. We show by induction on τ < α+ that if p ∈ Aτ (q, S) and
x ∈ Aτ (y, S), then p ∗ x ≤C q ⊗ y. If τ = 0, then p ∗ x ∈ S so the conclusion is
trivial so assume that τ > 0 and the conclusion is true for smaller ordinals. If τ is a
limit ordinal, then for some σ < τ , p ∈ Aσ(q, S) and x ∈ Aσ(y, S) so the conclusion is
immediate. Thus we may assume that τ = σ + 1 for some σ. Pick f : S −→ Aσ(q, S)
and g : S −→ Aσ(y, S) such that p = q-lim

z∈S
f(z) and x = y- lim

w∈S
g(w). Then

p ∗ x = q-lim
z∈S

y- lim
w∈S

f(z) ∗ g(w)

and for all z, w ∈ S, we have by the induction hypothesis that f(z) ∗ g(w) ≤ q ⊗ y.
Thus, by Theorem 1.21 for all z, w ∈ S, f(z) ∗ g(w) ∈ βq⊗y. By Lemma 1.2 q ≤C q ⊗ y
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and y ≤C q ⊗ y so, again by Theorem 1.21, we have that βq⊗y is both q-compact and
y-compact and hence p ∗ x = q-lim

z∈S
y- lim

w∈S
f(z) ∗ g(w) ∈ βq⊗y.

1.23 Theorem. Every ≤RK minimal ultrafilter in N∗ is also ≤C minimal.

Proof. Let p be a ≤RK minimal ultrafilter in N∗. Throughout this proof, we shall
simply use Aσ to denote the set Aσ(p, N) defined in Lemma 1.18, and βp to denote
βp(N).

For each x ∈ N∗∩βp, we define φ(x) to be the first ordinal σ < ω1 for which x ∈ Aσ.
We note that φ(x) is neither 0 nor a limit ordinal.

Suppose that x ∈ N∗ ∩ βp and that φ(x) = σ. Then, by the definition of Aσ, there
is a function f : N → Aσ−1 such that f(p) = x. We shall show that there is a set A ∈ p

such that f|A is injective and f [A] is discrete in βN.

We shall inductively define a sequence 〈Ui〉∞i=1 of clopen subsets of βN with the
following properties:

Ui ∩ Uj = ∅ if i 6= j;

f [{1, 2, · · · , n}] ⊆
⋃n

i=1 Ui;

x /∈
⋃∞

i=1 Ui.

We first choose U1 to be any clopen subset of βN such that f(1) ∈ U1 and
x /∈ U1. We then suppose that we have defined Ui for each i ∈ {1, 2, · · · , n} so that these
properties hold. Let r denote the first positive integer for which f(r) /∈

⋃n
i=1 Ui. We

choose Un+1 to be a clopen subset of βN\
⋃n

i=1 Ui such that f(r) ∈ Un+1 and x /∈ Un+1.

Thus we can define a sequence 〈Ui〉∞i=1 as claimed.

We note that, for each i ∈ N, x /∈ Ui and hence p /∈ f−1[Ui]. Since N ⊆
⋃∞

i=1 f−1[Ui],
it follows from [6,Theorem 9.6] that there is a set A ∈ p such that |A∩ f−1[Ui]| ≤ 1 for
every i ∈ N. So f|A is injective and f [A] is discrete in βN.

For each a ∈ A, we can choose Ba ∈ f(a) such that Ba ∩Ba′ = ∅ whenever a 6= a′.
We can define a function h : N → N by stating that h(b) = a if b ∈ Ba, defining h

arbitrarily on N\
⋃

a∈A Ba. For each a ∈ A, f(a) ∈ Ba and so hf(a) = a. Allowing a to
converge to p, shows that h(x) = p. So x ≥RK p and hence x ≥C p.

We have thus shown that x ≤C p implies that x ≈C p. So p is ≤C minimal.

We remark that, for any weak P -point p in N∗ and any q ∈ N∗, an easy inductive
argument shows that p ∈ βq(N) if and only if p ∈ A1(q, N). So p ≤C q if and only if
p ≤RK q. It follows that a weak P -point p in N∗ is ≤C minimal if and only if it is ≤RK

minimal. To see this, suppose that p is ≤C minimal. Then, for any q ∈ N∗,

11



q ≤RK p ⇒ q ≤C p
⇒ q ≥C p
⇒ q ≥RK p .

So p is ≤RK minimal.
If we assume CH, there are clearly ≤C minimal ultrafilters which are not weak P -

points of N∗. If p is any ≤RK minimal ultrafilter, then any ultrafilter in βp(N)\A1(p, N)
is an ultrafilter of this kind. We do not know whether every ≤C minimal ultrafilter is
≤C equivalent to a ≤RK minimal ultrafilter; nor do we know whether the existence of
≤C minimal ultrafilters can be demonstrated without CH.

2. Sets of Predecessors as Semigroups.

In this section we establish that for any infinite semigroup (S, ·) and any point
p ∈ βS, the set of Comfort predecessors of p is a subsemigroup of (βS, ·) and that, if
S is cancellative and p ∈ βS\S, then the set of Rudin-Keisler predecessors of p is not
a semigroup. We begin by establishing the first of these assertions. Notice that by
the equivalence of (1) and (3) in Theorem 1.21, the set of Comfort predecessors of p is
precisely βp(S).

