This paper was published in *Semigroup Forum* **52** (1996), 357-364. To the best of my knowledge, this is the final version as it was submitted to the publisher.–NH

Prime Properties of the Smallest Ideal of $\beta \mathbb{N}$

Neil Hindman and Dona Strauss

Communicated by John Pym

1. Introduction

It is well known that the semigroup operation defined on a discrete semigroup S can be extended in a natural way to the Stone-Čech compactification βS . This is done as follows: for each $s \in S$, the map $t \mapsto st$ from S to itself extends to a continuous map from βS to itself. The image of the element τ of βS under this extension is denoted by $s\tau$. Then, for each τ in βS , the map $s \mapsto s\tau$ again extends to a continuous map from βS to itself. The image of the element σ of βS under this second extension is denoted by $\sigma\tau$. Thus

$$\sigma\tau = Lim_{\alpha}Lim_{\beta}s_{\alpha}t_{\beta}$$

where $(s_{\alpha}), (t_{\beta})$ denote nets in S converging to σ, τ respectively in βS .

The extended operation is associative, so that βS is again a semigroup. It is a compact right topological semigroup because, for each τ in βS , the map $\rho_{\tau} : \sigma \mapsto \sigma \tau$ from βS to itself is continuous. (At this point, the reader should be warned that the semigroup operation on S is frequently extended in the opposite order, making S a left topological semigroup).

Compact right topological semigroups have remarkable algebraic properties (Cf. [1] or [8]). The one with which we shall be concerned in this paper is that any such semigroup has a smallest ideal, which is the union of all the minimal left ideals and also of all the minimal right ideals. It is a union of groups; and so, for any element x in the smallest ideal, there will be an idempotent in the smallest ideal which is both a left identity and a right identity for x.

In this paper, we shall be concerned with $\beta \mathbb{N}$, the Stone-Čech compactification of the set \mathbb{N} of positive integers. The operation which we extend is ordinary addition and we shall denote it additively even though it is wildly non-commutative.

The semigroup $(\beta \mathbb{N}, +)$ has interested several mathematicians. It is interesting in itself, as a natural extension of the most familiar of all semigroups. It is, in a sense, the largest possible extension of $(\mathbb{N}, +)$. It also has significant applications to combinatorial number theory [4] and to topological dynamics [3].

We remind the reader that the points of $\beta \mathbb{N}$ can be regarded as ultrafilters on \mathbb{N} , with the points of \mathbb{N} itself corresponding to the principal ultrafilters. The topology of $\beta \mathbb{N}$ can be defined by taking the sets of the form

The first author acknowledges support received from the National Science Foundation (USA) via grant DMS 9025025

 $U_A = \{x \in \beta \mathbb{N} : A \in x\}$ as a base for the open sets, where A denotes a subset of \mathbb{N} . The sets U_A are then clopen, and, for every $A \subseteq \mathbb{N}$, $U_A = Cl_{\beta \mathbb{N}}A$.

In this paper, \mathbb{N}^* will be used to denote $\beta \mathbb{N} \setminus \mathbb{N}$ and K will denote the smallest ideal of $\beta \mathbb{N}$. An idempotent in K will be called a minimal idempotent. For any $A \subseteq \mathbb{N}$, ClA or \overline{A} will be used to denote $Cl_{\beta}\mathbb{N}A$. It is not hard to see that \overline{K} is also an ideal of $\beta \mathbb{N}$.

It will be convenient to regard \mathbb{N} as embedded in \mathbb{Z} and $\beta \mathbb{N}$ as embedded in $\beta \mathbb{Z}$. We observe that \mathbb{Z} lies in the centre of $\beta \mathbb{Z}$ and that \mathbb{N}^* is a left ideal of $\beta \mathbb{Z}$.

We wish to explore the natural question of whether K or \overline{K} is prime. Is it possible to have $q + p \in K$ (\overline{K}) if $q, p \in N^* \setminus K$ ($N^* \setminus \overline{K}$)? We cannot answer this question, but can show that there are many elements p (q) of \mathbb{N}^* with the property that $q + p \notin K$ whenever $q \in \mathbb{N}^* \setminus K$ ($p \in \mathbb{N}^* \setminus K$), and that similar results are valid for \overline{K} .

