This paper was published in Semigroup Forum 52 (1996), 357-364. To the best of my knowledge, this is the final version as it was submitted to the publisher.-NH

Prime Properties of the Smallest Ideal of $\beta \mathbb{N}$

Neil Hindman and Dona Strauss

Communicated by John Pym

1. Introduction

It is well known that the semigroup operation defined on a discrete semigroup S can be extended in a natural way to the Stone-Cech compactification βS. This is done as follows: for each $s \in S$, the map $t \mapsto s t$ from S to itself extends to a continuous map from βS to itself. The image of the element τ of βS under this extension is denoted by $s \tau$. Then, for each τ in βS, the map $s \mapsto s \tau$ again extends to a continuous map from βS to itself. The image of the element σ of βS under this second extension is denoted by $\sigma \tau$. Thus

$$
\sigma \tau=\operatorname{Lim}_{\alpha} \operatorname{Lim}_{\beta} s_{\alpha} t_{\beta}
$$

where $\left(s_{\alpha}\right),\left(t_{\beta}\right)$ denote nets in S converging to σ, τ respectively in βS.
The extended operation is associative, so that βS is again a semigroup. It is a compact right topological semigroup because, for each τ in βS, the map $\rho_{\tau}: \sigma \mapsto \sigma \tau$ from βS to itself is continuous. (At this point, the reader should be warned that the semigroup operation on S is frequently extended in the opposite order, making S a left topological semigroup).

Compact right topological semigroups have remarkable algebraic properties (Cf. [1] or [8]). The one with which we shall be concerned in this paper is that any such semigroup has a smallest ideal, which is the union of all the minimal left ideals and also of all the minimal right ideals. It is a union of groups; and so, for any element x in the smallest ideal, there will be an idempotent in the smallest ideal which is both a left identity and a right identity for x.

In this paper, we shall be concerned with $\beta \mathbb{N}$, the Stone-Cech compactification of the set \mathbb{N} of positive integers. The operation which we extend is ordinary addition and we shall denote it additively even though it is wildly non-commutative.

The semigroup ($\beta \mathbb{N},+$) has interested several mathematicians. It is interesting in itself, as a natural extension of the most familiar of all semigroups. It is, in a sense, the largest possible extension of $(\mathbb{N},+)$. It also has significant applications to combinatorial number theory [4] and to topological dynamics [3].

We remind the reader that the points of $\beta \mathbb{N}$ can be regarded as ultrafilters on \mathbb{N}, with the points of \mathbb{N} itself corresponding to the principal ultrafilters. The topology of $\beta \mathbb{N}$ can be defined by taking the sets of the form

The first author acknowledges support received from the National Science Foundation (USA) via grant DMS 9025025
$U_{A}=\{x \in \beta \mathbb{N}: A \in x\}$ as a base for the open sets, where A denotes a subset of \mathbb{N}. The sets U_{A} are then clopen, and, for every $A \subseteq \mathbb{N}, U_{A}=C l_{\beta \mathbb{N}} A$.

In this paper, \mathbb{N}^{*} will be used to denote $\beta \mathbb{N} \backslash \mathbb{N}$ and K will denote the smallest ideal of $\beta \mathbb{N}$.An idempotent in K will be called a minimal idempotent. For any $A \subseteq \mathbb{N}, C l A$ or \bar{A} will be used to denote $C l_{\beta \mathbb{N}} A$. It is not hard to see that \bar{K} is also an ideal of $\beta \mathbb{N}$.

It will be convenient to regard \mathbb{N} as embedded in \mathbb{Z} and $\beta \mathbb{N}$ as embedded in $\beta \mathbb{Z}$. We observe that \mathbb{Z} lies in the centre of $\beta \mathbb{Z}$ and that \mathbb{N}^{*} is a left ideal of $\beta \mathbb{Z}$.

We wish to explore the natural question of whether K or \bar{K} is prime. Is it possible to have $q+p \in K(\bar{K})$ if $q, p \in N^{*} \backslash K\left(N^{*} \backslash \bar{K}\right)$? We cannot answer this question, but can show that there are many elements $p(q)$ of \mathbb{N}^{*} with the property that $q+p \notin K$ whenever $q \in \mathbb{N}^{*} \backslash K\left(p \in \mathbb{N}^{*} \backslash K\right)$, and that similar results are valid for \bar{K}.

Lemma 1. For any countable subsets A and B of $\beta \mathbb{N}, \bar{A} \cap \bar{B} \neq \emptyset$ implies that $\bar{A} \cap B \neq \emptyset$ or $A \cap \bar{B} \neq \varnothing$.
Proof. This theorem, which is valid in any F-space, is due to Frolík. A proof can be found in [9, Lemma 1].

