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VIP Systems in Partial Semigroups

Neil Hindman1

and

Randall McCutcheon2

Abstract. A VIP system is a polynomial type generalization of the notion of an IP
system, i.e., a set of finite sums. We extend the notion of VIP system to commutative
partial semigroups and obtain an analogue of Furstenberg’s central sets theorem for
these systems which extends the polynomial Hales-Jewett Theorem of Bergelson and
Leibman. Several Ramsey Theoretic consequences, including the central sets theorem
itself, are then derived from these results.

1. Introduction

Given a set A, we write Pf (A) for the set of finite nonempty subsets of A. We use the
special notation F = Pf (N). Also, if 〈Hn〉∞n=1 is a sequence of sets, then FU(〈Hn〉∞n=1) =
{
⋃
n∈α Hn : α ∈ F}. An IP system in a commutative semigroup (S,+) is an indexed family

〈vα〉α∈F where there exists a sequence 〈yn〉∞n=1 such that for each α ∈ F , vα =
∑
n∈α yn.

(Equivalently, vα∪β = vα + vβ for all α, β ∈ F with α ∩ β = ∅.) An IP ring F (1) is a set
of the form F (1) = FU(〈αn〉∞n=1) where 〈αn〉∞n=1 is a sequence of members of F such that
maxαn < minαn+1 for each n.

In [3] V. Bergelson and A. Leibman established strong generalizations of van der
Waerden’s Theorem and Szemerédi’s Theorem. Our starting point is their generalization
of van der Waerden’s Theorem.

1.1 Theorem. Let k ∈ N and suppose {p1(x), · · · , pk(x)} ⊆ Z[x] are polynomials having
zero constant term. Let 〈nα〉α∈F be an IP system. For any finite coloring of N there exists
a ∈ N and α ∈ F such that {

a, a+ p1(nα), · · · , a+ pk(nα)
}

is monochromatic.
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Proof. This is an unstated combinatorial corollary to [3, Corollary 1.9]. (For a simple
algebraic proof of this result see [8].)

To see that Theorem 1.1 implies van der Waerden’s theorem, let k ∈ N and for each
t ∈ {1, 2, . . . , k}, let pt(x) = t ·x. Then Theorem 1.1 tells one that, not only can one always
find a monochrome arithmetic progression of length k + 1, but in fact the increment can
be chosen in any prespecified IP system.

The following infinitary generalization of Theorem 1.1 was obtained in [10]. (The
linear case of Theorem 1.2 follows from Furstenberg’s central sets theorem [6, Proposition
8.21].)

1.2 Theorem. Let k ∈ N and suppose {p1(x), . . . , pk(x)} ⊆ Z[x] are polynomials having
zero constant term. Let 〈nα〉α∈F be an IP set. If r ∈ N and N =

⋃r
i=1 Ci then there exists

an IP ring F (1), an IP system 〈aα〉α∈F(1) , and some j with 1 ≤ j ≤ r such that for all
α ∈ F (1), {

aα, aα + p1(nα), . . . , aα + pk(nα)
}
⊆ Cj .

Proof. [10, Theorem 1.6].

Our goal in this paper is to obtain a similar infinitary generalization of a “set poly-
nomial” extension of the Hales-Jewett Theorem, also due to Bergelson and Leibman. To
discuss this we need to introduce some terminology. (For a statement of the Hales-Jewett
Theorem itself, see Section 4.) Let l ∈ N. A set-monomial (over Nl) in the variable X is an
expression m(X) = S1×S2× . . .×Sl, where for each i ∈ {1, 2, . . . , l}, Si is either the sym-
bol X or a nonempty singleton subset of N (these are called coordinate coefficients). The
degree of the monomial is the number of times the symbol X appears in the list S1, . . . , Sl.
For example, taking l = 3, m(X) = {5} × X × X is a set-monomial of degree 2, while
m(X) = X×{17}×{2} is a set-monomial of degree 1. A set-polynomial is an expression of
the form p(X) = m1(X)∪m2(X)∪ . . .∪mk(X), where k ∈ N and m1(X), . . . ,mk(X) are
set-monomials. The degree of a set-polynomial is the largest degree of its set-monomial
“summands”, and its constant term consists of the “sum” of those mi that are constant,
i.e. of degree zero.

A polynomial p(A) determines a function from Pf (N) to Pf (Nl) in the obvious way
(interpreting the symbol × as Cartesian product and the symbol ∪ as union). Here now
is the polynomial Hales-Jewett theorem of Bergelson and Leibman.

1.3 Theorem. Let l ∈ N and let P be a finite family of set-polynomials over Nl whose
constant terms are empty. Let I ⊆ N be any finite set and let r ∈ N. There exists a finite
set N ⊆ N, with N ∩ I = ∅, having the property that if Pf

( ⋃
P (X)∈P P (N)

)
=

⋃r
i=1 Ci

2



then there exist i ∈ {1, 2, . . . , r}, some nonempty B ⊆ N , and some A ⊆
⋃
P (X)∈P P (N)

such that A ∩ P (B) = ∅ for all P ∈ P and{
A ∪ P (B) : P (X) ∈ P

}
⊆ Ci.

Proof. [4, Theorem 3.5].

We shall utilize the following special case of Theorem 1.3.

1.4 Corollary. Let k, r, d ∈ N. There exists N ∈ N such that if

Pf
(
{1, 2, . . . , k} × {1, 2, . . . , N}d

)
=

⋃r
i=1 Ci

then there exists A ∈ Pf
(
{1, 2, . . . , k} × {1, 2, . . . , N}d

)
and B ∈ Pf ({1, 2, . . . , N}), with

A ∩ ({1, 2, . . . , k} ×Bd) = ∅, and j ∈ {1, 2, . . . , r}, such that{
A ∪ (E ×Bd) : E ⊆ {1, 2, . . . , k}

}
⊆ Cj .

Proof. This is the special case of Theorem 1.3 corresponding to the set-polynomials
P (X) = E ×Xd, E ⊆ {1, 2, . . . , k}.

We shall obtain in Theorem 4.4 a result which generalizes Theorem 1.3 in much the
same way that Theorem 1.2 generalizes Theorem 1.1. On the way to this result, we shall
need the notions of VIP system and partial semigroup. The notion of VIP system was
introduced in [2]. Recall that given a set A and a cardinal number κ, [A]κ = {B ⊆ A :
|B| = κ}.

1.5 Definition. Let (G,+) be an abelian group. A sequence 〈vα〉α∈F in G is called a VIP
system if there exists some non-negative integer d (the least such d is called the degree of
the system) such that for every pairwise disjoint α0, α1, . . . , αd ∈ F we have

d+1∑
t=1

(−1)t
∑

B∈[{α0,...,αd}]t
v∪B = 0 .

“Degree” suggests that VIP systems have a “polynomial” nature; and indeed they do.
Notice that the VIP systems of degree 1 (i.e. “linear” VIP systems) are precisely the IP
systems (the above equation in this case takes the form vα0∪α1 − vα0 − vα1 = 0). More
generally, it is easy to verify that, given any sequence 〈xn〉∞n=1 in G, and any n ∈ N, if
vα = (

∑
i∈α xi)n, then 〈vα〉α∈F is a VIP system of degree n.

There is an alternate characterization of VIP systems that is often simpler to work
with. For d ∈ N, let Fd denote the family of nonempty subsets of N having cardinality at
most d.
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1.6 Theorem. Let G be an additive abelian group and let d ∈ N. A sequence indexed by
F , 〈vα〉α∈F , in G is a VIP system of degree at most d if and only if there exists a function
from Fd to G, written γ → nγ , γ ∈ Fd, such that

vα =
∑

γ⊆α,γ∈Fd

nγ

for all α ∈ F .

Proof. [10, Proposition 2.5].

This characterization may be used to show, for example, that if R is a commutative
ring, k, d ∈ N, and p ∈ R[x1, x2, . . . , xk] is a polynomial of degree d with coefficients in R

and with p(0, . . . , 0) = 0, and if 〈n(i)
α 〉α∈F are IP systems in R, 1 ≤ i ≤ k, then letting

vα = p(n(1)
α , n

(2)
α , . . . , n

(k)
α ), α ∈ F , the resulting sequence 〈vα〉α∈F is a VIP system of

degree at most d. (For a proof, see [10, Proposition 2.6].)

In this paper we shall extend (in Section 3) the definition of VIP system to partial
semigroups. In so doing, we must make a choice between trying to mimic either Defini-
tion 1.5 or the characterization provided by Theorem 1.6 (these two approaches, though
equivalent for groups, yield different notions when naturally applied to semigroups). We
choose to follow the characterization of Theorem 1.6, as this is easier and encompasses all
of the interesting examples of which we are aware.

We shall be using the Stone-Čech compactification βS of a discrete space S. We take
the points of βS to be the ultrafilters on S, the principal ultrafilters being identified with
the points of S. Given a set A ⊆ S, A = {p ∈ βS : A ∈ p}. The set {A : A ⊆ S} is a basis
for the open sets (as well as a basis for the closed sets) of βS.

If S is a semigroup, then there is a natural extension of the operation of S to βS,
customarily denoted by the same symbol, making βS a compact right topological semi-
group with S contained in its topological center. (If the operation is “·”, this says that for
each p ∈ βS the function ρp : βS → βS is continuous and for each x ∈ S, the function
λx : βS → βS is continuous, where ρp(q) = q · p and λx(q) = x · q.) See [9] for an elemen-
tary introduction to the semigroup βS as well as for any unfamiliar algebraic assertions
encountered here.

2. Partial Semigroups

There are many cases in which one is interested in a set with a natural operation in which
it is convenient to not have the operation defined for all pairs of members of the set. This
can arise in basically two ways. The simpler of the two ways is the situation in which the
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natural operation does not satisfy the closure property. For example, given a sequence
〈xn〉∞n=1 in a semigroup (S, ·), let FP (〈xn〉∞n=1) = {

∏
n∈α xn : α ∈ F}, where the products

are taken in increasing order of indices. Then, for example x1 · x3 ∈ FP (〈xn〉∞n=1) and
x3 · x5 ∈ FP (〈xn〉∞n=1) but it is not likely that x1 · x3 · x3 · x5 ∈ FP (〈xn〉∞n=1). (Of course,
it is possible that x1 · x3 · x3 · x5 = x7 ∈ FP (〈xn〉∞n=1).) On the other hand, if one requires
that α < β (meaning maxα < minβ), or in the event that S is commutative simply that
α ∩ β = ∅, then

∏
n∈α xn ·

∏
n∈β xn =

∏
n∈α∪β xn ∈ FP (〈xn〉∞n=1).