Lemma 1. For any countable subsets A and B of $\beta \mathbb{N}$, $\overline{A} \cap \overline{B} \neq \emptyset$ implies that $\overline{A} \cap B \neq \emptyset$ or $A \cap \overline{B} \neq \emptyset$.

Proof. This theorem, which is valid in any F-space, is due to Frolík. A proof can be found in [9, Lemma 1].

2. Prime properties of K and \overline{K}

The following theorem is trivial and is obviously valid in any compact right topological semigroup.

Theorem 1. Suppose that $q, p \in \mathbb{N}^* \setminus K$. If p is right cancellable in \mathbb{N}^* , $q + p \notin K$. If q is left cancellable in \mathbb{N}^* , we again have $q + p \notin K$.

Proof. If $q + p \in K$, then q + p = e + q + p for some idempotent $e \in K$. If p is right cancellable, this implies that $q = e + q \in K$.

Similarly, if q is left cancellable, it will follow that $p \in K$.

Remark. Corresponding statements for \overline{K} are less trivial. It is known that, if $p, q \in \mathbb{N}^* \setminus \overline{K}$ and if p is right cancellable, then $q + p \notin \overline{K}$ [2]. We shall give a short proof of this fact in Theorem 3, based on Theorem 2 below.

We do not know whether it is possible to have $p, q \in \mathbb{N}^* \setminus \overline{K}$ and $q+p \in \overline{K}$ if q is left cancellable. We shall show in Theorem 4 that it is not possible to have $p, q \in \mathbb{N}^* \setminus \overline{K}$ and $q + p \in \overline{K}$ if q has a neighbourhood in $\beta \mathbb{N}$ consisting of left cancellable elements.

We note that the set of elements of \mathbb{N}^* which are both right and left cancellable contains a dense open subset of \mathbb{N}^* [5, Corollary 4.5]. This gives us a rich set of elements p(q) with the property that $q \in \mathbb{N}^* \setminus K$ $(p \in \mathbb{N}^* \setminus K)$ implies that $q + p \notin K$. The corresponding remark for \overline{K} is also valid.

The following theorem is our basic tool for much of the remainder of this paper.

Theorem 2. Suppose that $p \in \mathbb{N}^* \setminus \overline{K}$ and that $B \subseteq \mathbb{N}$ satisfies $\overline{B} \cap K = \emptyset$ and $(\overline{B}+p) \cap \overline{K} \neq \emptyset$. Then there is a finite subset F of \mathbb{N} for which $-F + \overline{B} + p$ contains a left ideal of $\beta \mathbb{N}$.

Proof. Let V be a set containing $\overline{B} + p$ which is clopen in $\beta \mathbb{N}$. Then we will have $x \in V$ for some $x \in K$. We shall show that $\beta \mathbb{N} + x$ is covered by sets of the form -n + V, where $n \in \mathbb{N}$. To see this, let $y \in \beta \mathbb{N} + x$. Since $\beta \mathbb{N} + x$ is a

minimal left ideal, $x \in \beta \mathbb{N} + y = Cl(\mathbb{N} + y)$. So $n + y \in V$ and $y \in -n + V$ for some $n \in \mathbb{N}$. This shows that $\beta \mathbb{N} + x$ is covered by the sets of the form -n + V and is therefore covered by a finite number of these sets.

Thus for every clopen neighbourhood V of $\overline{B} + p$, there is a finite subset F of \mathbb{N} for which -F + V contains a left ideal of \mathbb{N}^* . Choose F_V such that $-F_V + V$ contains a left ideal of \mathbb{N}^* and has max F_V as small as possible among all such sets.

