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1. Introduction

It is well known that the semigroup operation defined on a discrete
semigroup S can be extended in a natural way to the Stone-Cech compactification
(S. This is done as follows: for each s € S, the map t — st from S to itself
extends to a continuous map from (.S to itself. The image of the element 7 of
(S under this extension is denoted by s7. Then, for each 7 in (S, the map
s — ST again extends to a continuous map from 35 to itself. The image of the
element o of 4S under this second extension is denoted by o7. Thus

oT = LimoLimgsats

where (s,), (t3) denote nets in S converging to o, 7 respectively in 3S.

The extended operation is associative, so that 3.5 is again a semigroup.
It is a compact right topological semigroup because, for each 7 in 45, the map
pr:o— ot from (S to itself is continuous. (At this point, the reader should be
warned that the semigroup operation on S is frequently extended in the opposite
order, making S a left topological semigroup).

Compact right topological semigroups have remarkable algebraic prop-
erties (Cf. [1] or [8] ). The one with which we shall be concerned in this paper is
that any such semigroup has a smallest ideal, which is the union of all the min-
imal left ideals and also of all the minimal right ideals. It is a union of groups;
and so, for any element z in the smallest ideal, there will be an idempotent in
the smallest ideal which is both a left identity and a right identity for .

In this paper, we shall be concerned with 3N, the Stone-Cech com-
pactification of the set N of positive integers. The operation which we extend
is ordinary addition and we shall denote it additively even though it is wildly
non-commutative.

The semigroup (S N,+) has interested several mathematicians. It is
interesting in itself, as a natural extension of the most familiar of all semigroups.
It is, in a sense, the largest possible extension of (N, +). It also has significant
applications to combinatorial number theory [4] and to topological dynamics [3].

We remind the reader that the points of SN can be regarded as ul-
trafilters on N, with the points of N itself corresponding to the principal ul-
trafilters. The topology of OGN can be defined by taking the sets of the form
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Us={z € PN:Aczx} as a base for the open sets, where A denotes a subset of
N. The sets U, are then clopen, and, for every A CN, Uy = CZBNA'

In this paper, N* will be used to denote SN\ N and K will denote the
smallest ideal of SN.An idempotent in K will be called a minimal idempotent.
For any A C N, CIA or A will be used to denote C’lﬁNA. It is not hard to see

that K is also an ideal of SN.
It will be convenient to regard N as embedded in Z and SN as embedded
in 5Z. We observe that Z lies in the centre of 8Z and that N* is a left ideal of

BZ.

We wish to explore the natural question of whether K or K is prime. Is
it possible to have ¢+p € K (K)if ¢,p e N*\ K (N*\ K)? We cannot answer
this question, but can show that there are many elements p (¢) of N* with the
property that ¢+ p ¢ K whenever ¢ € N*\ K (p € N*\ K), and that similar

results are valid for K .

Lemma 1. For any countable subsets A and B of SN, ANB # @ implies that
ANB#O or ANB#Q.

Proof. This theorem, which is valid in any F-space, is due to Frolik. A proof
can be found in [9, Lemma 1]. n

2. Prime properties of K and K

The following theorem is trivial and is obviously valid in any compact
right topological semigroup.

Theorem 1. Suppose that q,p € N*\ K. If p is right cancellable in N*,
qg+p¢ K. If q is left cancellable in N* | we again have ¢+ p ¢ K .

Proof. 1If ¢+ pe€ K, then ¢+ p = e+ g+ p for some idempotent e € K. If p
is right cancellable, this implies that ¢ = e+ q € K.
Similarly, if ¢ is left cancellable, it will follow that p € K. [ ]

Remark . Corresponding statements for K are less trivial. It is known that,
if p,q € N*\ K and if p is right cancellable, then ¢+ p ¢ K [2]. We shall give a
short proof of this fact in Theorem 3, based on Theorem 2 below.

We do not know whether it is possible to have p,q € N*\K and ¢+p € K
if ¢ is left cancellable. We shall show in Theorem 4 that it is not possible to have
p,q € N\ K and ¢+ p € K if ¢ has a neighbourhood in N consisting of left
cancellable elements.

We note that the set of elements of N* which are both right and left
cancellable contains a dense open subset of N* [5, Corollary 4.5]. This gives us
a rich set of elements p (q) with the property that ¢ € N*\ K (p € N*\ K)
implies that ¢ +p ¢ K. The corresponding remark for K is also valid.