The other way in which the problem can arise is the situation in which the natural
operation does yield another member of the set, but does not behave as one wants it to. For
example, consider the semigroups (F ,∪) and (N,+) and the function c : F → N defined
by c(α) = |α|. Then c is not a homomorphism, but it behaves like one on disjoint sets.

We address these problems by using the notion of partial semigroup introduced in [1]
to obtain some Ramsey Theoretic results about variable words and sequences of variable
words.

2.1 Definition. A partial semigroup is a pair (S, ∗) where ∗ maps a subset of S × S to S
and for all a, b, c ∈ S, (a ∗ b) ∗ c = a ∗ (b ∗ c) in the sense that if either side is defined, then
so is the other and they are equal.

2.2 Definition. Let (S, ∗) be a partial semigroup.
(a) For s ∈ S, ϕ(s) = {t ∈ S : s ∗ t is defined}.
(b) For H ∈ Pf (S), σ(H) =

⋂
s∈H ϕ(s).

(c) σ(∅) = S.
(d) For s ∈ S and A ⊆ S, s−1A = {t ∈ ϕ(s) : s ∗ t ∈ A}.
(e) (S, ∗) is adequate if and only if σ(H) 6= ∅ for all H ∈ Pf (S).

Given a partial semigroup S and a, b, c ∈ S, one thus has that the statements
(i) b ∈ ϕ(a) and c ∈ ϕ(a ∗ b)

and
(ii) c ∈ ϕ(b) and b ∗ c ∈ ϕ(a)
are equivalent and imply that (a ∗ b) ∗ c = a ∗ (b ∗ c).

Notice that, just as in a semigroup, only even more strongly, the notation s−1A should
not be read as suggesting that there is some object s−1 ∈ S. We do see however, that in
some sense the behavior resembles the case in which such objects exist.

2.3 Lemma. Let (S, ∗) be a partial semigroup, let A ⊆ S and let a, b, c ∈ S. Then

c ∈ b−1(a−1A) ⇔ b ∈ ϕ(a) and c ∈ (a ∗ b)−1A .

In particular, if b ∈ ϕ(a), then b−1(a−1A) = (a ∗ b)−1A.

5



Proof.s

c ∈ b−1(a−1A) ⇔ c ∈ ϕ(b) and b ∗ c ∈ a−1A
⇔ c ∈ ϕ(b) and b ∗ c ∈ ϕ(a) and a ∗ (b ∗ c) ∈ A
⇔ b ∈ ϕ(a) and c ∈ ϕ(a ∗ b) and (a ∗ b) ∗ c ∈ A
⇔ b ∈ ϕ(a) and c ∈ (a ∗ b)−1A .

We now introduce formally the product of more than one elements of S. (If the
operation of S is denoted “+”, then

∏
will be replaced by

∑
.)

2.4 Definition. Let (S, ∗) be a partial semigroup. Given k ∈ N and x1, x2, . . . , xk ∈ S,
we define

∏k
i=1 xi inductively by:∏1

i=1 xi = x1∏k+1
i=1 xi =

{
(
∏k
i=1 xi) ∗ xk+1 if

∏k
i=1 xi is defined and xk+1 ∈ ϕ(

∏k
i=1 xi)

undefined otherwise.

Notice that if
∏k
i=1 xi is defined and t < k, then necessarily

∏t
i=1 xi is defined.

We are interested in adequate partial semigroups because they give rise to a natural
subsemigroup of βS. (That is, a subset of βS which is, in a natural way, a semigroup.)

2.5 Definition. Let (S, ∗) be an adequate partial semigroup. Then

δS =
⋂
a∈S ϕ(a) .

Notice that the fact that S is adequate is exactly what is needed to guarantee that
δS 6= ∅. Notice also that if S is in fact a semigroup, then δS = βS.

Recall from [9, Theorem 4.12] that if (S, ·) is a semigroup, A ⊆ S, a ∈ S, and p, q ∈ βS,
then

A ∈ a · q ⇔ a−1A ∈ q

and
A ∈ p · q ⇔ {a ∈ S : a−1A ∈ q} ∈ p .

Motivated by these characterizations, we extend the partial operation ∗ to as much of βS
as we can reasonably hope to be sensible.

2.6 Definition. Let (S, ∗) be an adequate partial semigroup.
(i) For a ∈ S and q ∈ ϕ(a), a ∗ q = {A ⊆ S : a−1A ∈ q}.
(ii) For p ∈ βS and q ∈ δS, p ∗ q = {A ⊆ S : {a ∈ S : a−1A ∈ q} ∈ p}.

2.7 Lemma. Let (S, ∗) be an adequate partial semigroup.
(i) If a ∈ S and q ∈ ϕ(a), then a ∗ q ∈ βS.
(ii) If p ∈ βS and q ∈ δS, then p ∗ q ∈ βS.
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(iii) Let p ∈ βS, q ∈ δS, and a ∈ S. Then ϕ(a) ∈ p ∗ q if and only if ϕ(a) ∈ p.
(iv) If p, q ∈ δS, then p ∗ q ∈ δS.

Proof. (i). We need to show that a ∗ q is an ultrafilter on S, that is, a ∗ q has the finite
intersection property and given any set A ⊆ S, either A ∈ a ∗ q or S\A ∈ a ∗ q. For the
first assertion, let H ∈ Pf (a ∗ q). Then

⋂
A∈H a

−1A ∈ q so pick b ∈
⋂
A∈H a

−1A. Then
b ∈ ϕ(a) and a ∗ b ∈

⋂
H.

For the second assertion, let A ⊆ S and assume that A /∈ a ∗ q. Then S\a−1A ∈ q,
ϕ(a) ∈ q, and (S\a−1A) ∩ ϕ(a) = a−1(S\A).

(ii). Let H ∈ Pf (p ∗ q), pick a ∈
⋂
A∈H{a ∈ S : a−1A ∈ q}, and pick b ∈

⋂
A∈H a−1A.

Then b ∈ ϕ(a) and a ∗ b ∈
⋂
H.

Now let A ⊆ S and assume that A /∈ p ∗ q. Let B = S\{a ∈ S : a−1A ∈ q}. Then
B ∈ p. We claim that B ⊆ {a ∈ S : a−1(S\A) ∈ q} (so that S\A ∈ p ∗ q). Let a ∈ B.
Then a−1A /∈ q and so A /∈ a ∗ q. Since ϕ(a) ∈ q we have by part (i) that S\A ∈ a ∗ q and
thus a−1(S\A) ∈ q as required.

(iii). Necessity. Assume that ϕ(a) ∈ p ∗ q so that {b ∈ S : b−1ϕ(a) ∈ q} ∈ p. We show
that {b ∈ S : b−1ϕ(a) ∈ q} ⊆ ϕ(a). So let b−1ϕ(a) ∈ q. Pick c ∈ b−1ϕ(a). Then c ∈ ϕ(b)
and b ∗ c ∈ ϕ(a) so a ∗ (b ∗ c) is defined and thus a ∗ (b ∗ c) = (a ∗ b) ∗ c and in particular
b ∈ ϕ(a).

Sufficiency. Assume that ϕ(a) ∈ p. We claim that ϕ(a) ⊆ {b ∈ S : b−1ϕ(a) ∈ q} so
that ϕ(a) ∈ p ∗ q. Let b ∈ ϕ(a). Since q ∈ δS, ϕ(a ∗ b) ∈ q. Therefore it suffices to show
that ϕ(a ∗ b) ⊆ b−1ϕ(a). Let c ∈ ϕ(a ∗ b). Then (a ∗ b) ∗ c = a ∗ (b ∗ c) so c ∈ ϕ(b) and
b ∗ c ∈ ϕ(a). That is, c ∈ b−1ϕ(a) as required.

(iv). This is an immediate consequence of part (iii).

2.8 Lemma. Let (S, ∗) be an adequate partial semigroup and let q ∈ δS. Then the function
ρq : βS → βS defined by ρq(p) = p ∗ q is continuous.

Proof. Note that by Lemma 2.7, the function ρq does take βS to βS. Let p ∈ βS and
let A ∈ p ∗ q (so that A is a basic neighborhood of ρq(p) ). Let B = {a ∈ S : a−1A ∈ q}.
Then B ∈ p and ρq[B] ⊆ A.

2.9 Lemma. Let p ∈ βS and let q, r ∈ δS. Then p ∗ (q ∗ r) = (p ∗ q) ∗ r.

Proof. Notice that by Lemma 2.7, both p ∗ (q ∗ r) and (p ∗ q) ∗ r are in βS. Suppose that
p∗(q∗r) 6= (p∗q)∗r and pick A ∈ p∗(q∗r)\(p∗q)∗r. Let B = {a ∈ S : a−1(S\A) ∈ r}. Then
B ∈ p ∗ q so {b ∈ S : b−1B ∈ q} ∈ p. Also, {b ∈ S : b−1A ∈ q ∗ r} ∈ p so pick b ∈ S such
that b−1B ∈ q and b−1A ∈ q ∗ r. Then {c ∈ S : c−1(b−1A) ∈ r} ∈ q so pick c ∈ b−1B such
that c−1(b−1A) ∈ r. Then c ∈ ϕ(b) and b ∗ c ∈ B so (b ∗ c)−1(S\A) ∈ r. Since c ∈ ϕ(b) we

7



have by Lemma 2.3 that c−1(b−1A) = (b∗c)−1A. Since
(
(b∗c)−1A

)
∩

(
(b∗c)−1(S\A)

)
= ∅,

we have a contradiction.

2.10 Theorem. Let (S, ∗) be an adequate partial semigroup. Then (δS, ∗) is a compact
Hausdorff right topological semigroup.

Proof. Lemmas 2.7(iv), 2.8, and 2.9 and the fact that δS is a closed subset of βS.

As a compact Hausdorff right topological semigroup, δS is guaranteed the structure
common to all such objects. In particular, it has a smallest two sided ideal K(δS) which
is the union of all of the minimal left ideals of δS as well as the union of all of the minimal
right ideals of δS. (A subset L of a semigroup (S, ·) is a left ideal of S if and only if L 6= ∅
and S · L ⊆ L. Similarly, a right ideal R satisfies R · S ⊆ R. A two sided ideal is both
a right and a left ideal.) Further, given a minimal left ideal L of δS and a minimal right
ideal R of δS, L∩R is a group (so in particular L and R each have idempotents). (See [9,
Theorems 2.7 and 2.8].)

2.11 Definition. Let p = p ∗ p ∈ δS and let A ∈ p. Then A? = {x ∈ A : x−1A ∈ p}.

Given an idempotent p ∈ δS and A ∈ p, it is immediate that A? ∈ p.