We now claim that there is one finite subset F of \mathbb{N} such that, for every clopen neighbourhood V of $\overline{B} + p$, -F + V contains a left ideal of \mathbb{N}^* . Suppose instead that there is a sequence (V_n) for which max $F_{V_n} \to \infty$. For each $n \in \mathbb{N}$, we define a function $\phi_n : B \to p$ by $\phi_n(b) = -b + (V_n \cap \mathbb{N})$. (If $b \in B$, $V_n \cap \mathbb{N} \in b + p$ and so $-b + (V_n \cap \mathbb{N}) \in p$.) Choose $A \in p$ for which $\overline{A} \cap K = \emptyset$ and define a function $\phi : B \to p$ by $\phi(b) = (\bigcap_{n \leq b} \phi_n(b)) \cap A$. Let $V = Cl(\bigcup_{b \in B} (b + \phi(b))$. Then V is a clopen subset of $\beta \mathbb{N}$ containing $\overline{B} + p$. (To see this, let $q \in \overline{B}$. For each $b \in B$, $b + p \in Cl(b + \phi(b))$ because $p \in Cl\phi(b)$. Since $q + p \in Cl\{b + p : b \in B\}, q + p \in Cl(\bigcup_{b \in B} (b + \phi(b)))$.)

Observe that $K \cap Cl(r + \phi(b)) = \emptyset$ for every $r \in \mathbb{Z}$ and every $b \in B$. This follows from the fact that K is a left ideal in $\beta \mathbb{Z}$ and so K = -r + K, and we know that $K \cap Cl\phi(b) = \emptyset$.

Then $-F_V + V$ contains a minimal left ideal L of \mathbb{N}^* . Since $L \subseteq K$,

$$L \cap Cl\Big(\bigcup_{b \in B, b \le n} (-F_V + b + \phi(b))\Big) = \emptyset$$

for every $n \in \mathbb{N}$. However, if b > n, $\phi(b) \subseteq \phi_n(b)$ and so

$$L \subseteq Cl\Big(\bigcup_{b \in B, b > n} (-F_V + b + \phi_n(b))\Big) \subseteq -F_V + V_n.$$

Since $\max F_{V_n}$ was chosen to be as small as possible, this implies that $\max F_{V_n} \leq \max F_V$, contradicting the assumption that $\max F_{V_n} \to \infty$.

We therefore have a finite subset F of \mathbb{N} such that, for every clopen neighbourhood V of $\overline{B} + p$, -F + V contains a left ideal of \mathbb{N}^* , as claimed.

For each such V, there will be a maximum left ideal of $\beta \mathbb{N}$, $L_V \subseteq -F + V$, because a union of left ideals is again a left ideal. L_V will be closed, because the closure of a left ideal of $\beta \mathbb{N}$ is also a left ideal. (This can be seen as follows: Let M be a left ideal of $\beta \mathbb{N}$. For each $n \in \mathbb{N}$, $n + \overline{M} = Cl(n+M) \subseteq \overline{M}$, and so $\beta \mathbb{N} + \overline{M} = Cl(\mathbb{N} + \overline{M}) \subseteq \overline{M}$.) Clearly, if V and V' are clopen neighbourhoods of $\overline{B} + p$, we will have $L_V \cap L_{V'} \subseteq L_{V \cap V'}$. Thus the sets L_V have the finite intersection property and hence have a non-empty intersection. This will be a left ideal contained in $\bigcap_V (-F + V) = -F + \bigcap_V V = -F + \overline{B} + p$.

We now observe that we can replace -F in Theorem 2 by F.

Corollary 1. Under the conditions of Theorem 2, there is a finite subset F of \mathbb{N} for which $F + \overline{B} + p$ contains a left ideal.

Proof. There will be a finite subset G of \mathbb{N} for which $-G + \overline{B} + p$ contains a left ideal, and which therefore contains a minimal left ideal L (by Theorem 2). Choose $r \in \mathbb{N}$ satisfying $r > \max G$. Since r is in the centre of $\beta \mathbb{N}$, r + L is a left ideal contained in L and so $L = r + L \subseteq r - G + \overline{B} + p$. Hence we can choose $F = r - G \subseteq \mathbb{N}$.

Corollary 2. Let $p \in \mathbb{N}^* \setminus \overline{K}$. If there exists $q \in \mathbb{N}^* \setminus \overline{K}$ such that $q + p \in \overline{K}$, then there exists $q' \in \mathbb{N}^* \setminus \overline{K}$ such that q' + p is a minimal idempotent.