2.1 Theorem. Let S be a discrete space and let ∗ be a binary operation on S. For every
p ∈ βS, the set βp(S) is closed under ∗.

Proof. Let q, r ∈ βp(S). Then q ∗ r = q-lim
s∈S

r-lim
t∈S

s ∗ t. Since βp(S) is r-compact by

Theorem 1.21, for each s ∈ S one has that r-lim
t∈S

s ∗ t ∈ βp(S) and hence, since βp(S) is

q-compact, q ∗ r ∈ βp(S).

2.2 Corollary. Let S be a discrete space and let p ∈ βS. Then p ≈C p⊗ p.

Proof. By Lemma 1.2 we have p < p⊗ p so p ≤C p⊗ p. By Theorem 2.1, p⊗ p ≤C p.

2.3 Corollary. Let S be a discrete space. For every p, q ∈ βS, we have q⊗ p ≈C p⊗ q.

Proof. By Lemma 1.2 we have q < p ⊗ q and p < p ⊗ q. It follows from Theorem 2.1,
that q ⊗ p ≤C p⊗ q.

2.4 Theorem. Let (S, ·) be an infinite, discrete, left cancellative semigroup. Let D ⊆ S

and let q ∈ S∗. Suppose that s · q 6= t · q whenever s and t are distinct members of D,
and that D · q is strongly discrete. Then, for every x, y ∈ S∗ and every p ∈ S∗ ∩ D,

x ≤RK p and y ≤RK q imply that x · y ≤RK p · q. Furthermore, x ≤C p and y ≤C q

imply that x · y ≤C p · q.
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Proof. By Theorem 1.6, we have p · q ≈RK p⊗ q. If x ≤ p and y ≤ q, then x · y ≤ p⊗ q

by Lemma 1.4.

If x ≤C p and y ≤C q, then x ≤C p ⊗ q and y ≤C p ⊗ q, because p ≤ p ⊗ q and
q ≤ p⊗ q (by Lemma 1.2). Hence, by Theorem 2.1, x · y ≤C p⊗ q.

2.5 Corollary. Let (S, ·) be a countable cancellative semigroup. and let p be a right
cancellable element of βS. Then, for every x, y ∈ S∗, x ≤RK y implies that x·p ≤RK y ·p
and x ≤C y implies that x · p ≤C y · p.

Proof. Since p is right cancellable, S · p is discrete and therefore, being countable, it is
strongly discrete. So Theorem 2.4 applies.

The following theorem is a converse of Corollary 2.5.

2.6 Theorem. Let (S, ·) be a countable cancellative semigroup. Let q be a right can-
cellable element of βS and let p ∈ βS satisfy p ≤ q. Then, for every x, y ∈ βS, x·q ≤ y ·p
implies that x ≤ y.

Proof. Suppose that f : S → S is a function for which f̄(y · p) = x · q.
Let B = {b ∈ S : f̄(b · p) ∈ S · q}. For each b ∈ B, there is a unique c ∈ S for which

f̄(b · p) = c · q (by Lemma 1.7). We define g : B → S by putting g(b) = c and define
g arbitrarily on the rest of S. We may suppose that ḡ(y) 6= x (otherwise x ≤ y, as we
wish to prove). So there is a set V ∈ y for which g[V ] /∈ x. We choose V ⊆ B in the
case in which B ∈ y.

Let X ∈ x and Y ∈ y, with Y ⊆ S \B if B /∈ y and with Y ⊆ V and X ⊆ S \ g[V ]
if B ∈ y. Now x · q is in both X · q and f̄ [Y · p]. It follows from Lemma 1.10 that

i) a · q = f̄(z · p) for some a ∈ X and some z ∈ Y , or else

ii) w · q = f̄(b · p) for some w ∈ X and some b ∈ Y.

We first show that ii) can be ruled out. Assuming ii), we have w · q ≤ b · p ≤ p.

However, if w ∈ S∗, p ≤ q < w · q (by Corollary 1.9). Hence w ∈ S and therefore b ∈ B.

This implies that B ∩ Y 6= ∅ and thus that B ∈ y. So b ∈ V and w = g(b) ∈ X ∩ g[V ]
contradicting the assumption that X ∩ g[V ] = ∅.

We may now suppose that i) holds for every X ∈ x and Y ∈ y satisfying the
description above. Let A = {a ∈ S : a · q ∈ f̄ [βS · p]}. Then A ∈ x, because the
assumption that i) holds for every choice of X and Y implies that A∩X 6= ∅. For each
a ∈ A, put

Ca = {z ∈ βS : a · q = f̄(z · p)} .
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We observe that Ca ∩
⋃

a′∈A\{a} Ca′ = ∅, because otherwise we should have a · q ∈{
a′ · q : a′ ∈ A \ {a}

}
. This is impossible, because the assumption that q is right can-

cellable implies that S · q is discrete. So, for each a ∈ A, we can choose a clopen
subset Ua of βS such that Ca ⊆ Ua and Ua ∩ Ua′ = ∅ whenever a 6= a′. We define
h : S ∩

⋃
a∈A Ua → S by stating that h(s) = a if s ∈ Ua. So h̄[Ua] = {a}. Now i) implies

that, for each X ∈ x and Y ∈ y, there exists a ∈ A ∩ X for which Ua ∩ Y 6= ∅. So
h[Y ] ∩X 6= ∅ and hence h̄(y) = x. So x ≤ y.