2.12 Lemma. Let p = p ∗ p ∈ δS, let A ∈ p, and let x ∈ A?. Then x−1(A?) ∈ p.

Proof. Since x ∈ A?, x−1A ∈ p and so (x−1A)? ∈ p. Thus it suffices to show that
(x−1A)? ⊆ x−1(A?). (In fact equality holds.) Let y ∈ (x−1A)?. Then y ∈ x−1A and
y−1(x−1A) ∈ p. Then y ∈ ϕ(x) and x ∗ y ∈ A and, by Lemma 2.3, (x ∗ y)−1A =
y−1(x−1A) ∈ p. That is y ∈ ϕ(x) and x ∗ y ∈ A? as required.

Some important notions of largeness in a semigroup S can be characterized in terms
of K(βS). It is our intention to utilize K(δS) to obtain appropriate analogues of these
notions for partial semigroups.

Recall that a subset A of a semigroup S is syndetic if and only if there exists some
H ∈ Pf (S) such that S =

⋃
t∈H t−1A. This has an equivalent formulation in terms of

βS, namely βS =
⋃
t∈H t−1A. Given a point p ∈ βS, one has that p ∈ K(βS) if and

only if for every A ∈ p, {x ∈ S : x−1A ∈ p} is syndetic [9, Theorem 4.39]. We introduce
now a notion of “syndetic” in a partial semigroup S, and provide evidence that it is an
appropriate notion by verifying the corresponding results for δS.

Notice that one certainly wants an adequate partial semigroup S to be syndetic in
itself (since, after all, we are concerned with notions of largeness). In the simple examples
of partial semigroups already presented (all of which are adequate) one does not have a
finite subset H of S with S ⊆

⋃
t∈H ϕ(t). Consequently one cannot hope to have the
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verbatim definition of “syndetic” apply to partial semigroups. The modification needed
turns out to be quite minor.

2.13 Definition. Let (S, ∗) be a partial semigroup and let A ⊆ S. Then A is syndetic if
and only if there is some H ∈ Pf (S) such that σ(H) ⊆

⋃
t∈H t−1A.

Notice that if S is a semigroup, Definition 2.10 agrees with the standard definition of
“syndetic”.

2.14 Lemma. Let (S, ∗) be an adequate partial semigroup and let A ⊆ S. Then A is
syndetic if and only if there exists H ∈ Pf (S) such that δS ⊆

⋃
t∈H t−1A.

Proof. Necessity. Pick H ∈ Pf (S) such that σ(H) ⊆
⋃
t∈H t−1A. Then δS ⊆ σ(H) ⊆⋃

t∈H t−1A =
⋃
t∈H t−1A.

Sufficiency. Suppose that for each H ∈ Pf (S), σ(H)\
⋃
t∈H t−1A 6= ∅. Let A =

{ϕ(t)\t−1A : t ∈ S}. Then, given H ∈ Pf (S), σ(H)\
⋃
t∈H t−1A ⊆

⋂
t∈H (ϕ(t)\t−1A)

so A has the finite intersection property. Pick q ∈ βS such that A ⊆ q and note that
{ϕ(t) : t ∈ S} ⊆ q so that q ∈ δS. Pick H ∈ Pf (S) such that δS ⊆

⋃
t∈H t−1A and pick

t ∈ H such that q ∈ t−1A. This is a contradiction.

2.15 Theorem. Let (S, ∗) be an adequate partial semigroup and let p ∈ δS. The following
statements are equivalent.
(a) p ∈ K(δS).
(b) For all A ∈ p, {x ∈ S : x−1A ∈ p} is syndetic.
(c) For all q ∈ δS, p ∈ δS ∗ q ∗ p.

Proof. (a) implies (b). Let A ∈ p and let B = {x ∈ S : x−1A ∈ p}. Let L be the minimal
left ideal of δS such that p ∈ L. We claim that L ⊆

⋃
t∈S t−1A. To see this, let q ∈ L.

Then δS ∗ q is a left ideal contained in L so L = δS ∗ q. Consequently p ∈ L = δS ∗ q so
pick r ∈ δS such that p = r ∗ q. Then {t ∈ S : t−1A ∈ q} ∈ r so pick t ∈ S such that
t−1A ∈ q. Now L = ρp[δS] so L is compact. Pick H ∈ Pf (S) such that L ⊆

⋃
t∈H t−1A.

We claim that δS ⊆
⋃
t∈H t−1B so that, by Lemma 2.14, B is syndetic.

Let r ∈ δS. Then r ∗ p ∈ L ⊆
⋃
t∈H t−1A so pick t ∈ H such that t−1A ∈ r ∗ p. Then

{x ∈ S : x−1(t−1A) ∈ p} ∈ r and ϕ(t) ∈ r. We claim that

ϕ(t) ∩ {x ∈ S : x−1(t−1A) ∈ p} ⊆ t−1B

so that t−1B ∈ r as required. So let x ∈ ϕ(t) such that x−1(t−1A) ∈ p. Then by Lemma
2.3, x−1(t−1A) = (t ∗ x)−1A so that t ∗ x ∈ B.

(b) implies (c). Let q ∈ δS. For A ∈ p, let B(A) = {x ∈ S : x−1A ∈ q ∗ p}. We
claim that {B(A) : A ∈ p} has the finite intersection property. Since, given A1 and A2,
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B(A1 ∩ A2) = B(A1) ∩ B(A2), it suffices to show that each B(A) 6= ∅. To this end, let
A ∈ p, let C = {x ∈ S : x−1A ∈ p}, and pick H ∈ Pf (S) such that σ(H) ⊆

⋃
t∈H t−1C.

For each y ∈ σ(H), pick ty ∈ H such that ty ∗ y ∈ C. Now σ(H) ∈ q and σ(H) =⋃
t∈H {y ∈ σ(H) : ty = t} so pick t ∈ H such that {y ∈ σ(H) : ty = t} ∈ q. We show that

t ∈ B(A). For this it suffices to show that {y ∈ σ(H) : ty = t} ⊆ {y ∈ S : y−1(t−1A) ∈ p}.
So let y ∈ σ(H) such that ty = t. Then t ∗ y ∈ C so (t ∗ y)−1A ∈ p. Since y ∈ ϕ(t),
(t ∗ y)−1A = y−1(t−1A) by Lemma 2.3.

Since {B(A) : A ∈ p} has the finite intersection property, pick r ∈ βS such that
{B(A) : A ∈ p} ⊆ r. Then for all A ∈ p, {x ∈ S : x−1A ∈ q ∗p} ∈ r so p = r ∗ (q ∗p). Since
p ∈ δS, for each a ∈ S, ϕ(a) ∈ p and consequently, by Lemma 2.7(iii), for each a ∈ S,
ϕ(a) ∈ r. That is r ∈ δS.

(c) implies (a). Pick q ∈ K(δS). Then δS ∗ q ∗ p ⊆ K(δS).

Two other important notions of largeness in a semigroup S are the notions of piecewise
syndetic sets and central sets. Both of these notions have simple characterizations in terms
of βS. A subset A of S is piecewise syndetic if and only if A ∩K(βS) 6= ∅ [9, Theorem
4.40] and A is central if and only if there is an idempotent p ∈ K(βS) such that A ∈ p [9,
Definition 4.42].

2.16 Definition. Let (S, ∗) be an adequate partial semigroup and let A ⊆ S.

(a) The set A is piecewise syndetic in S if and only if A ∩K(δS) 6= ∅.
(b) The set A is central in S if and only if there is some idempotent p in K(δS) such

that A ∈ p.

Notice that (unlike the notion of syndetic), both “piecewise syndetic” and “central”
are partition regular notions. That is, if a finite union of sets has one of these properties,
then some one of them does. (This fact is immediate from the definitions.)

The following result will be needed in the next section.

2.17 Lemma. Let (S, ∗) be an adequate partial semigroup and let A ⊆ S be piecewise
syndetic. There exists H ∈ Pf (S) such that for every finite nonempty set T ⊆ σ(H), there
exists x ∈ σ(T ) such that T ∗ x ⊆

⋃
t∈H t

−1A.

Proof. Pick q ∈ A ∩ K(δS) and let B = {x ∈ S : x−1A ∈ q}. By Theorem 2.15, B is
syndetic, so pick H ∈ Pf (S) such that σ(H) ⊆

⋃
t∈H t−1B. Let T ∈ Pf

(
σ(H)

)
. For each

y ∈ T pick ty ∈ H such that ty∗y ∈ B and thus (ty∗y)−1A ∈ q. Pick x ∈
⋂
y∈T (ty∗y)−1A.

Given any y ∈ T , y ∈ ϕ(ty) and x ∈ ϕ(ty ∗ y) so that x ∈ ϕ(y). That is x ∈ σ(T ). Further,
given y ∈ T , ty ∗ (y ∗ x) = (ty ∗ y) ∗ x ∈ A and thus y ∗ x ∈ ty−1A ⊆

⋃
t∈H t−1A.
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3. VIP systems in Partial Semigroups

We shall be concerned with extending the notion of VIP system to an arbitrary (partial)
semigroup. This notion involves equations involving a large number of sums, and we do not
wish to be concerned about the order in which these sums are taken. (An already compli-
cated situation would be made more complicated by such considerations.) Consequently,
we shall restrict our attention from now on to commutative semigroups and commutative
partial semigroups. (When we say that a partial semigroup (S,+) is commutative, we
mean that for all a, b ∈ S, a+ b is defined if and only if b+ a is defined, and of course, if
defined a+ b = b+ a.)

In particular, we shall use additive notation. If we are speaking of an additive semi-
group or partial semigroup S with an identity, we shall denote that identity by 0, in which
case S ∪ {0} = S. If S does not have an identity, then S ∪ {0} denotes S with an identity
adjoined.

We begin by recording an observation, whose simple proof we omit.

3.1 Lemma. Let (S,+) be a commutative partial semigroup, let k ∈ N, and let x1, x2, . . . ,

xk ∈ S. If
∑k
i=1 xi is defined, t ∈ {1, 2, . . . , k}, and s1, s2, . . . , st are distinct members of

{1, 2, . . . , k}, then
∑t
i=1 xsi is defined. If t = k, then

∑k
i=1 xsi =

∑k
i=1 xi.

Here now is the definition of VIP system for partial semigroups.