Proof. Pick $B \in q$ such that $\overline{B} \cap K = \emptyset$. Pick finite $F \subseteq \mathbb{N}$ and a minimal left ideal L of \mathbb{N}^* with $L \subseteq -F + \overline{B} + p$, by Theorem 2. Pick $n \in F$ and $x \in \overline{B}$ such that -n + x + p is an idempotent in L. Let q' = -n + x. Then $q' \notin \overline{K}$ since $n + q' = x \notin \overline{K}$.

Theorem 3. Suppose that $p \in \mathbb{N}^* \setminus \overline{K}$ is right cancellable in \mathbb{N}^* . Then, if $q \in \mathbb{N}^* \setminus \overline{K}$, it follows that $q + p \notin \overline{K}$.

Proof. Let $B \in q$ satisfy $\overline{B} \cap K = \emptyset$. If $q + p \in \overline{K}$, Theorem 2 implies that there will be a finite subset F of \mathbb{N} for which $-F + \overline{B} + p$ intersects K. Thus $x + p \in K$ for some $x \in -F + \overline{B}$. Since x + p = e + x + p for some minimal idempotent e and since p is right cancellable, this implies that $x = e + x \in K$. However, this is a contradiction, because the fact that $\overline{B} \cap K = \emptyset$ implies that $(-F + \overline{B}) \cap K = \emptyset$.

Theorem 4. Suppose that there is a set $B \in q$ with the property that every element of \overline{B} is left cancellable in \mathbb{N}^* . Then, if $p \in \mathbb{N}^* \setminus \overline{K}$, it follows that $q + p \notin \overline{K}$.

Proof. If $q + p \in \overline{K}$, we must have $-n + x + p \in K$ for some $n \in \mathbb{N}$ and some $x \in \overline{B}$ (by Theorem 2). Thus -n + x + p = -n + x + p + e for some minimal idempotent e. Since -n and x are left cancellable, it follows that $p = p + e \in K$ – a contradiction.

Recall that a p-point of \mathbb{N}^* is a point q with the property that the intersection of countably many neighbourhoods of q is again a neighbourhood of q (in \mathbb{N}^*).

Corollary 3. Let p be a p-point of \mathbb{N}^* .

(a) If $q \notin K$, then $p + q \notin K$ and $q + p \notin K$. (b) If $q \notin \overline{K}$, then $p + q \notin \overline{K}$ and $q + p \notin \overline{K}$.

Proof. By [9, Theorem 1] p is right cancellable, since $p \notin p + \beta \mathbb{N}$ (if it were, it would be an accumulation point of the countable subset $\mathbb{N} + p$ of \mathbb{N}^*). By the proof of [5, Theorem 4.7] there is a member B of p such that every member of \overline{B} is left cancellable. (Be cautioned that in [5] $\beta \mathbb{N}$ is taken to be left rather than right topological.) Since no point of K is left cancellable, one has $\overline{B} \cap K = \emptyset$ and hence $p \notin \overline{K}$. Thus Theorems 1, 3 and 4 apply.

Theorem 5. If \overline{K} is not prime, then K is not prime.

Proof. Suppose that $p, q \in \mathbb{N}^* \setminus \overline{K}$ and $q + p \in \overline{K}$. Pick $B \in q$ such that $\overline{B} \cap K = \emptyset$. By Theorem 2 pick $x \in \overline{B}$ and $n \in \mathbb{N}$ with $-n + x + p \in K$. Since $x \in \overline{B}, x \notin K$ and so $-n + x \notin K$.

Theorem 6. K and \overline{K} both have the property that they are prime if and only if they are semi-prime.

Proof. Suppose that $p, q \in \mathbb{N}^* \setminus K$ and that $q + p \in K$. It was shown in [10, Theorem 2] that there would be an element x of \mathbb{N}^* for which x + q would be right cancellable. So we may replace q by x + q and suppose that q is right cancellable. Hence $p + q \notin K$ (by Theorem 1). However, $(p + q) + (p + q) \in K$ and so K is not semi-prime.