2.7 Corollary. Let S be a countable cancellative semigroup and let p ∈ βS. The
following statements are equivalent.

(1) p is right cancellable in βS.

(2) For every x, y ∈ βS, x · p ≤ y · p implies that x ≤ y.

(3) For every x, y ∈ βS, x · p ≈RK y · p implies that x ≈RK y.

Proof. (1) ⇒ (2). This is an immediate consequence of Theorem 2.6.

(2) ⇒ (3). This is trivial.

(3) ⇒ (1). Let x, y ∈ βS and assume that x ·p = y ·p. Suppose that x 6= y and pick
disjoint subsets U, V of S with U ∈ x and V ∈ y. Since x · p ∈ U · p and y · p ∈ V · p,

an application of Lemma 1.10 shows that we must have s · p = u · p for some s ∈ S and
some u ∈ βS with u 6= s. In particular s · p ≈RK u · p so that s ≈RK u. But then u ∈ S,
and hence by Lemma 1.7, s = u, a contradiction.

Let S be a discrete semigroup. An idempotent p ∈ S∗ is said to be regular if the
equation x·p = p has the unique solution x = p in S∗. It was shown in [17] that Martin’s
Axiom implies that regular idempotents exist in N∗, and I. Protasov has recently sent
the authors a ZFC proof of this fact. The following theorem shows that it is possible for
an ultrafilter p ∈ S∗ which is not right cancellable, to have the property that q ≤RK q ·p
for every q ∈ S∗.

2.8 Theorem. Let S be a discrete countable group and let p ∈ S∗ be a regular idempo-
tent. Then q ≤RK q · p for every q ∈ S∗. In fact, for every q ∈ S∗, either q = q · p or
else q <RK q · p and p <RK q · p.

Proof. Let q ∈ S∗. We may suppose that q 6= q · p. Then there exist disjoint subsets
A and B of S such that A ∈ q and B ∈ q · p. We may suppose that A · p ⊆ B, because
{a ∈ S : a · p ∈ B} ∈ q and we may replace A by its intersection with this set. We
claim that A · p is discrete and therefore strongly discrete. If A · p is not discrete, then
a · p = x · p for some a ∈ A and some x 6= a in A. This implies that a−1 · x · p = p. Now
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a−1 · x /∈ S because a−1 · x is not isolated in βS, since x is not. Thus a−1 · x = p and
so x = a · p. This is a contradiction because x ∈ A and a · p ∈ B.

So A · p is discrete and Lemma 1.2 and Theorem 1.6 apply.

We say that a semigroup S is weakly right cancellative if and only if whenever
x, y ∈ S, {s ∈ S : sx = y} is finite. Similarly a semigroup S is weakly left cancellative if
and only if whenever x, y ∈ S, {s ∈ S : xs = y} is finite.

2.9 Lemma. Let S be an infinite right cancellative and weakly left cancellative semi-
group. Let D be an infinite subset of S and let α = |D|. Enumerate D as 〈sσ〉σ<α.
Then there is a sequence 〈xτ 〉τ<α in D such that, whenever σ < τ < α and δ < γ < α,
if (σ, τ) 6= (δ, γ), then sσ · xτ 6= sδ · xγ .

Proof. Choose any x0, x1 ∈ D. Let 2 ≤ γ < α and assume that we have chosen
〈xτ 〉τ<γ . Let Bγ = {sσ · xτ : σ < τ < γ} and note that |Bγ | ≤ |γ| · |γ|. For δ < γ, let
Cδ,γ = {y ∈ S : sδ · y ∈ Bγ}. Now, given δ < γ and t ∈ Bγ , |{y ∈ S : sδ · y = t}| < ω by
weak left cancellation so |Cδ,γ | ≤ |γ| · |γ| ·ω. Thus |

⋃
δ<γ Cδ,γ | ≤ |γ| · |γ| ·ω · |γ| < α so

pick xγ ∈ D\
⋃

δ<γ Cδ,γ .
Suppose one has σ < τ < α and δ < γ < α such that sσ · xτ = sδ · xγ and assume

without loss of generality that τ ≤ γ. Suppose first that τ < γ. Then sσ · xτ ∈ Bγ and
xγ /∈ Cδ,γ so sσ · xτ 6= sδ · xγ , a contradiction. Thus τ = γ, so by right cancellation
sσ = sδ.

The following result will be needed in the next section.

2.10 Theorem. Let S be an infinite right cancellative and weakly left cancellative semi-
group and let α = |S|. Then there is a set P of uniform ultrafilters on S with the
following properties:
(1) |P | = 22α

;
(2) For each pair of distinct elements p, q ∈ P , βS · p and βS · q are disjoint;
(3) For each p ∈ P , S · p is strongly discrete in βS;
(4) Each p ∈ P is right cancellable in βS.