The following theorem is our basic tool for much of the remainder of this

paper.

Theorem 2.  Suppose that p € N* \ K and that B C N satisfies B N K=0
and (B+p)NK # @. Then there is a finite subset F' of N for which —F+ B+p
contains a left ideal of BN.

Proof. Let V be a set containing B + p which is clopen in AN. Then we will
have z € V for some z € K. We shall show that SN + x is covered by sets of
the form —n + V', where n € N. To see this, let y € SN + z. Since SN+ x is a
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minimal left ideal, z € fN+y =CI(N+y). Son+y €V and y € —n+ V for
some n € N. This shows that SN+ x is covered by the sets of the form —n +V
and is therefore covered by a finite number of these sets.

Thus for every clopen neighbourhood V of B+ p, there is a finite subset
F of N for which —F + V contains a left ideal of N*. Choose Fy such that
—Fy +V contains a left ideal of N* and has max Fy as small as possible among
all such sets.

We now claim that there is one finite subset ' of N such that, for
every clopen neighbourhood V of B + p, —F + V contains a left ideal of N*.
Suppose instead that there is a sequence (V;,) for which max Fy, — oo. For
each n € N, we define a function ¢, : B — p by ¢,(b) = —b+ (V,, "N). ( If
be B, V, NNe€b+p andso b+ (V, NN) € p.) Choose A € p for which
AN K =@ and define a function ¢ : B — p by ¢(b) = (ﬂn<b ¢n(b)) NA. Let
V = Cl(Upep(b+ ¢(b)). Then V is a clopen subset of SN containing B + p.
(To see this, let ¢ € B. For each b € B, b+p € Cl(b+¢(b)) because p € Clg(b).
Since ¢ +p e Cl{b+p:be B}, q+pé€ C’l(UbeB(b+gb(b))).)

Observe that K N Cl(r + ¢(b)) = O for every r € Z and every b € B.
This follows from the fact that K is a left ideal in Z and so K = —r + K, and
we know that K N Clg(b) = Q.

Then —Fy + V contains a minimal left ideal L of N*. Since L C K,

Lnci( |J (Fv+b+¢((1) =0

beB,b<n
for every n € N. However, if b > n, ¢(b) C ¢,(b) and so

Lecl( |J (—Fv+b+6n®)) C—Fv+V,.
beB,b>n

Since max Fy;, was chosen to be as small as possible, this implies that max Fy, <
max Fy , contradicting the assumption that max Fy, — oo.

We therefore have a finite subset F' of N such that, for every clopen
neighbourhood V of B+ p, —F + V contains a left ideal of N*, as claimed.

For each such V', there will be a maximum left ideal of N, Ly C
—F + V| because a union of left ideals is again a left ideal. Ly will be closed,
because the closure of a left ideal of AN is also a left ideal. (This can be seen as
follows: Let M be a left ideal of SN. For each n € N, n+M = Cl(n+M) C M,
and so BN + M = CI(N+ M) C M.) Clearly, if V and V' are clopen
neighbourhoods of B + p, we will have Ly N Ly C Lyay . Thus the sets Ly

have the finite intersection property and hence have a non-empty intersection.
This will be a left ideal contained in (), (-F+V) =—-F+(),V=—-F+B+pm

We now observe that we can replace —F' in Theorem 2 by F'.

Corollary 1. Under the conditions of Theorem 2, there is a finite subset F
of N for which F + B+ p contains a left ideal.

Proof. There will be a finite subset G of N for which —G + B + p contains a
left ideal, and which therefore contains a minimal left ideal L (by Theorem 2).
Choose r € N satisfying » > maxG. Since r is in the centre of SN, r + L is
a left ideal contained in L and so L =r+ L Cr — G+ B + p. Hence we can
choose FF=r — G CN. n
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Corollary 2. Let p € N*\ K. If there exists ¢ € N*\ K such that ¢+p € K,
then there exists ¢ € N\ K such that ¢’ + p is a minimal idempotent.

Proof. Pick B € g such that E_ﬂ K = . Pick finite /' C N and a minimal
left ideal L of N* with L C —F 4 B +p, by Theorem 2. Pick n € F and z € B
such that —n + z + p is an idempotent in L. Let ¢ = —n+ 2. Then ¢’ ¢ K
since n+¢ =z ¢ K. u

Theorem 3.  Suppose that p € N* \ K is right cancellable in N*. Then, if
g € N*\ K, it follows that g+ p ¢ K .