Now suppose that $p,q \in \mathbb{N}^* \setminus \overline{K}$ and that $q + p \in \overline{K}$. Since $q \notin K$, it follows from [10, Theorem 2] that there is an infinite increasing sequence $\langle m_n \rangle_{n=1}^{\infty}$ of positive integers such that $m_n | m_{n+1}$ for each n and x + q is right cancellable for every $x \in Cl\{m_n : n \in \mathbb{N}\}$. By [5, Corollary 4.4] every such x is left cancellable. Thus $x + q \notin \overline{K}$ by Theorem 4. Thus we may presume that q is right cancellable and hence that $p + q \notin \overline{K}$ (by Theorem 3). Then the fact that $(p+q) + (p+q) \in \overline{K}$ shows that \overline{K} is not semi-prime.

Let T denote $\bigcap_{n=1}^{\infty} Cl(\mathbb{N}n)$.

Lemma 2. For every $x \in \mathbb{N}^*$ there exists $y \in \mathbb{N}^*$ satisfying:

- i) $y + x \in T$;
- $ii) \ x+y \in T \ ;$
- *iii)* y is right cancellable;
- iv) y has a neighbourhood consisting of left cancellable elements.

Proof. For each $n \in \mathbb{N}$, q_n will denote the canonical homomorphism from \mathbb{Z} onto \mathbb{Z}_n . It is not hard to see that $q_n^\beta : \beta \mathbb{Z} \to \mathbb{Z}_n$ is also a homomorphism.

We can inductively choose a sequence $\langle m_n \rangle_{n=1}^{\infty}$ of positive integers satisfying $m_{n+1} - m_n \to \infty$ and $q_k(m_n) = -q_k^{\beta}(x)$ for every k = 1, 2, ..., n. That this is possible can be seen as follows: given $n \in \mathbb{N}$, $\{r \in \mathbb{N} : q_k(r) = q_k^{\beta}(x) \text{ for}$ every $k = 1, 2, ..., n\}$ is a member of x. Pick r in this set. Then, for any $m \in \mathbb{N}$, $q_k(m \cdot n! - r) = -q_k^{\beta}(x)$.

Now let $y \in \mathbb{N}^* \cap Cl\{m_n : n \in \mathbb{N}\}$. Since $q_k^\beta(y) = -q_k^\beta(x)$ for every $k \in \mathbb{N}, x + y \in T$ and $y + x \in T$.

By the remark on p.241 of [9], $y \notin \mathbb{N}^* + \mathbb{N}^*$ and y is therefore right cancellable.

It remains to show that any member of $Cl\{m_n : n \in \mathbb{N}\}$ is left cancellable. Since every member of \mathbb{N} is left cancellable and we have assumed nothing about y except that it is in $Cl\{m_n : n \in \mathbb{N}\}$, it is sufficient to show that y is left cancellable.

We first note that that there is at most one $a \in \mathbb{N}$ satisfying $q_k(a) = -q_k^{\beta}(x)$ for every $k \in \mathbb{N}$. For, if $a, b \in \mathbb{N}$ and a < b, then $q_k(a) \neq q_k(b)$ if $k \geq b$. Thus we suppose that the sequence $\langle m_n \rangle_{n=1}^{\infty}$ does not contain an integer a with this property, because we could delete such an integer if necessary.

Suppose that y + u = y + v for some $u, v \in \beta \mathbb{N}$. This implies that $q_k(u) = q_k(v)$ for every $k \in \mathbb{N}$. Since $y + u \in Cl\{m_n + u : n \in \mathbb{N}\}$ and $y + v \in Cl\{m_n + v : n \in \mathbb{N}\}$, an application of Lemma 1 allows us to suppose that $m_n + u = y' + v$ for some $n \in \mathbb{N}$ and some $y' \in Cl\{m_n : n \in \mathbb{N}\}$. We then have $q_k(m_n) = q_k(y')$ for every $k \in \mathbb{N}$. We have, however, ruled out this possibility, and so $y' \in \mathbb{N}$. But then $y' = m_n$ and therefore u = v because integers are cancellable in $\beta \mathbb{Z}$.

Theorem 7. If $q, p \in \mathbb{N}^* \setminus K$ and $q + p \in K$, then $q + p' \in K$ for some $p' \in T \cap (\mathbb{N}^* \setminus K)$ and $q' + p \in K$ for some $q' \in T \cap (\mathbb{N}^* \setminus K)$. The same statement holds if K is replaced by \overline{K} .