Proof. We apply Lemma 2.9 with D = S. Let 〈xτ 〉τ<α be the sequence whose existence
is guaranteed by this lemma. We take P to be the set of all uniform ultrafilters on
{xτ : τ < α}.

Then (1) holds by [6, Corollary 7.8].
To prove (2), let p, q ∈ P be distinct. We can choose disjoint A,B ⊆ S with A ∈ p

and B ∈ q. For each σ < α, let Aσ = {xτ ∈ A : τ > σ} and Bσ = {xτ ∈ B : τ > σ}.
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Then Aσ ∈ p and Bσ ∈ q. So, for any x, y ∈ βS,
⋃

σ<α sσ ·Aσ ∈ x ·p and
⋃

σ<α sσ ·Bσ ∈
y · q. By Lemma 2.9 these sets are disjoint and so x · p 6= y · q.

To prove (3), let p ∈ P. For each σ < α, let Xσ = {xτ : τ > σ}. Then sσ ·Xσ ∈ sσ ·p
and the sets sσ ·Xσ are pairwise disjoint by Lemma 2.9.

Finally, to prove (4), let p ∈ P and let x, y be distinct elements of βS. We can
choose disjoint subsets U and V of S with U ∈ x and V ∈ y. Then

⋃
sσ∈U sσ ·Xσ ∈ x · p

and
⋃

sσ∈V sσ ·Xσ ∈ y · p. Since these sets are disjoint, x · p 6= y · p.

2.11 Corollary. Let S be an infinite discrete right cancellative and weakly left can-
cellative semigroup with cardinality α. Then βS has 22α

minimal left ideals, and each
minimal right ideal in βS contains 22α

idempotents.

Proof. By Theorem 2.10, βS has 22α

disjoint left ideals and each of these contains
a minimal left ideal (by [1, Proposition 2.4]). Furthermore, the intersection of every
minimal right ideal and every minimal left ideal contains an idempotent (by [1, Theorem
2.11]).

2.12 Lemma. Let S be an infinite right cancellative and weakly left cancellative semi-
group. Let D be an infinite subset of S and let α = |D|. Enumerate D as 〈sσ〉σ<α

and let 〈xτ 〉τ<α be as guaranteed by Lemma 2.9. If p is any α-uniform ultrafilter with
{xτ : τ < α} ∈ p, then s · p 6= t · p whenever s and t are distinct members of D and
{s · p : s ∈ D} is strongly discrete.

Proof. For each σ < α, let Bsσ
= {sσ · xτ : σ < τ < α}. Since p is α-uniform,

{xτ : σ < τ < α} ∈ p so Bsσ
∈ sσ · p for each σ < α. By Lemma 2.9, if σ 6= δ then

Bsσ
∩Bsδ

= ∅.

2.13 Theorem. Let S be an infinite discrete right cancellative and weakly left can-
cellative semigroup. There are no elements of βS which are maximal in the Comfort
order.

Proof. We apply Theorem 2.10. By this theorem, there is a subset P of βS with
cardinality 22α

, such that S · p is strongly discrete for every p ∈ P . By Lemma 1.2 and
Theorem 1.6, this implies that q ≤C q · p for every q ∈ βS.

Let q be any member of βS. By Theorem 2.10, the left ideals βS · p are disjoint
and hence the elements q · p, with p ∈ P, are all distinct. Thus q has 22α

different ≤C

successors in βS. By Theorem 1.19, q has at most 2α ≤C predecessors in βS. Thus q

must have ≤C successors which are not Comfort equivalent to q.
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2.14 Corollary. Let S be any infinite set. Then there are no Comfort maximal ultra-
filters on S.

Proof. Given any infinite cardinal α, there is a group with cardinality α. For example,
the direct sum of α copies of Z2 has cardinality α.

The following result contrasts with Theorem 2.1. Notice that some sort of can-
cellation assumptions are necessary in Theorem 2.15. For example, if S is a left zero
semigroup (i.e. x · y = x for all x, y ∈ S) then so is βS and any nonempty subset of βS

is a subsemigroup. The same remark applies to a right zero semigroup as well.

2.15 Theorem. Let S be an infinite discrete cancellative semigroup. Then for each
p ∈ βS\S, {q ∈ βS : q ≤RK p} is not a subsemigroup of βS. In fact, for each p ∈ βS\S
there exists r ≈RK p such that r <RK p · r. If min{|D| : D ∈ p} = |S|, then r can be
chosen so that r is right cancellable and for all q ∈ βS\S, r <RK q · r.

Proof. Let p ∈ βS\S, let α = min{|D| : D ∈ p}, and pick D ∈ p such that |D| = α.
If α = |S|, require that D = S. Enumerate D as 〈sσ〉σ<α and let 〈xτ 〉τ<α be as
guaranteed by Lemma 2.9. Define f : S −→ D by f(sσ) = xσ and let r = f(p). Then r

is an α-uniform ultrafilter and p ≈RK r.