Proof. Let B e g satisfy BNK=0.If ¢g+pe€ F_, Theorem 2 implies that
there will be a finite subset I’ of N for which —F + B + p intersects K. Thus
r+pé€ K for some xr € —F 4+ B. Since x +p = e + x + p for some minimal
idempotent e and since p is right cancellable, this implies that x = e+ 2 € K.
However, this is a contradiction, because the fact that BN K = @ implies that
(-F+B)NK =0. u

Theorem 4.  Suppose that there is a set B € q with the property that every
element of B is left cancellable in N*. Then, if p € N*\ K, it follows that

g+p ¢ K.
Proof. Ifg+pc K, we must have —n+x +p € K for some n € N and some
x € B (by Theorem 2). Thus —n+x +p = —n + 2 + p + e for some minimal

idempotent e. Since —n and x are left cancellable, it follows that p = p+e € K
— a contradiction. ]

Recall that a p-point of N* is a point ¢ with the property that the
intersection of countably many neighbourhoods of ¢ is again a neighbourhood of

g (in N* ).

Corollary 3. Let p be a p-point of N*.
() If q¢ K, then p+q¢ K and g+p ¢ K.
(b)If ¢ K, thenp+q¢ K and q+p ¢ K.
Proof. By [9, Theorem 1] p is right cancellable, since p ¢ p+ SN (if it were,

it would be an accumulation point of the countable subset N+ p of N* ). By the
proof of [5, Theorem 4.7] there is a member B of p such that every member of

B is left cancellable. (Be cautioned that in [5] BN is taken to be left rather than
right topologicai) Since no point of K is left cancellable, one has BN K = &
and hence p ¢ K. Thus Theorems 1, 3 and 4 apply. [ ]

Theorem 5. If K is not prime, then K is not prime.

Proof.  Suppose that p,¢ € N*\ K and ¢+ p € K. Pick B € ¢ such that
EHE:@. By Theorem 2 pick z € B and n € N with —n+x 4+ p € K. Since
r€B,x¢ Kandso —n+xz ¢ K. u

Theorem 6. K and K both have the property that they are prime if and only
if they are semi-prime.

Proof. Suppose that p,q € N*\ K and that ¢ + p € K. It was shown in
[10, Theorem 2] that there would be an element z of N* for which = + ¢ would
be right cancellable. So we may replace ¢ by x + ¢ and suppose that ¢ is right
cancellable. Hence p+ ¢ ¢ K (by Theorem 1). However, (p+q) + (p+q) € K
and so K is not semi-prime.
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Now suppose that p,q € N*\ K and that ¢+ p € K. Since ¢ ¢ K, it
follows from [10, Theorem 2] that there is an infinite increasing sequence (m,, )5 ;
of positive integers such that m,,|m,11 for each n and x + ¢ is right cancellable
for every © € Cl{m,, : n € N}. By [5, Corollary 4.4 | every such z is left
cancellable. Thus x + ¢ ¢ K by Theorem 4. Thus we may presume that ¢ is
right cancellable and hence that p+ ¢ ¢ K (by Theorem 3). Then the fact that

(p+q)+ (p+q) € K shows that K is not semi-prime. n
Let T denote (), Cl(Nn).

n=1
Lemma 2. For every x € N* there exists y € N* satisfying:
i)y+xeT ;
i) x+yeT ;
ii1) y is right cancellable;
i) y has a neighbourhood consisting of left cancellable elements.

Proof. For each n € N, ¢, will denote the canonical homomorphism from Z
onto Z,, . It is not hard to see that ¢° : 3Z — Z,, is also a homomorphism.

We can inductively choose a sequence (m,, )22 ; of positive integers sat-
isfying m,+1 — m, — oo and gqi(m,) = —q,f(x) for every kK =1,2,..,n. That

this is possible can be seen as follows: given n € N, {r € N: ¢x(r) = q,’f(w) for
every k= 1,2,..,n} is a member of x. Pick r in this set. Then, for any m € N,
ge(m-nl—r) = —qg(:z:).

Now let y € N* N Cl{m,, : n € N}. Since @ y) = —q,f(x) for every
keN,z+yeT and y+ze€T.

By the remark on p.241 of [9], y ¢ N* + N* and y is therefore right
cancellable.