Proof. The proof is an immediate consequence of Lemma 2 and Theorems 1, 3 and 4.

Corollary 4. K (\overline{K}) is prime if and only if $K \cap T$ ($\overline{K} \cap T$) is prime.

In a similar vein, we have the following result, which we can only establish for K and for the left hand argument.

Theorem 8. If $q, p \in \mathbb{N}^* \setminus K$ and $q + p \in K$, then there is an idempotent $q' \in \mathbb{N}^* \setminus K$ such that $q' + p \in K$.

Proof. Pick a minimal left ideal L with $q+p \in L$. Then $\{x \in \mathbb{N}^* : x+p \in L\}$ is a compact semigroup which contains a right cancellable element x. (By [10, Theorem 2] there will be some y such that y + q is right cancellable. Let x = y+q.) The smallest compact semigroup containing x misses K [6, Theorem 2.3]. This semigroup necessarily contains idempotents [3, Corollary 2.10].

Theorem 9. There are elements q of \mathbb{N}^* which are not left cancellative and have the property that $q + p \notin \overline{K}$ whenever $p \in \mathbb{N}^* \setminus \overline{K}$. In fact, there are idempotents with this property.

Proof. We choose an infinite increasing sequence $\langle x_n \rangle_{n=1}^{\infty}$ of positive integers for which $x_1 = 1$ and x_n is a factor of x_{n+1} for every $n = 1, 2, 3, \ldots$. Every positive integer m has a unique expression as $m = \sum_{1}^{\infty} a_n x_n$, where each a_n is an integer satisfying $0 \leq a_n < x_{n+1}/x_n$. (This can be seen as follows: a_1 is the remainder obtained when m is divided by x_2 ; then a_2x_2 is the remainder obtained when $m - a_1x_1$ is divided by x_3 , etc.) If m is expressed in this way, supp m will denote $\{n \in \mathbb{N} : a_n \neq 0\}$.

Now let M be any infinite subset of \mathbb{N} for which $\mathbb{N} \setminus M$ is infinite, and let $B = \{m \in \mathbb{N} : \text{supp } m \cap M = \emptyset\}.$

We observe that $\overline{B} \cap T$ is a semigroup. To see this, suppose that $x, y \in \overline{B} \cap T$. For any $m, n \in B$ satisfying min(supp n) > max(supp m), $m + n \in B$. Allowing n to converge to y shows that $m+y \in \overline{B}$. Then allowing m to converge to x shows that $x + y \in \overline{B}$. Thus \overline{B} will contain idempotents.

We claim that for any element $q \in \overline{B}$ and any $p \in \mathbb{N}^* \setminus \overline{K}, q + p \notin \overline{K}$.

In the light of Lemma 2 and Theorem 3, it suffices to prove our claim under the additional assumption that $p \in T$. (For pick right cancellable y with $p+y \in T$. By theorem 3, $p+y \notin \overline{K}$. If $q+p+y \notin \overline{K}$, then of course $q+p \notin \overline{K}$.)

If $q + p \in \overline{K}$, there will be a finite subset F of \mathbb{N} for which $F + \overline{B} + p$ contains a left ideal L of $\beta \mathbb{N}$ (by Corollary 1). There will clearly be a positive integer k with the property that supp $n \cap M \cap (k, \infty) = \emptyset$ for every $n \in F + B$. Let $m \in M$ satisfy m > k and let $A = \{a \in \mathbb{N} : \text{supp } a \cap M \cap (k, m] = \emptyset\}$. We claim that $F + \overline{B} + p \subseteq \overline{A}$. To see this, let $x \in F + \overline{B}$. If $n, s \in \mathbb{N}$ satisfy $n \in F + B$ and min(supp s) > m then $m + s \in A$. We can allow s to converge to p (since $p \in T$) and then allow n to converge to x, and hence deduce that $x + p \in \overline{A}$. However, $(x_m + A) \cap A = \emptyset$ and so $(x_m + \overline{A}) \cap \overline{A} = \emptyset$. This contradicts the inclusions $x_m + L \subseteq x_m + \overline{A}$ and $x_m + L \subseteq L \subseteq \overline{A}$.