Then by Lemma 2.12, Lemma 1.2, and Theorem 1.6, for all q ∈ D\S, r <RK q · r.
It follows that p · r 6≤RK p and hence that {x ∈ βS : x ≤RK} is not a subsemigroup of
βS. If D = S, then by [16, Theorem 2.2], r is right cancellable.

3. Further Connections between Order Relations
and Algebra in βS

We need the following well known result, whose proof we cannot find in the litera-
ture.

3.1 Lemma. Let S be an infinite set and let p ∈ βS. Then there is a uniform ultrafilter
q on S such that p <RK q.

Proof. If u is a uniform ultrafilter on S, it is clear that p ⊗ u is uniform. By Lemma
1.2, p <RK p⊗ u.

3.2 Theorem. Let S be an infinite, discrete and cancellative semigroup. For each
p ∈ βS there exists q ∈ K(βS) such that p <C q.
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Proof. Let α = |S| and let p ∈ βS. By Lemma 3.1 we may presume that p is a uniform
ultrafilter. Pick by Theorem 2.15 some r ≈RK p such that r is right cancellable and for
all q ∈ βS\S, r <RK q · r and consequently for all q ∈ βS\S, r ≤C q · r

By Corollary 2.11 we have that |K(βS)| = 22α

. Since r is right cancellable and
|K(βS)| = 22α

, we have |{q · r : q ∈ K(βS)}| = 22α

. By Theorem 1.19 |{q ∈ βS :
q ≤C r}| ≤ 2α. Consequently, we may pick q ∈ K(βS) such that q · r 6≤C r. Then
p ≈RK r <C q · r. Since q ∈ K(βS), q · r ∈ K(βS).

We know from [5, Theorem 2.1] that if a point p ∈ βN is right cancellable in
(βN,+), then for all q ∈ βN, q <RK q + p.

3.3 Theorem. Let S be an infinite discrete semigroup, let α = |S| and assume that
2α < 2c. Let p ∈ βS and assume that for all q ∈ βS, q ≤C q · p. Then p is weakly right
cancellable in βS. That is, for each r ∈ βS, {q ∈ βS : q · p = r} is finite.

Proof. Suppose we have some r ∈ βS such that {q ∈ βS : q · p = r} is infinite.
Now {q ∈ βS : q · p = r} = ρ−1

p [{r}] and is therefore an infinite closed subset of
βS. Thus by [13, 9H2], |{q ∈ βS : q · p = r}| ≥ 2c > 2α. By Theorems 1.19 and
1.21, {q ∈ βS : q ≤C r} = βr(S) and |βr(S)| ≤ 2α. This is a contradiction because
{q ∈ βS : q · p = r} ⊆ {q ∈ βS : q ≤C r}.

We now turn our attention to results about the semigroup (N,+). For each k ∈ N,

the natural homomorphism qk : Z → Zk has an extension q̄k : βZ → Zk which is easily
seen to be a homomorphism on (βZ,+). Given x, y ∈ βN and k ∈ N, we say that
x ≡ y(modk) if q̄k(x) = q̄k(y). The proof of the following lemma is immediate.

3.4 Lemma. Let p, q, r ∈ βN and let k ∈ N.

(a) If p ≡ q(modk), then p + r ≡ q + r(modk), r + p ≡ r + q(modk), and r + p ≡
q + r(modk).

(b) If p + r ≡ q + r(modk), r + p ≡ r + q(modk) or r + p ≡ q + r(modk), then
p ≡ q(modk).

3.5 Lemma. Let A ⊆ N and let q ∈ βN. Then A + q is discrete in βN if and only if
a + q 6= x + q whenever a ∈ A and x ∈ A∗.

Proof. A + q fails to be discrete if and only if there exists a ∈ A for which a + q ∈
(A \ {a}) + q = (A \ {a})+ q. This is equivalent to asserting that a+ q = x+ q for some
x ∈ A \ {a}. By Lemma 1.7, this implies that x ∈ A∗.

3.6 Theorem. Suppose that p ∈ βN\N has the property that, for some A ∈ p, whenever
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x ∈ A∗ and k ∈ N, one has x ≡ p(modk). Then, for every q ∈ βN\N, we have
p <RK p + q and q <RK p + q.

Proof. Let q ∈ N∗. We show that we may suppose that A + q is discrete. We observe
that there is at most one a ∈ A for which a + q ∈ A∗ + q; for, if a + q ∈ A∗ + q and
b + q ∈ A∗ + q where a, b ∈ A, we have a ≡ b(modk) for every k ∈ N, and hence a = b.
We delete this element (if it exists) from A, and then A + q is discrete by Lemma 3.5.

We observe that any countable discrete set is strongly discrete, and so the result
follows from Lemma 1.2 and Theorem 1.6.

3.7 Corollary. There is a dense open subset U of βN\N such that, for every p ∈ U

and every q ∈ βN\N, we have p <RK p + q and q <RK p + q.

Proof. We define U by stating that an element p ∈ βN\N is in U if and only if there
is a set A ∈ p such that x ∈ A∗ implies that x ≡ p(modk) for every k ∈ N. Given such
A, A\N ⊆ U so U is open.