It remains to show that any member of Cl{m, : n € N} is left can-
cellable. Since every member of N is left cancellable and we have assumed
nothing about y except that it is in Cl{m,, : n € N}, it is sufficient to show that
y is left cancellable.

We first note that that there is at most one a € N satisfying qx(a) =
—qf(m) for every k € N. For, if a,b € N and a < b, then ¢x(a) # qx(b) if k> b.
Thus we suppose that the sequence (m,, )22 ; does not contain an integer a with
this property, because we could delete such an integer if necessary.

Suppose that y +uv = y + v for some w,v € BN. This implies that
qr(u) = qx(v) for every k € N. Since y +u € Cl{m,, + u : n € N} and
y+v € Cl{m, +v:n € N}, an application of Lemma 1 allows us to suppose
that m,, +u =y’ + v for some n € N and some y' € Cl{m,, : n € N}. We
then have gi(m.,) = qr(y’) for every k € N. We have, however, ruled out this
possibility, and so vy’ € N. But then 3y’ = m, and therefore u = v because
integers are cancellable in [G7Z. [ ]

Theorem 7. If q,p € N*\ K and q+p € K, then q+p' € K for some
p eTN(N'\K) and ¢’ +p € K for some ¢ € TN(N"\ K).
The same statement holds if K is replaced by K .

Proof. The proof is an immediate consequence of Lemma 2 and Theorems 1,
3 and 4. n

Corollary 4. K (K) is prime if and only if KN'T (KNT) is prime. |

In a similar vein, we have the following result, which we can only establish
for K and for the left hand argument.
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Theorem 8. If q,p € N\ K and q+p € K, then there is an idempotent
q € N*\ K such that ¢ +p e K.

Proof. Pick a minimal left ideal L with ¢+p € L. Then {x e N* : z4+p € L}
is a compact semigroup which contains a right cancellable element z. (By [10,
Theorem 2| there will be some y such that y + ¢ is right cancellable. Let
x = y+q.) The smallest compact semigroup containing = misses K [6, Theorem
2.3 ]. This semigroup necessarily contains idempotents [3, Corollary 2.10 ]. m

Theorem 9.  There are elements ¢ of N* which are not left cancellative and
have the property that ¢ + p ¢ K whenever p € N*\ K. In fact, there are
tdempotents with this property.

Proof. We choose an infinite increasing sequence (x,,)22 ; of positive integers
for which ;1 = 1 and z, is a factor of z,41 for every n = 1,2,3,.... Every
positive integer m has a unique expression as m = Z(fo anTn, where each a,
is an integer satisfying 0 < a,, < xp4+1/%,. (This can be seen as follows: ap is
the remainder obtained when m is divided by x5 ; then asxs is the remainder
obtained when m — ajx; is divided by z3, etc.) If m is expressed in this way,
suppm will denote {n € N: a,, # 0}.

Now let M be any infinite subset of N for which N\ M is infinite, and
let B={m e N:supp mNM = Q}.
o We observe that B N T'is a semigroup. To see this, suppose that z,y €
BNT. For any m,n € B satisfying min(supp n) > max(supp m), m+n € B.
Allowing n to converge to y shows that m+y € B. Then allowing m to converge
to x shows that x +y € B. Thus B will contain idempotents.

We claim that for any element ¢ € B and any p € N*\ K, ¢+ p ¢ K.

In the light of Lemma 2 and Theorem 3, it suffices to prove our claim
under the additional assumption that p € T. (For pick right cancellable y with
p+y € T. By theorem 3, p+y ¢ K. If g+p+y ¢ K, then of course g+p ¢ K.)

If g+ p € K, there will be a finite subset F of N for which F + B +p
contains a left ideal L of SN (by Corollary 1). There will clearly be a positive
integer k with the property that supp nNM N (k,o0) = @ for every n € F'+ B.
Let m € M satisfy m > k and let A = {a € N:supp an M n (k,m] = O}.
We claim that F + B +p C A. To see this, let x € F + B. If n,s € N satisfy
n € F'+ B and min(supp s) > m then m+ s € A. We can allow s to converge
to p (since p € T') and then allow n to converge to x, and hence deduce that
r+p € A. However, (z,, + A)NA =0 and so (z,, + A)N A = @. This
contradicts the inclusions z,, + L C x,, + A and z,, + L C L C A. ]

In the following theorem we show that there are elements p of N* which
are not right cancellable and have the property that ¢+p ¢ K if ¢ € N*\ K, as
well as the property that ¢ +p ¢ K if ¢ € N*\ K. Indeed, there idempotents p
for which these statements hold.