In the following theorem we show that there are elements p of \mathbb{N}^* which are not right cancellable and have the property that $q + p \notin K$ if $q \in \mathbb{N}^* \setminus K$, as well as the property that $q + p \notin \overline{K}$ if $q \in \mathbb{N}^* \setminus \overline{K}$. Indeed, there idempotents pfor which these statements hold.

Following [8], we define a quasi-order \leq_R on the elements of \mathbb{N}^* by stating that $x \leq_R y$ if y + x = x. It was shown in [8] that every idempotent in \mathbb{N}^* is dominated in this quasi-order by an idempotent which is \leq_R -maximal. If pis a \leq_R -maximal idempotent, then, by [7, Lemma 3.1 and Theorem 3.5] there is an idempotent q with $p \leq_R q$ such that the set $C = \{x \in \mathbb{N}^* : x + q = q\}$ is a finite right zero semigroup. But since p is \leq_R -maximal, one has that $C = \{x \in \mathbb{N}^* : x + p = p\}$. (We note that this implies that $p \notin K$, because any idempotent in K has 2^c left identities.) Furthermore, the map ρ_p is one-one on $\beta \mathbb{N} \setminus (\beta \mathbb{N} + C)$. **Theorem 10.** Let p be $a \leq_R$ -maximal idempotent of \mathbb{N}^* . If $q \in \beta \mathbb{N} \setminus K$, $q + p \notin K$.

Proof. Suppose, on the contrary, that $q + p \in K$. Then q + p = e + q + p for some minimal idempotent e.

Let $C = \{x \in \mathbb{N}^* : x + p = p\}$. As observed above, C is finite and, for all $x, y \in C, x + y = y$. Note first that $q \notin \beta \mathbb{N} + C$. For, if we had q = u + c for some $u \in \beta \mathbb{N}$ and some $c \in C$, we would have $q = q + c = q + (p + c) \in K$. Thus we may pick $X \in q$ such that $\overline{X} \cap (\beta \mathbb{N} + C) = \emptyset$. (Since C is finite, $\beta \mathbb{N} + C$ is compact.)

Next we claim that $e + q \notin \beta \mathbb{N} + C$. Indeed, if $e + q \in \beta \mathbb{N} + c$ for some $c \in C$, then by [9, Theorem 2], $q \in \beta \mathbb{N} + c$ or $c \in \beta \mathbb{N} + q$. We have already seen that the first of these alternatives is impossible. But if $c \in \beta \mathbb{N} + q$, then $p = c + p \in \beta \mathbb{N} + q + p \subseteq K$. Thus the second alternative is ruled out too.

Since $e+q \notin \beta \mathbb{N}+C$, we can choose $Y \in e+q$ such that $\overline{Y} \cap (\beta \mathbb{N}+C) = \emptyset$. Since $e+q \in K$ and $q \notin K$, we may assume that $X \cap Y = \emptyset$.

Since $q+p \in Cl(X+p)$ and $e+q+p \in Cl(Y+p)$ it follows from Lemma 1 that n+p=y+p for some $n \in X$ and some $y \in \overline{Y}$, or else x+p=n+p for some $x \in X$ and some $y \in \overline{Y}$. Since $m+p \neq n+p$ if $m, n \in \mathbb{N}$ and $m \neq n$ (as can be seen by considering congruences), we can take y or x to be in \mathbb{N}^* .

But the first possibility implies that p = -n + y + p and hence that $-n + y \in C$, contradicting our assumption that $Y \cap (\beta \mathbb{N} + C) = \emptyset$. Similarly, the second possibility contradicts the assumption that $\overline{X} \cap (\beta \mathbb{N} + C) = \emptyset$.

We have already noted that, if e is any idempotent in \mathbb{N}^* , there is a \leq_R -maximal idempotent p satisfying $e \leq_R p$. If $e \notin \overline{K}$ then $p \notin \overline{K}$. So there are \leq_R -maximal idempotents in $\mathbb{N}^* \setminus \overline{K}$.