To see that U is dense, let q ∈ βN\N and let Q ∈ q. For each k ∈ N, let

Qk = {b ∈ N : b ≡ q(modk)}

and notice that Qk ∈ q. For each n ∈ N choose xn ∈ Q∩
⋂n

k=1 Qk. Let A = {xn : n ∈ N}.
Then A∗ ⊆ Q ∩ U .

3.8 Corollary. If p is a P -point in βN\N, then p <RK p+q and q <RK p+q for every
q ∈ βN\N.

Proof. As in the proof of Corollary 3.7, for each k ∈ N, let Qk = {b ∈ N : b ≡ p(modk)}.
Pick A ∈ p such that A\N ⊆

⋂∞
k=1 Qk.

We note that, by Ramsey’s Theorem, every infinite sequence in N contains an
infinite subsequence 〈an〉∞n=1 satisfying the conditions of the following theorem.

3.9 Theorem. Let 〈an〉∞n=1 be an infinite increasing sequence in N. Suppose that either
of the two following conditions is satisfied:

(i) For every n ∈ N, an+1 is a multiple of an.
(ii) For every m,n ∈ N with m 6= n, an is not a multiple of am.

Then, if p ∈ {an : n ∈ N}∩N∗, we have p <RK p+ q and q <RK p+ q for every q ∈ N∗.

Proof. Let A = {an : n ∈ N}.
We first consider the case in which q ∈

⋂
n∈N nN.

For each n ∈ N, let Bn =
⋂

k≤n+1(akN). We observe that Bn ∈ q.
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If condition (i) above is satisfied, we define f : N → N by stating that f(n) =
max{am : am|n}, defining f arbitrarily if no am divides n. Then, if b ∈ Bn, we have
f(an + b) = an. It follows that am + Bm and an + Bn are disjoint and hence that A + q

is discrete, because an + Bn ∈ an + q for every n ∈ N. Thus Lemma 1.2 and Theorem
1.6 apply.

If condition (ii) is satisfied, we define g : N → N by stating that g(n) = min{am :
am|n}, defining g arbitrarily if no am divides n. Once again, if b ∈ Bn, we have
g(an + b) = an and can deduce that A + q is discrete. Thus Lemma 1.2 and Theorem
1.6 apply.

Now let q be any element of N∗. For each n ∈ N, we can choose bn ∈ N satisfying
bn + q ≡ 0 (mod k) for every k ∈ {1, 2, · · · , n}. To see this, let −q ∈ βZ be defined by
−q = {−Q : Q ∈ q}. Then{

b ∈ Z : b + q ≡ 0(modk) for every k ∈ {1, 2, · · ·n}
}
∈ −q

and is therefore non-empty. If b is in this set, so is b + n!m for every m ∈ Z, and thus
this set contains positive integers.

Let r ∈ N∗ ∩ {bn : n ∈ N}. Then r + q ∈
⋂

n∈N nN, because, for every k ∈ N, we
have q̄k(bn +q) = 0 if n > k and hence q̄k(r+q) = 0. This implies that q+r ∈

⋂
n∈N nN.

By what we have already proved, with q+r in place of q, we can assert that A+q+r

is discrete. By Lemma 3.5, this is equivalent to asserting that, for every a ∈ A and every
x ∈ A∗, a + q + r 6= x + q + r. This implies that a + q 6= x + q and hence that A + q is
discrete. The required result again follows from Lemma 1.2 and Theorem 1.6.

The set H ⊆ βN is defined by H =
⋂∞

n=1 2nN. Given x ∈ N, we denote the
binary support of x by supp(x). This is the subset of ω defined by the equation x =∑

m∈supp(x) 2m.
The following theorem is not new – indeed it is a special case of [6, Theorem 10.9].

However, we give an algebraic proof which we believe to be new.

3.10 Theorem. Let C be a subset of N∗ with cardinality c. Then the elements of C

have a common ≤RK-successor in H.

Proof. We index C as 〈px〉x∈R. Let 〈Ex〉x∈R be an almost disjoint family of subsets of
{2n : n ∈ N}. For each x ∈ R, choose qx ∈ Ex∩N∗ such that qx ≈RK px. For each finite
non-empty subset F of R, we put sF =

∑
x∈F qx where the terms in the sum occur in

the order of increasing indices. We order the set Pf (R) of finite nonempty subsets of R
by set inclusion and choose q to be a limit point of the net 〈sF 〉F∈Pf (R) in βN.
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For each x ∈ R define fx : N −→ N by fx(n) = min{2m ∈ Ex : m ∈ supp(n)} if
{2m ∈ Ex : m ∈ supp(n)} 6= ∅ and f(n) = 1 otherwise.

We shall show that fx(q) = qx.
Suppose that this equation does not hold. Then we can choose A ∈ qx such that

f−1
x [A] /∈ q, and so we can choose R ∈ q such that f−1

x [A] ∩R = ∅.
Let F ∈ Pf (R) satisfy x ∈ F and R ∈ sF . We can choose a disjoint family 〈Ay〉y∈F

of subsets of N such that Ax ⊆ Ex ∩ A and, for every y ∈ F, Ay ∈ qy and Ay ∩ Ex = ∅
if y 6= x. Let B be the set of all integers b of the form b =

∑
y∈F ny where ny ∈ Ay for

all y ∈ F . We observe that this expression for b is unique and that fx(b) = nx ∈ A.