3.2 Definition. Let (S,+) be a commutative partial semigroup. Let 〈vα〉α∈F be an F-
sequence in S. 〈vα〉α∈F is called a VIP system if there exist some d ∈ N and a function
from Fd to S ∪ {0}, written γ → mγ , γ ∈ Fd, such that

vα =
∑

γ⊆α,γ∈Fd

mγ (3.1)

for all α ∈ F . (In particular, the sum is always defined.) The sequence 〈mγ〉γ∈Fd
is said

to generate the VIP system 〈vα〉α∈F

We shall also refer to a family 〈vα〉α∈F(1) where F (1) is an IP ring and the obvious
analogue of (3.1) is satisfied, as a VIP system.

Notice that, given any finite G ⊆ Fd,
∑
γ∈Gmγ is defined. To see this, let α =

⋃
G.

Then
∑
γ∈Gmγ is a sum of terms included in

∑
γ⊆α,γ∈Fd

mγ .
It is easily shown that for cancellative semigroups, the sequence of generators

〈mγ〉γ∈Fd
of a VIP system 〈vα〉α∈F is unique. (Assume 〈nγ〉γ∈Fd

also generates 〈vα〉α∈F .
One obtains mα = nα for α ∈ Fd by induction on |α|, using (3.1).) In the non-cancellative
case, however, generators need not be unique. For example, let S = {1, 2, 3} and define
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x ∗ y = min{x+ y, 3} for x, y ∈ S. For α ∈ F , put vα = 1 if |α| = 1 and vα = 3 if |α| > 1.
Then one easily shows that 〈vα〉α∈F is a VIP system of degree 2 in S. If 〈mγ〉γ∈F2 generates
〈vα〉α∈F then mγ = 1 for all singletons γ, but for |γ| = 2, mγ can be anything.

If a semigroup S is commutative and cancellative, then S can be embedded in a group
G, its so called “group of quotients”. In this case it may happen that a VIP system in
G that is entirely contained in S fails to be a VIP system in S. Consider for example
the semigroup (N,+) and define, for α ∈ F , vα =

( ∑
n∈α(−1)n

)2. Then 〈vα〉α∈F is a
VIP system of degree 2 in (Z,+), but is not a VIP system of any degree in (N,+). The
reason for this, of course, is that the function γ : F2 → Z for which (3.1) holds is given by
m{i} = 1 and m{i,j} = 2(−1)i+j for i, j ∈ N, i 6= j. In particular, not all the generators
are contained in N even though the system itself is.

This motivates the following definition.

3.3 Definition. Let S be a commutative, cancellative semigroup and let G be the group
of quotients of S. An F-sequence 〈vα〉α∈F in S is called a weak VIP system if it is a VIP
system in G.

In a semigroup S, if 〈v(i)
α 〉α∈F are VIP systems, 1 ≤ i ≤ k, then for every finite

coloring of S there exists a monochromatic configuration of the form {a+v
(i)
α : 1 ≤ i ≤ k},

where a ∈ S and α ∈ F . (This is a consequence of Corollary 1.4; see the proof of Theorem
3.7 below.) In adequate partial semigroups, the situation is somewhat more complicated.

3.4 Theorem. There exists a commutative adequate partial semigroup (S,+), a VIP sys-
tem 〈vα〉α∈F ⊆ S of degree 2, a VIP system 〈uα〉α∈F ⊆ S of degree 1, and a 2-cell partition
of S such that there exists no monochromatic configuration of the form {a, a+ vα, a+uα}.

Proof. Let S consist of all ordered pairs (A, β), where A is a finite (possibly empty) subset
of N× N, β is a finite (possibly empty) subset of N, and A ⊆ (N \ β)2.

For (A,α) and (B, β) in X, define (A,α) + (B, β) = (A ∪ B,α ∪ β) if and only if
(A ∪ B,α ∪ β) ∈ S (otherwise the sum is undefined). Then S is a commutative adequate
partial semigroup. For α ∈ F let vα = (α × α, ∅) and let uα = (∅, α). Then 〈vα〉α∈F is a
VIP system of degree 2 (with m{i} = ({(i, i)}, ∅) and, for i 6= j, m{i,j} = ({(i, j), (j, i)}, ∅) )
and 〈uα〉α∈F is a VIP system of degree 1.

Suppose A ∈ Pf (N2). Let a subset E of A be called a maximal subsquare of A if E is
a nonempty perfect square, E ⊆ A, and if for every perfect square F with E ⊆ F ⊆ A it is
the case that E = F . Let mA be the number of maximal subsquares of A. One may check
that if A ⊆ (N \ α)2 then mA∪α2 = mA + 1 if α 6= ∅. Let C1 (respectively C2) consist of
all (A, β) ∈ S with mA odd (respectively even).
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Any configuration {a, a+ vα, a+ uα} ⊆ S. has the form

{(A, β), (A ∪ (α× α), β), (A, β ∪ α)}.

Moreover A ⊆ (N \ (β ∪ α))2 (this comes from the fact that the third element in the
configuration is in S). But this means that mA∪(α×α) = mA + 1, so that the first two
elements of the configuration cannot possibly be contained in the same cell.

In order to obtain the desired monochromatic configurations in partial semigroups,
we are forced to restrict attention to a special class of finite families of VIP systems.

3.5 Definition. Let (S,+) be a commutative adequate partial semigroup. A finite set
{〈v(i)

α 〉α∈F : 1 ≤ i ≤ k} of VIP systems is said to be adequate if there exist d, t ∈ N, a set
{〈m(i)

γ 〉γ∈Fd
: 1 ≤ i ≤ k}, a set of VIP systems {〈u(i)

α =
∑
γ⊆α,γ∈Fd

n
(i)
γ 〉α∈F : 1 ≤ i ≤ t},

and sets E1, E2, . . . , Ek ⊆ {1, 2, . . . , t} such that:
(1) For each i ∈ {1, 2, . . . , k}, 〈m(i)

γ 〉γ∈Fd
generates 〈v(i)

α 〉α∈F .
(2) For every H ∈ Pf (S), there exists m ∈ N such that for every l ∈ N and pairwise

distinct γ1, . . . , γl ∈ Fd with each γi 6⊆ {1, 2, . . . ,m},
∑t
i=1

∑l
j=1 n

(i)
γj ∈ σ(H) ∪ {0}.

(In particular, the sum is defined.)
(3) m(i)

γ =
∑
t∈Ei

n
(t)
γ for all i ∈ {1, 2, . . . , k} and all γ ∈ Fd.

Notice that if S is a semigroup then any finite set {〈v(i)
α 〉α∈F : 1 ≤ i ≤ k} of VIP

systems is adequate (taking t = k and u
(i)
α = v

(i)
α ). Notice also that all subsums of∑t

i=1

∑l
j=1 n

(i)
γj are in σ(H) ∪ {0}.

As a consequence of Definition 3.5(3), notice that for all i ∈ {1, 2, . . . , k} and all
α ∈ F , v(i)

α =
∑
t∈Ei

u
(t)
α .

We shall take certain liberties with the application of Definition 3.5. For example, in
the proof of Theorem 3.10 we shall replace {1, 2, . . . , t} by another finite set and replace
F by {β ∈ F : β > α} for some α ∈ F .

3.6 Definition. Let S be a commutative adequate partial semigroup and let A ⊆ Pf (S).
A is said to be adequately partition regular if for every finite subset H of S and every
r ∈ N, there exists a finite set F ⊆ σ(H) having the property that if F =

⋃r
i=1 Ci then for

some j ∈ {1, 2, . . . , r}, Cj contains a member of A. A is said to be shift invariant if for all
A ∈ A and all x ∈ σ(A), A+ x = {a+ x : a ∈ A} ∈ A.

3.7 Theorem. Let (S,+) be a commutative adequate partial semigroup and let k ∈ N. If
{〈v(i)

α 〉α∈F : 1 ≤ i ≤ k} is an adequate set of VIP systems in S, and β ∈ F , then the family

A =
{
{a, a+ v(1)

α , a+ v(2)
α , . . . , a+ v(k)

α } : a ∈ σ({v(1)
α , v(2)

α , . . . , v(k)
α }), α ∈ F , and α > β

}
is adequately partition regular.
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Proof. Since {〈v(i)
α 〉α∈F : 1 ≤ i ≤ k} is an adequate set of VIP systems, choose d, t ∈ N,

a set {〈m(i)
γ 〉γ∈Fd

: 1 ≤ i ≤ k}, a set of VIP systems {〈u(i)
α =

∑
γ⊆α,γ∈Fd

n
(i)
γ 〉α∈F : 1 ≤

i ≤ t}, and sets E1, E2, . . . , Ek ⊆ {1, 2, . . . , t} such that conditions (1), (2), and (3) of
Definition 3.5 are satisfied.

Let H ∈ Pf (S) and let r ∈ N be given. Let m ∈ N be as guaranteed by condition (2) of
Definition 3.5. We may assume that m > maxβ. By Corollary 1.4, choose N ∈ N such that
for any (r + 1)-coloring of Pf

(
{1, 2, . . . , t} × {1, 2, . . . , N}d

)
, there exists a monchromatic

configuration of the form
{
A ∪ (E × Bd) : E ⊆ {1, 2, . . . , t}

}
, with A ∈ Pf

(
{1, 2, . . . , t} ×

{1, 2, . . . , N}d
)
, B ∈ Pf ({1, 2, . . . , N}), and A ∩ ({1, 2, . . . , k} ×Bd) = ∅.

We now seek to define a function µ : Pf
(
{1, 2, . . . , t}×{1, 2, . . . , N}d

)
→ S∪{0} with

the property that µ(A∪B) = µ(A)+µ(B) whenever A∩B = ∅. Clearly it suffices to define
µ on singletons, provided any finite sum of the images of these singletons exists. Assume
then that x = (i, a1, a2, . . . , ad) ∈ {1, 2, . . . , t}× {1, 2, . . . , N}d. We let µ(x) = 0 if it is not
that case that there exists l such that a1 < a2 < . . . < al = al+1 = . . . = ad, otherwise we
let µ(x) = n

(i)
{m+a1,m+a2,...,m+al}. By condition (2) of Definition 3.5, µ may be extended

additively to all of Pf
(
{1, 2, . . . , t}×{1, 2, . . . , N}d

)
. If 0 ∈ S, let F = µ[Pf

(
{1, 2, . . . , t}×

{1, 2, . . . , N}d
)
]. If 0 /∈ S, let F = µ[Pf

(
{1, 2, . . . , t} × {1, 2, . . . , N}d

)
]\{0}. Then F ⊆

σ(H). One easily checks that for all B ∈ Pf ({1, 2, . . . , N}), µ({i} × Bd) = u
(i)
α , where

α = {b+m : b ∈ B}.
Assume that F =

⋃r
i=1 Ci. Construct a partition Pf

(
{1, 2, . . . , t} × {1, 2, . . . , N}d

)
=⋃r+1

i=1 Di by the rule E ∈ Di if µ(E) ∈ Ci. If µ(E) = 0 and 0 /∈ S, let E ∈ Dr+1. By
the choice of N , pick A ∈ Pf

(
{1, 2, . . . , t} × {1, 2, . . . , N}d

)
, B ∈ Pf ({1, 2, . . . , N}), and

j ∈ {1, 2, . . . , r+ 1} such that A∩ ({1, 2, . . . , k} ×Bd) = ∅ and
{
A∪ (E ×Bd) : E ⊆ {1, 2,

. . . , t}
}
⊆ Dj .