Following [8], we define a quasi-order <g on the elements of N* by
stating that © <g y if y + 2 = x. It was shown in [8] that every idempotent in
N* is dominated in this quasi-order by an idempotent which is <g-maximal. If p
is a <p-maximal idempotent, then, by [7, Lemma 3.1 and Theorem 3.5] there is
an idempotent ¢ with p <p ¢ such that the set C = {z € N* : 2 + ¢ = ¢}
is a finite right zero semigroup. But since p is <p-maximal, one has that
C={xeN":xz+p=p}. (Wenote that this implies that p ¢ K, because any
idempotent in K has 2° left identities.) Furthermore, the map p, is one-one on

BN\ (BN + ().
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Theorem 10.  Let p be a <g-mazimal idempotent of N*. If ¢ € N\ K,
q+p ¢ K.

Proof. Suppose, on the contrary, that g+p € K. Then g+p =e+q+p for
some minimal idempotent e.

Let C ={z € N : x4+ p = p}. As observed above, C is finite and, for
all z,y € C, z+y =y. Note first that ¢ ¢ SN+ C'. For, if we had ¢ = u+ ¢ for
some u € N and some ¢ € C', we would have ¢ = ¢+c¢=q+ (p+¢) € K. Thus
we may pick X € ¢ such that X N (BN +C) = @. (Since C is finite, BN + C is
compact.)

Next we claim that e + ¢ ¢ SN + C. Indeed, if e + g € SN + ¢ for some
¢ € C, then by [9, Theorem 2|, ¢ € SN + ¢ or ¢ € BN + q. We have already
seen that the first of these alternatives is impossible. But if ¢ € SN + ¢, then
p=c+pé€ PN+ qg+pC K. Thus the second alternative is ruled out too.

Since e+q ¢ BN-+C, we can choose Y € e+¢ such that YN(BN+C) = @.
Since e + g € K and ¢ ¢ K, we may assume that X NY = 0.

Since g+p € Cl(X +p) and e+q+p € Cl(Y +p) it follows from Lemma
1 that n+p =y +p for some n € X and some y €Y,orelse x+p=n+p for
some x € X and some y € Y. Since m+p#n+p if m,n € N and m # n (as
can be seen by considering congruences), we can take y or x to be in N*.

But the first possibility implies that p = —n + y + p and hence that
—n +y € C, contradicting our assumption that Y N (BN 4+ C') = . Similarly,
the second possibility contradicts the assumption that X N (AN +C) =@. =

We have already noted that, if e is any idempotent in N*, there is a
<gr-maximal idempotent p satisfying e <gr p. If e ¢ K then p ¢ K. So there
are <pg-maximal idempotents in N*\ K.

Theorem 11.  Suppose that p is a <g-mazimal idempotent in N*\ K. Then,
if ¢ € N*\ K, it follows that ¢ +p ¢ K .
Proof. Exactly as in the proof of Theorem 10, we can show that ¢ ¢ SZ+ C'.
Hence there is a set X € ¢ for which X N (Z+C)=0 and XN K = 0. We
note that (n+ X) N (BZ+ C) = O for every n € Z.

_Suppose that ¢ +p € K . There will be a finite subset F' of N for which
—F + X + p contains a minimal left ideal L (by Theorem 2). Observe that
(-F+X)N(BZ+C)=0.

Let € L. Then x = y + p for some y 6_—F+7. For each n € N,
n+x € L and so n+x = y,, +p for some y, € —F+X. Now n+y ¢ fN+C and
yn ¢ BN+ C'. Since p, is one-one on BN\ (BN +C), it follows that n+y =y, .
This implies that n +y € —F + X and hence that SN +y C —F + X . But this
contradicts our assumption that (—F + X)NK = . u

The following theorem is trivial, but seems worth noting.

Theorem 12. If p € N*\ K (N*\ K), then N* + p is not contained in K
(K).
Proof. Suppose that p € N*\ K. If p is not right cancellable, p € N* 4+ p [9,
Theorem 1] and so N* + p is not contained in K.

Otherwise, if p is right cancellable, ¢ + p ¢ K (by Theorem 1) if
g € N*\ K. So we can again assert that N* + p is not contained in K.

The corresponding theorem for K follows in the same way from Theorem
3. ]
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