We claim that B ∈ sF . To see this, we enumerate F in increasing order as
(y1, y2, · · · , ym). For each i ∈ {1, 2, · · · ,m}, we choose ni ∈ Ayi

and so
∑m

i=1 ni ∈ B.
Now we have

sF = lim
n1→qy1

lim
n2→qy2

· · · lim
nm→qym

(
∑m

i=1 ni).

This shows that sF ∈ B and hence that B ∈ sF .
So we can then choose b ∈ B ∩ R. Since fx(b) ∈ A, it follows that b ∈ f−1

x [A] ∩ R,
contradicting our assumption that this set is empty.

3.11 Corollary. The elements of any subset C of N∗ with cardinality at most c have
a common ≤RK successor in any given minimal left ideal of βN, and they also have a
common ≤RK successor in any given minimal right ideal of βN. Furthermore, there is
a left ideal L of βN and a right ideal R of N such that x <RK y for every x ∈ C and
every y ∈ L ∪R.

Proof. We know that the elements of C have a common ≤RK successor q in βN. We
can choose p ∈ {n! : n ∈ N} ∩ N∗ such that q ≈RK p.

By the remark on p. 241 of [23], p is right cancellable in βN. So, by [5, Theorem
2.1], N + p is strongly discrete and so by Lemma 1.2 and Theorem 1.6, for any u ∈ N∗,

p <RK u + p. Also p <RK p + u (by Theorem 3.6). We can choose u to lie in any given
minimal left ideal or in any given minimal right ideal.

Putting L = βN + p and R = p + βN, we have x <RK y for every x ∈ C and every
y ∈ L ∪R.

3.12 Corollary. For each of the orders ≤RK and ≤C , every minimal left ideal of βN
contains an increasing c+ chain and so does every minimal right ideal of βN.

Proof. This is proved by an obvious transfinite induction, using Corollary 3.11 and the
fact that βN has no maximal ≤RK or maximal ≤C elements.
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3.13 Theorem. There are at most c elements of N∗ whose ≤C successors form a sub-
semigroup of βN.

Proof. Suppose that p ∈ N∗ has the property that its ≤C successors form a subsemi-
group of βN. We shall show that p ≤C q for every q ∈ K(βN).

To see this, suppose that L is the minimal left ideal of βN for which q ∈ L. By
Corollary 3.11, p ≤C r for some r ∈ L. Furthermore, there is a minimal left ideal M of
βN such that p ≤C y for every y ∈ M . So p ≤C y + r for every y ∈ M. Now M + r = L

(by [1, Proposition 2.4]), and so q ∈ M + r and hence p ≤C q.
The result now follows from the fact that a given element q of βN can have at most

c ≤C predecessors (by Theorem 1.19).

We can generalize part of Corollary 3.11 to semigroups of any cardinality.

3.14 Theorem. Let (S, ·) be an infinite discrete right cancellative and weakly left can-
cellative semigoup with cardinality α, and let C be a subset of S∗ with cardinality at
most 2α. Then the elements of C have a common ≤RK successor in any given minimal
right ideal of βS. Furthermore, there is a left ideal L of βS such that x ≤RK y for every
x ∈ C and every y ∈ L.

Proof. By [6, Theorem 10.9], the elements of C have a common ≤RK successor q in
βS. Let P be the set described in Theorem 2.9. By Lemma 3.1, we may suppose that
q is uniform and hence that q ≈RK p for some p ∈ P . By Lemma 1.2 and Theorem 1.6,
p <RK x · p for every x ∈ βS and we can choose x to lie in any given minimal right
ideal.

If we put L = βS · p, then x <RK y for every x ∈ C and every y ∈ L.

We conclude with some results about predecessors of P -points in N∗. (The sets
Aσ(y, N) are defined in Lemma 1.18.)

We omit the proof of the following lemma, which can be proved by an obvious
transfinite induction.

3.15 Lemma. Let a ∈ N and let x, y ∈ N∗. Then, for any ordinal σ satisfying 1 ≤ σ <

ω1, a + x ∈ Aσ(y, N) if and only if x ∈ Aσ(y, N).

3.16 Lemma. Let p be a P -point in N∗ and let x ∈ βp(N) ∩ N∗. Let σ be the first
ordinal for which x ∈ Aσ(p, N). Then x is a P -point in N∗\Aσ−1(p, N). (We note that
σ − 1 exists because σ is neither 0 nor a limit ordinal).

Proof. We first deal with the case in which σ = 1. In this case, there is a function
f : N → N for which f(p) = x. Suppose that 〈Cn〉∞n=1 is a sequence of compact subsets
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of N∗ which do not contain x, for which x ∈
⋃∞

n=1 Cn. For each n ∈ N, p /∈ f
−1

[Cn].
Since p is a P -point, there is a set P ∈ p for which P ∩ N∗ ∩ f

−1
[Cn] = ∅ for every

n ∈ N.