Let a = µ(A) and let α = {m+ b : b ∈ B}. Given i ∈ {1, 2, . . . , k},

µ
(
A ∪ (Ei ×Bd)

)
= µ(A) +

∑
n∈Ei

µ({n} ×Bd)

= a+
∑
n∈Ei

u
(n)
α

= a+ v
(i)
α .

Since v(1)
α ∈ S, µ

(
A ∪ (E1 ×Bd)

)
∈ S and consequently j 6= r + 1.

Thus {a + v
(1)
α , a + v

(2)
α , . . . , a + v

(k)
α } = µ[{A ∪ (Ei × Bd) : 1 ≤ i ≤ k}] ⊆ Cj . Also

a = µ
(
A∪ (∅×Bd)

)
∈ Cj . Finally a ∈ σ({v(1)

α , v
(2)
α , . . . , v

(k)
α }) and minα > m > maxβ.

3.8 Theorem. Let (S,+) be an adequate commutative partial semigroup and let A be a
shift invariant, adequately partition regular family of finite subsets of S. Let E ⊆ S be
piecewise syndetic. Then E contains a member of A.
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Proof. Pick, by Lemma 2.17, H ∈ Pf (S) such that for every finite T ⊆ σ(H), there exists
x ∈ σ(T ) such that

T + x ⊆
⋃
f∈H −f + E .

Let r = |H| and let T ⊆ σ(H) be chosen so that if T =
⋃r
i=1 Ci, then some Cj contains

a member of A. Choose x ∈ σ(T ) such that T + x ⊆
⋃
f∈H −f + E. For f ∈ H let

Cf = {t ∈ T : t+ x ∈ −f + E}. Then T =
⋃
f∈H Cf so pick A ∈ A and f ∈ H such that

A ⊆ Cf . We have that A+ x ⊆ −f + E so (A+ x) + f ⊆ E, while A+ x+ f ∈ A.

3.9 Lemma. Let (S,+) be a commutative partial semigroup, let 〈vα〉α∈F be a VIP system
in S where, for each α ∈ F , vα =

∑
γ⊆α,γ∈Fd

mγ . Fix α ∈ F and for β ∈ F , β > α, let
qβ =

∑
ϕ⊆β, ϕ∈Fd

bϕ, where for ϕ > α, bϕ =
∑
ψ⊆α, |ψ|≤d−|ϕ|mϕ∪ψ. Then 〈qβ〉β∈F,β>α is

a VIP system and qβ + vα = vα∪β for all β ∈ F with β > α.

Proof. The first assertion is obvious. (Notice that (1) each nϕ is a sum of mγ ’s and
(2) if ϕ 6= ϕ′, ψ ⊆ α, |ψ| ≤ d − |ϕ|, and ψ′ ⊆ α, |ψ′| ≤ d − |ϕ′|, then ϕ ∪ ψ 6= ϕ′ ∪ ψ′.
Consequently, we have that all sums of nϕ’s are defined.) For β > α, one has

vα∪β =
∑
γ⊆α∪β, γ∈Fd

mγ

=
∑
γ⊆α, γ∈Fd

mγ +
∑
ϕ⊆β, ϕ∈Fd

∑
ψ⊆α, |ψ|≤d−|ϕ|mϕ∪ψ

=
∑
γ⊆α, γ∈Fd

mγ +
∑
ϕ⊆β, ϕ∈Fd

bϕ = vα + qβ .

We will agree to denote the VIP system 〈qβ〉β∈F,β>α constructed in Lemma 3.9 by
〈vα∪β − vα〉β∈F,β>α. (This does not imply that subtraction makes sense in S.) Note that
〈vα∪β − vα〉β∈F,β>α depends crucially on a chosen set of generators for 〈vα〉α∈F . Different
generators, if they exist, may not give the same thing.

In the following theorem, notice that if F 6= ∅, then 〈q(i,F )
β 〉β∈F,β>αs

=
〈
v
(i)

β∪∪j∈Fαj
−

v
(i)

∪j∈Fαj

〉
β∈F,β>αs

.

3.10 Theorem. Let
{
〈v(i)
α 〉α∈F : 1 ≤ i ≤ k

}
be an adequate set of VIP systems and pick

d, t ∈ N, a set {〈m(i)
γ 〉γ∈Fd

: 1 ≤ i ≤ k}, a set of VIP systems

{〈u(i)
α =

∑
γ⊆α,γ∈Fd

n
(i)
γ 〉α∈F : 1 ≤ i ≤ t} ,

and sets E1, E2, . . . , Ek ⊆ {1, 2, . . . , t} satisfying conditions (1), (2), and (3) of Definition
3.5. Let α1, . . . , αs ∈ F with α1 < α2 < . . . < αs. For F ⊆ {1, 2, . . . , s}, i ∈ {1, 2, . . . , k}
and ϕ ∈ Fd with ϕ > αs, and 1 ≤ i ≤ k, let

b
(i,F )
ϕ =

∑
ψ⊆∪j∈Fαj , |ψ|≤d−|ϕ| m

(i)
ϕ∪ψ .

For F ⊆ {1, 2, . . . , s}, i ∈ {1, 2, . . . , k}, and β ∈ Fd with β > αs, let

q
(i,F )
β =

∑
ϕ⊆β, ϕ∈Fd

b
(i,F )
ϕ .
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Then
{
〈q(i,F )
β 〉β∈F,β>αs : 1 ≤ i ≤ k, F ⊆ {1, 2, . . . , s}

}
is an adequate set of VIP systems.

Proof. Let K =
⋃s
i=1 αi. For ψ ⊆ K, write supp(ψ) = {i : ψ ∩ αi 6= ∅}. For T ⊆ {1, 2,

. . . , s}, l ∈ {1, 2, . . . , t}, and ϕ ∈ Fd with ϕ > αs, put

w
(l,T )
ϕ =

∑
ψ⊆K, supp(ψ)=T, |ψ|≤d−|ϕ| n

(l)
ϕ∪ψ .

For β ∈ F with β > αs, let r(l,T )
β =

∑
ϕ⊆β, ϕ∈Fd

w
(l,T )
ϕ . For i ∈ {1, 2, . . . , k} and F ⊆ {1, 2,

. . . , s}, let Di,F =
{
(l, T ) : l ∈ Ei and F ⊆ {1, 2, . . . , s}

}
.

We claim that (with the finite set {1, 2, . . . , k}×P({1, 2, . . . , s}) replacing {1, 2, . . . , k}
and the finite set {1, 2, . . . , t} × P({1, 2, . . . , s}) replacing {1, 2, . . . , t}) the sets{

〈b(i,F )
ϕ 〉ϕ∈Fd, ϕ>αs : i ∈ {1, 2, . . . , k} and F ⊆ {1, 2, . . . , s}

}
,{

〈r(l,T )
β =

∑
ϕ⊆β, ϕ∈Fd

w
(l,T )
ϕ 〉β∈F, β>αs

: l ∈ {1, 2, . . . , t} and T ⊆ {1, 2, . . . , s}
}
, and{

Di,F : i ∈ {1, 2, . . . , k} and F ⊆ {1, 2, . . . , s}
}

satisfy conditions (1), (2), and (3) of Definition 3.5.

Condition (1) holds by the definition of q(i,F )
β .

To verify condition (2), let H ∈ Pf (S) and pick m ∈ N such that for every g ∈ N
and pairwise distinct γ1, γ2, . . . , γg ∈ Fd with each γj 6⊆ {1, 2, . . . ,m},

∑t
l=1

∑g
j=1 n

(l)
γj ∈

σ(H) ∪ {0}. Let ϕ1, ϕ2, . . . , ϕg be pairwise distinct members of F with each ϕj 6⊆ {1, 2,
. . . ,m} and each ϕj > αs. Then∑t

l=1

∑
T⊆{1,2,...,s}

∑g
j=1 w

(l,T )
ϕ =∑t

l=1

∑
T⊆{1,2,...,s}

∑g
j=1

∑
ψ⊆K, supp(ψ)=T, |ψ|≤d−|ϕj | n

(l)
ϕj∪ψ .

It thus suffices to observe that if T, T ′ ⊆ {1, 2, . . . , s}, j, j′ ∈ {1, 2, . . . , g}, ψ,ψ′ ⊆ K,
supp(ψ) = T , supp(ψ′) = T ′, |ψ| ≤ d − |ϕj |, |ψ′| ≤ d − |ϕj′ |, and (T, j, ψ) 6= (T ′, j′, ψ′),
then ϕj ∪ ψ 6= ϕj′ ∪ ψ′.

To verify condition (3), let i ∈ {1, 2, . . . , k}, let F ⊆ {1, 2, . . . , s}, and let ϕ ∈ Fd with
ϕ > αs. Then

b
(i,F )
ϕ =

∑
ψ⊆∪j∈Fαj , |ψ|≤d−|ϕ| m

(i)
ϕ∪ψ

=
∑
ψ⊆∪j∈Fαj , |ψ|≤d−|ϕ|

∑
l∈Ei

n
(l)
ϕ∪ψ

=
∑
T⊆F

∑
ψ⊆K, supp(ψ)=T, |ψ|≤d−|ϕ|

∑
l∈Ei

n
(l)
ϕ∪ψ

=
∑

(l,T )∈Di,F
w

(l,T )
ϕ .

3.11 Theorem. Let (S,+) be a commutative adequate partial semigroup and let C ⊆ S

be a central set. Suppose that
{
〈v(i)
α 〉α∈F : 1 ≤ i ≤ k

}
is an adequate set of VIP systems.

Then there exist sequences 〈an〉∞n=1 in S and 〈αn〉∞n=1 in F such that αn < αn+1 for each
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n and for every F ∈ F , if γ =
⋃
t∈F αt, then{ ∑

t∈F at
}
∪

{ ∑
t∈F at + v

(i)
γ : 1 ≤ i ≤ k

}
⊆ C .

Proof. Pick an idempotent p ∈ K(δS) such that C ∈ p. Let C? = {x ∈ C : −x+ C ∈ p}.
Then for each x ∈ C?, −x+ C? ∈ p by Lemma 2.12.