Theorem 11. Suppose that p is a \leq_R -maximal idempotent in $\mathbb{N}^* \setminus \overline{K}$. Then, if $q \in \mathbb{N}^* \setminus \overline{K}$, it follows that $q + p \notin \overline{K}$.

Proof. Exactly as in the proof of Theorem 10, we can show that $q \notin \beta \mathbb{Z} + C$. Hence there is a set $X \in q$ for which $\overline{X} \cap (\beta \mathbb{Z} + C) = \emptyset$ and $\overline{X} \cap \overline{K} = \emptyset$. We note that $(n + \overline{X}) \cap (\beta \mathbb{Z} + C) = \emptyset$ for every $n \in \mathbb{Z}$.

Suppose that $q + p \in \overline{K}$. There will be a finite subset F of \mathbb{N} for which $-F + \overline{X} + p$ contains a minimal left ideal L (by Theorem 2). Observe that $(-F + \overline{X}) \cap (\beta \mathbb{Z} + C) = \emptyset$.

Let $x \in L$. Then x = y + p for some $y \in -F + \overline{X}$. For each $n \in \mathbb{N}$, $n+x \in L$ and so $n+x = y_n + p$ for some $y_n \in -F + \overline{X}$. Now $n+y \notin \beta \mathbb{N} + C$ and $y_n \notin \beta \mathbb{N} + C$. Since ρ_p is one-one on $\beta \mathbb{N} \setminus (\beta \mathbb{N} + C)$, it follows that $n+y = y_n$. This implies that $n+y \in -F + \overline{X}$ and hence that $\beta \mathbb{N} + y \subseteq -F + \overline{X}$. But this contradicts our assumption that $(-F + \overline{X}) \cap K = \emptyset$.

The following theorem is trivial, but seems worth noting.

Theorem 12. If $p \in \mathbb{N}^* \setminus K$ $(\mathbb{N}^* \setminus \overline{K})$, then $\mathbb{N}^* + p$ is not contained in K (\overline{K}) .

Proof. Suppose that $p \in \mathbb{N}^* \setminus K$. If p is not right cancellable, $p \in \mathbb{N}^* + p$ [9, Theorem 1] and so $\mathbb{N}^* + p$ is not contained in K.

Otherwise, if p is right cancellable, $q + p \notin K$ (by Theorem 1) if $q \in \mathbb{N}^* \setminus K$. So we can again assert that $\mathbb{N}^* + p$ is not contained in K.

The corresponding theorem for \overline{K} follows in the same way from Theorem 3.

References

- [1] Berglund, J., H. Junghenn and P. Milnes, "Analysis on Semigroups," Wiley, New York, 1989.
- [2] Davenport, D., and N. Hindman, Subprincipal closed ideals in $\beta \mathbb{N}$, Semigroup Forum **36**(1987), 223-245.
- [3] Ellis, R., "Lectures on Topological Dynamics," Benjamin, New York, 1969.
- [4] Hindman, N., The semigroup βN and its applications to number theory, in "The analytical and topological theory of semigroups," (K. Hofmann, J. Lawson and J. Pym, eds), Walter de Gruyter & Co., Berlin, 1990, 347-360.
- [5] Hindman, N., and D. Strauss, *Cancellation in the Stone-Čech compactification of a discrete semigroup*, Proc. Edinburgh Math. Soc. **37**(1994), 379-397.
- [6] Hindman, N., and D. Strauss, *Chains of idempotents in* $\beta \mathbb{N}$, Proc. Amer. Math. Soc., to appear.
- [7] Hindman, N., and D. Strauss, Nearly prime subsemigroups of $\beta \mathbb{N}$, Semigroup Forum, to appear.
- [8] Ruppert, W., "Compact Semitopological Semigroups: An Intrinsic Theory," Lecture Notes in Math. **1079**, Springer-Verlag, Berlin, 1984.
- [9] Strauss, D., Semigroup structures on $\beta \mathbb{N}$, Semigroup Forum 44(1992), 238-244.
- [10] Strauss, D., *Ideals and commutativity in* $\beta \mathbb{N}$, Topology and its Applications, to appear.

Department of Mathematics Howard University Washington, DC 20059 USA Department of Pure Mathematics University of Hull Hull HU6 7RX United Kingdom