We apply Lemma 1.10 with A = f [P ] and B =
⋃∞

n=1 Cn. We note that A ∩B = ∅
and hence that there exists y ∈ A ∩ B. This implies that there is an element q ∈ P

for which f(q) = y and that y ∈ Cn for some n ∈ N. So q ∈ P ∩ N∗ ∩ f
−1

[Cn], a
contradiction.

We now suppose that σ > 1. We make the inductive assumption that, for every
ordinal τ which is neither 0 nor a limit ordinal and satisfies τ < σ, the points of
Aτ (p, N)\Aτ−1(p, N) are P -points in N∗\Aτ−1(p, N).

Since x ∈ Aσ(p, N), there is a function g : N → Aσ−1(p, N) for which g(p) = x. We
may clearly suppose that g[N] ⊆ N∗. Suppose that 〈Dn〉∞n=1 is a sequence of compact
subsets of N∗\Aσ−1(p, N) which do not contain x, such that x ∈

⋃∞
n=1 Dn. For each

n ∈ N, p /∈ g−1[Dn]. So there is a set Q ∈ p such that Q ∩ N∗ ∩ g−1[Dn] = ∅ for
every n ∈ N. We apply Lemma 1.10 again, this time with A = g[Q] and B =

⋃∞
n=1 Dn.

We claim that A ∩ B = ∅. To see this, let z ∈ A and let τ be the first ordinal for
which z ∈ Aτ (p, N). Then τ is neither 0 nor a limit ordinal and satisfies τ < σ. By
our inductive assumption, z is a P -point in N∗\Aτ−1(p, N). Since Dn ⊆ N∗\Aτ−1(p, N)
for every n ∈ N, it follows that z /∈ B. So A ∩ B 6= ∅. However, just as before, this
contradicts our assumption that Q ∩ N∗ ∩ g−1[Dn] = ∅ for every n ∈ N.

This establishes that x is a P -point in N∗\Aσ−1(p, N) as claimed.

Conclusion (i) of the following theorem is well known.

3.17 Theorem. Let p be a P -point in N∗ and let x ∈ N∗. Then

(i) If x ≤RK p, x is a P -point in N∗;

(ii) If x ≤C p, x is right cancellable in βN.

Proof. (i) follows from the case in which σ = 1 in Lemma 3.16.

To prove (ii), suppose that x ≤C p and that σ is the first ordinal for which x ∈
Aσ(p, N). If x is not right cancellable, then x = y + x for some y ∈ N∗ (by [5, Theorem
2.1]). So x ∈ N + x. By Lemma 3.16, there must be an integer a ∈ N for which
a + x ∈ Aσ−1(p, N). By Lemma 3.15, this implies that x ∈ Aσ−1(p, N), a contradiction.

3.18 Corollary. The Comfort type of any P -point in N∗ is a subsemigroup of βN.

Proof. Let p be a P -point in N∗ and suppose that x, y ∈ βN are Comfort equivalent to
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p. Then x + y ≤C p by Theorem 2.1. By Theorem 3.17, y is right cancellable. So, by
Corollary 1.9, we have p ≈C x ≤C x + y.

Problems

We list some of the questions to which we do not know the answers.
(1) Can we characterize the ultrafilters p in βω for which {q ∈ βω : q ≈C p} is a

subsemigroup of βω?
(2) Are there any ultrafilters in N∗ whose ≤C successors form a subsemigroup of

N∗?
(3) Is every ≤C minimal ultrafilter in N∗ Comfort equivalent to a ≤RK minimal

ultrafilter?
(4) Can the existence of ≤C minimal ultrafilters in N∗ be demonstrated in ZFC?
(5) Let p ∈ N∗. Are the two following statements equivalent?

For every x, y ∈ βN, p + x ≤ p + y implies that x ≤RK y.
p is left cancellable in βN.

(6) Given {pk : k ∈ N} ∪ {q} ⊆ N∗, does there exist r ∈ N∗ such that r ≤RK q · pk

for all k ∈ N and r ≤RK q ?
(7) Given {pk : k ∈ N} ∪ {q} ⊆ N∗, does there exist r ∈ N∗ such that r ≤RK pk · q

for all k ∈ N and r ≤RK q ?
(8) Given a semigroup (S, ·) and u, v, p, q ∈ βS does u ≤C p and v ≤C q imply that

u · v ≤ p · q? Equivalently, is βp(S) · βq(S) ⊆ βp·q(S)?

References

[1] J. Berglund, H. Junghenn, and P. Milnes, Analysis on semigroups, Wiley, N.Y.,
1989.

[2] A. Bernstein, A new kind of compactness for topological spaces, Fund. Math. 66

(1970), 185-193.
[3] A. Blass, Orderings of Ultrafilters, Doctoral Dissertation, Harvard University, 1970.
[4] A. Blass, The Rudin-Keisler ordering of P-points, Trans. Amer. Math. Soc. 179

(1973), 145-166.
[5] A. Blass and N. Hindman, Sums of ultrafilters and the Rudin-Keisler and Rudin-
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