Let

A =
{
{a, a+ v(1)

α , a+ v(2)
α , . . . , a+ v(k)

α } : α ∈ F and a ∈ σ({v(1)
α , v(2)

α , . . . , v(k)
α })

}
.

By Theorem 3.7, A is adequately partition regular and A is trivially shift invariant. Since
C? ∈ p and p ∈ K(δS), C? is piecewise syndetic. So pick by Theorem 3.8 some a1 ∈ S

and α1 ∈ F such that {a1, a1 + v
(1)
α1 , a1 + v

(2)
α1 , . . . , a1 + v

(k)
α1 } ⊆ C?.

Inductively, let n ∈ N and assume that we have chosen 〈at〉nt=1 in S and 〈αt〉nt=1 in F
such that

(1) for t ∈ {1, 2, . . . , n− 1}, if any, αt < αt+1, and

(2) for ∅ 6= F ⊆ {1, 2, . . . , n}, if γ =
⋃
t∈F αt, then

∑
t∈F at ∈ C? and for each

i ∈ {1, 2, . . . , k},
∑
t∈F at + v

(i)
γ ∈ C?.

For each γ ∈ FU(〈αt〉nt=1) and each i ∈ {1, 2, . . . , k}, let

〈q(i,γ)β 〉β∈F = 〈v(i)
γ∪β − v

(i)
γ 〉β∈F,β>αn

.

By Theorem 3.10 the family{
〈q(i,γ)β 〉β∈F,β>αt

: 1 ≤ i ≤ k, γ ∈ FU(〈αt〉nt=1)
}
∪

{
〈v(i)
β 〉β∈F : 1 ≤ i ≤ k

}
is an adequate set of VIP systems. Let

B =
{
{a} ∪

{
a+ v

(i)
α : i ∈ {1, 2, . . . , k}

}
∪

⋃
γ∈FU(〈αt〉nt=1)

{
a+ q

(i,γ)
α : i ∈ {1, 2, . . . , k}

}
:

α ∈ F , α > αn, and a ∈ σ({v(i)
α : 1 ≤ i ≤ k} ∪ {q(i,γ)α : 1 ≤ i ≤ k, γ ∈ FU(〈αt〉nt=1)})

}
.

By Theorem 3.7, B is adequately partition regular. Let

D = C? ∩
⋂{

−
∑
t∈H at + C? : ∅ 6= H ⊆ {1, 2, . . . , n}

}
∩⋂

{−(
∑
t∈H at + v

(i)
γ ) + C? : ∅ 6= H ⊆ {1, 2, . . . , n} and γ =

⋃
t∈H αt} .

Then D ∈ p and so D is piecewise syndetic.

Pick by Theorem 3.8 some αn+1 ∈ F such that αn+1 > αn and some

an+1 ∈ σ({v(i)
αn+1 : 1 ≤ i ≤ k} ∪ {q(i,γ)αn+1 : 1 ≤ i ≤ k and γ ∈ FU(〈alt〉nt=1)})

such that
{an+1} ∪

{
an+1 + v

(i)
αn+1 : i ∈ {1, 2, . . . , k}

}
∪⋃

γ∈FU(〈αt〉nt=1)

{
an+1 + q

(i,γ)
αn+1 : i ∈ {1, 2, . . . , k}

}
⊆ D .

17



Induction hypothesis (1) trivially holds. To verify (2), let ∅ 6= F ⊆ {1, 2, . . . , n + 1}
and let γ =

⋃
t∈F αt. If n + 1 /∈ F , the conclusion holds by assumption. If F = {n + 1},

then we have {an+1} ∪
{
an+1 + v

(i)
αn+1 : i ∈ {1, 2, . . . , k}

}
⊆ D ⊆ C?.

So assume that {n + 1} ⊆6 F , let H = F\{n + 1}, and let µ =
⋃
t∈F αt. Then

an+1 ∈ D ⊆ −
∑
t∈H at + C? so

∑
t∈F at ∈ C?.

Let γ =
⋃
t∈H αt and let i ∈ {1, 2, . . . , k}. Then

an+1 + q(i,γ)αn+1
∈ D ⊆ −(

∑
t∈H

at + v(i)
γ ) + C?

and so (
∑
t∈H at + v

(i)
γ ) + (an+1 + q

(i,γ)
αn+1) ∈ C?. That is,

∑
t∈F at + v

(i)
µ =

( ∑
t∈H at + an+1

)
+

(
v
(i)
γ + q

(i,γ)
αn+1

)
∈ C? .

Here is a shorter formulation of Theorem 3.11 that makes use of the IP ring termi-
nology. A special case of the result (for groups, coloristically formulated) appears as [10,
Theorem 2.8].

3.12 Theorem. Let (S,+) be a commutative adequate partial semigroup and let C ⊆ S

be a central set. Suppose that
{
〈v(i)
α 〉α∈F : 1 ≤ i ≤ k

}
is an adequate set of VIP systems.

Then there exists an IP ring F (1) and an IP system 〈bα〉α∈F(1) in S such that for all
α ∈ F (1), {bα, bα + v

(i)
α , . . . , bα + v

(k)
α } ⊆ C.

Proof. Choose 〈an〉∞n=1 and 〈αn〉∞n=1 as in Theorem 3.11. Let F (1) = FU
(
〈αn〉∞n=1

)
. For

F ∈ F , let α =
⋃
t∈F αt and put bα =

∑
t∈F at.

The proof of Theorem 3.11 actually gives a stronger conclusion, wherein at each stage
of forming a sum one is allowed to choose a different value of i. Since it is not as clean to
state, we formulate it separately.

3.13 Theorem. Let (S,+) be a commutative adequate partial semigroup and let C ⊆ S

be a central set. Suppose that
{
〈v(i)
α 〉α∈F : 1 ≤ i ≤ k

}
is an adequate set of VIP systems.

Then there exist sequences 〈an〉∞n=1 in S and 〈αn〉∞n=1 in F such that αn < αn+1 for each
n and such that for every F ∈ F ,

∑
t∈F at ∈ C and if β1 < β2 < . . . < βs, where each

βj ⊆ F , and i1, . . . , is ∈ {1, 2, . . . , k}, then writing γj =
⋃
t∈βj

αt, for j ∈ {1, 2, . . . , s}, we

have
∑
t∈F at +

∑s
j=1 v

(ij)
γj ∈ C.

Proof. Modify the proof of Theorem 3.11 as follows. First, replace induction hypothesis
(2) by:
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(2) for ∅ 6= F ⊆ {1, 2, . . . , n},
∑
t∈F at ∈ C? and, if β1 < β2 < . . . < βs, where each

βj ⊆ F , and i1, . . . , is ∈ {1, 2, . . . , k}, and for j ∈ {1, 2, . . . , s}, γj =
⋃
t∈βj

αt,

then
∑
t∈F at +

∑s
j=1 v

(ij)
γj ∈ C?.

Second, replace the set D by

D = C? ∩
⋂{

−
∑
t∈H at + C? : ∅ 6= H ⊆ {1, 2, . . . , n}

}
∩⋂

{−(
∑
t∈H at +

∑s
j=1 v

(ij)
γj ) + C? : ∅ 6= H ⊆ {1, 2, . . . , n}, s ∈ N,

β1 < β2 < . . . < βs,
⋃s
j=1 βj ⊆ H, and for j ∈ {1, 2, . . . , s}, γj =

⋃
t∈βj

αt} .

We leave the verification of the details of the proof to the reader.

3.14 Corollary. Let (S,+) be a commutative cancellative semigroup, let C be central in
S, and let

{
〈v(i)
α 〉α∈F : 1 ≤ i ≤ k

}
be a set of weak VIP systems in S. Then there exist

sequences 〈an〉∞n=1 in S and 〈αn〉∞n=1 in F such that αn < αn+1 for each n and for every
F ∈ F and every i ∈ {1, 2, . . . , k}, if γ =

⋃
t∈F αt, then

∑
t∈F at + v

(i)
γ ∈ C.

Proof. Let G be the group of quotients of S. Then, with subtraction in G, we have
G = {a− b : a, b ∈ S}.

We claim that S is piecewise syndetic in G. That is, there exists H ∈ Pf (G) such
that for each F ∈ Pf (G), there exists x ∈ G such that F + x ⊆

⋃
t∈H(−t+S). Indeed, let

H = {0} and let F ∈ Pf (G) be given. Pick l ∈ N and a1, a2, . . . , al, b1, b2, . . . , bl in S such
that F = {ai − bi : 1 ≤ i ≤ l}. Let x =

∑l
i=1 bi. Then F + x ⊆ S = −0 + S. (We have in

fact shown that S is “thick” in G.)
Since S is piecewise syndetic, S ∩K(βG) 6= ∅ by [9, Theorem 4.40] and consequently

K(βS) = S ∩K(βG) by [9, Theorem 1.65]. Since C is central in S, by definition there is
some idempotent p ∈ K(βS) such that C ∈ p. But then p ∈ K(βG) and thus C is central
in G.

Also, for each i ∈ {1, 2, . . . , k}, 〈v(i)
α 〉α∈F is a weak VIP system in S and is therefore

a VIP system in G. Thus,
{
〈v(i)
α 〉α∈F : 1 ≤ i ≤ k

}
is an adequate set of VIP systems in

G so by Theorem 3.11, there exist sequences 〈an〉∞n=1 in G and 〈αn〉∞n=1 in F such that
αn < αn+1 for each n and for every F ∈ F , if γ =

⋃
t∈F αt, then{ ∑

t∈F at
}
∪

{ ∑
t∈F at + v

(i)
γ : 1 ≤ i ≤ k

}
⊆ C .

In particular, each at is in C ⊆ S so 〈an〉∞n=1 is a sequence in S as required.

A stronger version of Corollary 3.14, based on Theorem 3.13, can also be proved in
the same way.

Many variations on the theme of Theorem 3.11 are possible. As a matter of fact, one
can formulate the following “VIP-free” version and prove it in nearly the same way.
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3.15 Theorem. Let (S,+) be a commutative adequate partial semigroup, let U be a set,
and for each s ∈ U , let Ts be a set. For each s ∈ U and each t ∈ Ts, let As,t ∈ Pf (S), such
that the family As = {As,t : t ∈ Ts} is shift invariant and adequately partition regular.
Let s1 ∈ U and suppose φ :

⋃
s∈U ({s} × Ts) → U is a function. If C ⊆ S is a central

set then there exist sequences 〈sn〉∞n=2 in U and 〈tn〉∞n=1 with each tn ∈ Tsn such that
φ(sn−1, tn−1) = sn for n ≥ 2 and such that if n1 < . . . < nm and for each i ∈ {1, 2,
. . . ,m}, xni ∈ Asni

,tni
, then (xn1 + xn2 + . . . + xnm) ∈ C. (In particular, the sum is

defined.)

Proof. The proof of Theorem 3.11 needs to be modified as follows: Having chosen 〈si〉ni=1

and 〈ti〉n−1
i=1 , replace the adequately partition regular family B constructed in the proof of

Theorem 3.11 by Asn and replace the piecewise syndetic set D by

D′ = C? ∩
⋂
{−(xn1 + xn2 + . . .+ xnm) + C? :
n1 < n2 < . . . < nm < n and each xni

∈ Asni
,tni

} .

Then one chooses tn so that Asn,tn ⊆ D′ and lets sn+1 = φ(sn, tn).

4. Applications

In this section we shall give a few applications of Theorem 3.11. The first two are quite
simple and will give some indication of where the result stands in relation to prior results.
First, we show that Theorem 1.2 from the introduction can be obtained as a corollary of
Theorem 3.11.

Proof of Theorem 1.2. We work in the semigroup (N,+). Without loss of generality,
we will assume that one of the polynomials pi(x) is the zero polynomial. For 1 ≤ i ≤ k,
let v(i)

α = pi(nα) for α ∈ F . Then by Theorem 1.6, each 〈v(i)
α 〉α∈F is a VIP system.

Therefore (since we are working in a semigroup, as opposed to a partial semigroup), the
family

{
〈v(i)
α 〉α∈F : 1 ≤ i ≤ k

}
is an adequate set of VIP systems. The result now follows

immediately from the conclusion of Theorem 3.11.

Next we observe that the central sets theorem for commutative semigroups [9, The-
orem 14.11] is a consequence of Theorem 3.13. (The version stated in [9] is slightly more
general than that given here, because it deals with infinitely many sequences. The corre-
sponding version of Theorem 3.13 is routine to establish.)

4.1 Theorem. Let (S,+) be a commutative semigroup and let C ⊆ S be a central set. Sup-
pose that

{
〈v(i)
α 〉α∈F : 1 ≤ i ≤ k

}
is a set of IP systems. Then there exist sequences 〈an〉∞n=1

in S and 〈αn〉∞n=1 in F such that αn < αn+1 for each n and such that for every F ∈ F ,
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∑
t∈F at ∈ C and if β1 < β2 < . . . < βs, where each βj ⊆ F , and i1, . . . , is ∈ {1, 2, . . . , k},

then writing γj =
⋃
t∈βj

αt, for j ∈ {1, 2, . . . , s}, we have
∑
t∈F at +

∑s
j=1 v

(ij)
γj ∈ C.

Proof. In a commutative semigroup, any set of IP systems is an adequate set of VIP
systems, so Theorem 3.13 applies directly.

Our next application is a proof of a version of a theorem of Carlson and Simpson [5,
Theorem 6.3] which provides an infinitary extension of the Hales-Jewett Theorem [7]. Let
Γ be the free semigroup with identity on the alphabet {1, 2, . . . , k}. That is, Γ is the set of
finite words w = w1w2 · · ·wn, with each wj ∈ {1, 2, . . . , k}, together with the empty word.
A variable word is a word over the alphabet {1, 2, . . . , k} ∪ {v} in which v actually occurs,
where v is a “variable” not in {1, 2, . . . , k}. Given a variable word w(v) and some i ∈ {1, 2,
. . . , k}, of course w(i) is the member of Γ resulting from replacing each occurrence of v
with i. The Hales-Jewett Theorem is then the assertion that whenever Γ is finitely colored,
there must exist some variable word w(v) such that {w(1), w(2), . . . , w(k)} is monochrome.
(The Hales-Jewett Theorem is a generalization of van der Waerden’s Theorem. This can
be seen by mapping a word w = w1w2 · · ·wn to

∑n
i=1 wi.)

4.2 Theorem. For any finite coloring of Γ, there exists a sequence 〈wn(v)〉∞n=1 of variable
words such that the set of all finite products wn1(i1)wn2(i2) · · ·wnm

(im), where n1 < n2 <

. . . < nm and {i1, i2, . . . , im} ⊆ {1, 2, . . . , k}, is monochromatic.

Proof. Let W = Pf ({0, 1, 2, . . . , k − 1} × N), and for A,B ∈ W , define A + B = A ∪ B
if A ∩ B = ∅ (otherwise A + B is undefined). Then (W,+) is a commutative adequate
partial semigroup. Define a map c : W → Γ as follows. Given A ∈ W , pick l ∈ N
such that A ⊆ ({1, 2, . . . , k} × {1, 2, . . . , l}). For every n ∈ {1, 2, . . . , l} put An =

{
i ∈

{0, 1, 2, . . . , k − 1} : (i, n) ∈ A
}
. Next let dn = i if An = {i}, i ∈ {0, 1, 2, . . . , k − 1}.

Otherwise, let dn = ∅. Finally let c(A) be the word d1d2d3 · · · dl. Letting Γ =
⋃r
i=1 Ci be

any finite partition, we have W =
⋃r
i=1Di, where Di = c−1[Ci]. For some j, Dj is central.

For i ∈ {0, 1, 2, . . . , k − 1} and α ∈ F put v(i)
α = {i} × α. Then each 〈v(i)

α 〉α∈F is a
VIP system (of degree 1) in W . Moreover one easily sees that these VIP systems form
an adequate set (taking u(i)

α = v
(i)
α and m

(i)
{j} = n

(i)
{j} = {i, j}). Therefore, Theorem 3.13

provides sequences 〈an〉∞n=1 in W and 〈αn〉∞n=1 in F such that αn < αn+1 for each n and
such that for every F ∈ F ,

∑
t∈F at ∈ Dj and, if it ∈ {1, 2, . . . , k} for each t ∈ F , then∑

t∈F (at + v
(it)
αt ) ∈ Dj .

For A,B ∈ W write A < B if there exists N ∈ N such that A ⊆ {0, 1, 2, . . . , k − 1} ×
{1, 2, . . . , N} and B ⊆ {0, 1, 2, . . . , k − 1} × {N + 1, N + 2, . . .}. Since

∑
t∈F at is always

defined, we have that the an’s are pairwise disjoint, and consequently we may pass to a
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subsequence of indices n and assume that an < an+1 and an < v
(i)
αn+1 for all n ∈ N. This

condition implies that for every F ∈ F and elements it ∈ {0, 1, 2, . . . , k − 1}, t ∈ F ,∏
t∈F c

(
at + v

(it)
αt

)
= c

( ∑
t∈F

(
at + v

(it)
αt

))
∈ Cj .

For each t ∈ N and each i ∈ {1, 2, . . . , k} we have that at+v
(i)
αt is defined. Consequently,

each at ∩ ({1, 2, . . . , k} × α) = ∅.
Given t ∈ N, define wt(v) as follows. Pick l ∈ N such that αt ⊆ {1, 2, . . . , l} and at ⊆

({1, 2, . . . , k}×{1, 2, . . . , l}). For every n ∈ {1, 2, . . . , l} put At,n =
{
i ∈ {0, 1, 2, . . . , k−1} :

(i, n) ∈ at
}
. Next let dt,n = i ifAt,n = {i}, and let dt,n = v if n ∈ αt. Otherwise, let dn = ∅.

Then let wt(v) = dt,1dt,2 · · · dt,l. Then, for each i ∈ {1, 2, . . . , k}, wt(i) = c(at + v
(i)
αt ), so

we are done.

We shall prove in Theorem 4.4 an infinitary version of Theorem 1.3. For A,B ∈
Pf (Nl), write A + B = A ∪ B if A ∩ B = ∅ (otherwise A + B is undefined). Then
(Pf (Nl),+) is a commutative adequate partial semigroup.

4.3 Lemma. Let l ∈ N and let P be a finite family of set-polynomials over (Pf (Nl),+)
whose constant terms are empty. Then there exist q ∈ N and an IP ring F (1) = {α ∈ F :
minα > q} such that {〈P (α)〉α∈F(1) : P (X) ∈ P} is an adequate set of VIP systems.

Proof. We first establish some notation. For P (X) ∈ P, let EP (X) = {Q(X) : Q(X) is a
monomial summand of P (X)} and let R =

⋃
P (X)∈P EP (X). Given Q(X) ∈ R, write

Q(X) = S
Q(X)
1 × S

Q(X)
2 × . . .× S

Q(X)
l .

Let DQ(X) = {j ∈ {1, 2, . . . , l} : SQ(X)
j = X}. (Then |DQ(X)| is the degree of Q(X).)

Let q = max{i : there exists Q(X) ∈ R such that {i} is a coordinate coefficient of
Q(X)}. (If the specified set is empty, that is if P = {X ×X × . . . ×X}, let q = 1.) Let
F (1) = {α ∈ F : minα > q}. Let d be the largest degree of members of P (which is the
same as the largest degree of members of R). For γ ∈ F (1)

d = {α ∈ F (1) : |α| ≤ d} and
Q(X) ∈ R, let

nQ(X)
γ = {(x1, x2, . . . , xl) ∈ Q(γ) : {xj : j ∈ DQ(X)} = γ} .

(Notice that if |γ| is greater than the degree of Q(X), then nQ(X)
γ = ∅.)

Next observe that if nQ(X)
γ 6= ∅, then both γ and Q(X) are uniquely determined by

any member of nQ(X)
γ . Indeed, if (x1, x2, . . . , xl) ∈ nQ(X)

γ , then

DQ(X) = {j ∈ {1, 2, . . . , l} : xj > q} , γ = {xj : j ∈ DQ(X)} ,
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and for j ∈ {1, 2, . . . , l}\DQ(X), if any, SQ(X)
j = {xj}. Consequently, ifQ1(X), Q2(X) ∈ R,

γ1, γ2 ∈ F (1)
d , and nQ1(X)

γ1 ∩ nQ2(X)
γ2 6= ∅, then Q1(X) = Q2(X) and γ1 = γ2. This fact tells

us that all sums of distinct terms of the form n
Q(X)
γ are defined.

Now for γ ∈ F (1)
d and P (X) ∈ P, let mP (X)

γ =
∑
Q(X)∈EP (X)

n
Q(X)
γ . Then condition

(3) of Definition 3.5 is satisfied directly.

We show next that for α ∈ F (1)
d and Q(X) ∈ R, Q(α) =

∑
γ∈F(1)

d
,γ⊆α n

Q(X)
γ . Given

γ ∈ F (1)
d with γ ⊆ α, nQ(X)

γ ⊆ Q(γ) ⊆ Q(α). For the reverse inclusion, let (x1, x2, . . . , xl) ∈
Q(α) and let γ = {xi : i ∈ {1, 2, . . . , l} and xi > q}. Then (x1, x2, . . . , xl) ∈ nQ(X)

γ .

It thus remains to establish conditions (1) and (2) of Definition 3.5. For condition (1),
let P (X) ∈ P and let α ∈ F (1). Then

P (α) =
∑
Q(X)∈EP (X)

Q(α)

=
∑
Q(X)∈EP (X)

∑
γ∈F(1)

d
,γ⊆α n

Q(X)
γ

=
∑
γ∈F(1)

d
,γ⊆α

∑
Q(X)∈EP (X)

n
Q(X)
γ

=
∑
γ∈F(1)

d
,γ⊆α m

P (X)
γ .

Finally, to establish condition (2), let H ∈ Pf
(
Pf (Nl)

)
. Pick m ≥ q such that for all

A ∈ H, A ⊆ {1, 2, . . . ,m}l. Let p ∈ N and let γ1, γ2, . . . , γp be pairwise distinct elements
of F (1) with each γi 6⊆ {1, 2, . . . ,m}. We need to show that

∑
Q(X)∈R

∑p
j=1 n

Q(X)
γj ∈

σ(H) ∪ {∅}. (We have already observed that the sum is defined.) That is, we need to
see that for each A ∈ H, A ∩

∑
Q(X)∈R

∑p
j=1 n

Q(X)
γj = ∅. Suppose instead that we have

Q(X) ∈ R, j ∈ {1, 2, . . . , p}, and (x1, x2, . . . , xl) ∈ A ∩ nQ(X)
γj . Since A ⊆ {1, 2, . . . ,m}l

and γj ⊆ {x1, x2, . . . , xl} one has γj ⊆ {1, 2, . . . ,m}, a contradiction.

4.4 Theorem. Let l ∈ N and let P be a finite family of set-polynomials over (Pf (Nl),+)
whose constant terms are empty. If D ⊆ Pf (Nl) is a central set then there exist sequences
〈An〉∞n=1 in Pf (Nl) and 〈αn〉∞n=1 in F such that αn < αn+1 for each n and for every F ∈ F
we have {Aγ} ∪ {Aγ + P (γ) : P ∈ P} ⊆ C, where γ =

⋃
t∈F αt and Aγ =

∑
t∈F At.

Proof. By Lemma 4.3 there is an IP ring F (1) such that {〈P (α)〉α∈F(1) : P (X) ∈ P} is
an adequate set of VIP systems. Thus Theorem 3.11 applies.

Let us consider now the “finite unions” formulation of the finite sums theorem: for
any finite partition of an IP ring F (1), there exists a monochromatic IP ring F (2). (See [9,
Corollary 5.17].) Thus IP rings have a sort of “chromatic indestructability” property, and
indeed this property embodies completely the finite sums (or finite unions) theorem.

Several natural multidimensional analogs of IP rings fail to have the chromatic in-
destructability property. For example, (F (1))2, where F (1) is an IP ring, and the finite
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unions of a 2-dimensional lattice of sets FU(〈Ai × Aj〉i,j∈N), where the Ai are pairwise
disjoint subsets of N, are objects which can be finitely partitioned in such a way that no
cell of the partition contains an object of the same kind. The Milliken-Taylor theorem
states that for any IP ring F (1) and any finite partition of the object {(α1, α2, . . . , αn) :
αi ∈ F (1), α1 < α2 < . . . < αn}, there exists an IP ring F (2) such that {(α1, α2, . . . , αn) :
αi ∈ F (2), α1 < α2 < . . . < αn} is monochromatic. ([12, Theorem 2.2] and [13, Lemma
2.2], or see [9, Corollary 18.9].) In restricting to such a special class of n-tuples, it can be
argued that this theorem is merely “almost multidimensional”.

Part of the difficulty seems to be that the finite sums theorem is projective rather
than affine; in particular the configurations it guarantees are not shift invariant. Results
such as the central sets theorem have both a projective and affine component. It seems
unlikely that the projective portion of the central sets theorem can be meaningfully “poly-
nomialized”. The affine portion however can be, as Theorem 4.4 attests. In our final
application, we offer a different “almost multidimensional” version of the finite sums the-
orem by defining a partition regular class of structures vaguely similar to 2-dimensional
lattices of sets.

Suppose we are given pairwise disjoint sequences 〈An〉∞n=1 in Pf (N2) and 〈Bn〉∞n=1 in
F with the additional property that An ∩ (Bi × Bj) = ∅ for all i, j, n ∈ N. Next, for
E ∈ Pf (N2), let supp(E) = {x ∈ N : there exists y ∈ N such that (x, y) ∈ E or (y, x) ∈ E}.
Then supp(E) is the smallest set B such that E ⊆ B2. The family of sets

{
⋃
n∈supp(E) An ∪

⋃
(i,j)∈E Bi ×Bj : E ∈ Pf (N2)}

will be called an affine 2-ring. Notice the similarity between affine 2-rings and the finite
unions of a lattice of sets mentioned earlier. However, affine 2-rings have the advantage of
partition regularity.

4.5 Theorem. For any finite partition of an affine 2-ring A1, there exists a monochro-
matic affine 2-ring A2.

Proof. Let S = Pf (N2) and denote disjoint union on S by +. Then (S,+) is an adequate
partial semigroup. Let

A1 = {
⋃
n∈supp(E) An ∪

⋃
(i,j)∈E Bi ×Bj : E ∈ S} =

⋃r
i=1 Ci .

For E ∈ S let

Γ(E) =
⋃
n∈supp(E) An ∪

⋃
(i,j)∈E (Bi ×Bj) ,

and put E ∈ Di if and only if Γ(E) ∈ Ci. Then S =
⋃r
i=1Di, so one of the cells, say Dl,

is central.

24



We claim there exist sequences 〈an〉∞n=1 in S and 〈αn〉∞n=1 in F such that

A = {
∑
n∈supp(E) an +

∑
(i,j)∈E(αi × αj) : E ∈ S} ⊆ Dl.

(In particular, so that all such sums exist. That is, the sequences 〈an〉∞n=1 and 〈αn〉∞n=1 are
pairwise disjoint and an ∩ (αi × αj) = ∅ for all i, j, n ∈ N.)

Having established the claim, Γ(A) = A2 will be contained in Cl. It is routine,
though admittedly somewhat tedious, to verify that A2 is the affine 2-ring generated by
the sequences 〈A′n〉∞n=1 in Pf (N2) and 〈B′

n〉∞n=1 in F , where

A′n =
⋃
k∈supp(an)∪αn

Ak ∪
⋃

(i,j)∈an
(Bi ×Bj) and B′

n =
⋃
k∈αn

Bk .

The claim may be obtained from Theorem 3.15 as follows. Let

U = {∅}∪{(α1, α2, . . . , αs) : k ∈ N, αi ∈ F for i ∈ {1, 2, . . . , k}, and αi∩αj = ∅ if i 6= j} .

Let R∅ = {∅, X ×X} and for k ∈ N and s = (α1, α2, . . . , αk) ∈ U , let

Rs = FU(〈X ×X,α1 ×X, . . . , αk ×X,X × α1, . . . , X × αk〉) ∪ {∅}

so that Rs is a family of 22k+1 set polynomials.

For each s ∈ U , pick by Lemma 4.3 some qs ∈ N and an IP ring F (s) = {α ∈ F :
minα > qs} such that {〈P (α)〉α∈F(s) : P ∈ Rs} is an adequate set of VIP systems. If k ∈ N
and s = (α1, α2, . . . , αk), we may presume that qs > maxαi for each i ∈ {1, 2, . . . , k}. For
each s ∈ U , let Ts = {(A,α) : α ∈ F (s) , A ∈ S, and for each P ∈ Rs, A ∩ P (α) = ∅}.

For s ∈ U and t = (A,α) ∈ Ts, let As,t = {A + P (α) : P ∈ Rs} and let As = {As,t :
t ∈ Ts}. By Theorem 3.7, we have that

As =
{
{A+ P (α) : P ∈ Rs , α ∈ F ,minα > qs , and A ∩ P (α) = ∅ for each P ∈ Rs}

is adequately partition regular.

Define φ :
⋃
s∈U ({s} × Ts) → U by φ(∅, t) = φ

(
∅, (A,α)

)
= (α) and φ(s, t) =

φ
(
(α1, α2, . . . , αk), (A,α)

)
= (α1, α2, . . . , αk, α).

Let s1 = ∅. By Theorem 3.15, pick sequences 〈sn〉∞n=2 in U and 〈tn〉∞n=1, with each
tn = (an, αn) ∈ Tsn

, such that φ(sn−1, tn−1) = sn for n ≥ 2 and such that if n1 < . . . < nm

and for each i ∈ {1, 2, . . . ,m}, xni
∈ Asni

,tni
, then xn1 + xn2 + . . .+ xnm

∈ Dl.

One may establish inductively that sn+1 = (α1, . . . , αn) for n ∈ N, so that

Asn,tn ={an + P (αn) : P ∈ Rsn
}

={an} ∪ an + FS(〈αn × αn, αn × α1, . . . , αn × αn−1, α1 × αn, . . . , αn−1 × αn〉) .
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Now to establish the claim, let E ∈ S be given and let supp(E) = {n1, n2, . . . , nm}
where n1 < n2 < . . . < nm. For each i ∈ {1, 2, . . . ,m}, let

xni
= ani

+
∑
k≤ni,(k,ni)∈E (αk × αni

) +
∑
k<ni,(ni,k)∈E (αni

× αk)

and note that xni
∈ Asni

,tni
.

Then ∑
n∈supp(E) an +

∑
(i,j)∈E(αi × αj) = xn1 + xn2 + . . .+ xnm

∈ Dl .

Theorem 4.5 is related to some results in spaces of matrices obtained in [11].
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merédi’s theorems, Journal Amer. Math. Soc. 9 (1996) 725-753.

[4] V. Bergelson and A. Leibman, Set polynomials and a polynomial extension of Hales-
Jewett theorem, Annals of Math. 150 (1999), 33-75.

[5] T. Carlson and S. Simpson, A dual form of Ramsey’s theorem, Adv. in Math. 53

(1984) 265-290.

[6] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory,
Princeton University Press, 1981.

[7] A. Hales and R. Jewett, Regularity and positional games, Trans. Amer. Math. Soc.
106 (1963), 222-229.

[8] N. Hindman, Problems and new results on the algebra of βN and its application to
Ramsey Theory, in Unsolved problems in mathematics for the 21st century – a tribute
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