2. Prime properties of K and \bar{K}

The following theorem is trivial and is obviously valid in any compact right topological semigroup.

Theorem 1. Suppose that $q, p \in \mathbb{N}^{*} \backslash K$. If p is right cancellable in \mathbb{N}^{*}, $q+p \notin K$. If q is left cancellable in \mathbb{N}^{*}, we again have $q+p \notin K$.
Proof. If $q+p \in K$, then $q+p=e+q+p$ for some idempotent $e \in K$. If p is right cancellable, this implies that $q=e+q \in K$.

Similarly, if q is left cancellable, it will follow that $p \in K$.
Remark . Corresponding statements for \bar{K} are less trivial. It is known that, if $p, q \in \mathbb{N}^{*} \backslash \bar{K}$ and if p is right cancellable, then $q+p \notin \bar{K}[2]$. We shall give a short proof of this fact in Theorem 3, based on Theorem 2 below.

We do not know whether it is possible to have $p, q \in \mathbb{N}^{*} \backslash \bar{K}$ and $q+p \in \bar{K}$ if q is left cancellable. We shall show in Theorem 4 that it is not possible to have $p, q \in \mathbb{N}^{*} \backslash \bar{K}$ and $q+p \in \bar{K}$ if q has a neighbourhood in $\beta \mathbb{N}$ consisting of left cancellable elements.

We note that the set of elements of \mathbb{N}^{*} which are both right and left cancellable contains a dense open subset of \mathbb{N}^{*} [5, Corollary 4.5]. This gives us a rich set of elements $p(q)$ with the property that $q \in \mathbb{N}^{*} \backslash K\left(p \in \mathbb{N}^{*} \backslash K\right)$ implies that $q+p \notin K$. The corresponding remark for \bar{K} is also valid.

The following theorem is our basic tool for much of the remainder of this paper.

Theorem 2. Suppose that $p \in \mathbb{N}^{*} \backslash \bar{K}$ and that $B \subseteq \mathbb{N}$ satisfies $\bar{B} \cap K=\varnothing$ and $(\bar{B}+p) \cap \bar{K} \neq \emptyset$. Then there is a finite subset F of \mathbb{N} for which $-F+\bar{B}+p$ contains a left ideal of $\beta \mathbb{N}$.
Proof. Let V be a set containing $\bar{B}+p$ which is clopen in $\beta \mathbb{N}$. Then we will have $x \in V$ for some $x \in K$. We shall show that $\beta \mathbb{N}+x$ is covered by sets of the form $-n+V$, where $n \in \mathbb{N}$. To see this, let $y \in \beta \mathbb{N}+x$. Since $\beta \mathbb{N}+x$ is a
minimal left ideal, $x \in \beta \mathbb{N}+y=C l(\mathbb{N}+y)$. So $n+y \in V$ and $y \in-n+V$ for some $n \in \mathbb{N}$. This shows that $\beta \mathbb{N}+x$ is covered by the sets of the form $-n+V$ and is therefore covered by a finite number of these sets.

Thus for every clopen neighbourhood V of $\bar{B}+p$, there is a finite subset F of \mathbb{N} for which $-F+V$ contains a left ideal of \mathbb{N}^{*}. Choose F_{V} such that $-F_{V}+V$ contains a left ideal of \mathbb{N}^{*} and has max F_{V} as small as possible among all such sets.

We now claim that there is one finite subset F of \mathbb{N} such that, for every clopen neighbourhood V of $\bar{B}+p,-F+V$ contains a left ideal of \mathbb{N}^{*}. Suppose instead that there is a sequence $\left(V_{n}\right)$ for which $\max F_{V_{n}} \rightarrow \infty$. For each $n \in \mathbb{N}$, we define a function $\phi_{n}: B \rightarrow p$ by $\phi_{n}(b)=-b+\left(V_{n} \cap \mathbb{N}\right)$. (If $b \in B, V_{n} \cap \mathbb{N} \in b+p$ and so $-b+\left(V_{n} \cap \mathbb{N}\right) \in p$.) Choose $A \in p$ for which $\bar{A} \cap K=\emptyset$ and define a function $\phi: B \rightarrow p$ by $\phi(b)=\left(\bigcap_{n \leq b} \phi_{n}(b)\right) \cap A$. Let $V=C l\left(\bigcup_{b \in B}(b+\phi(b))\right.$. Then V is a clopen subset of $\beta \mathbb{N}$ containing $\bar{B}+p$. (To see this, let $q \in \bar{B}$. For each $b \in B, b+p \in C l(b+\phi(b))$ because $p \in C l \phi(b)$. Since $\left.q+p \in C l\{b+p: b \in B\}, q+p \in C l\left(\bigcup_{b \in B}(b+\phi(b))\right).\right)$

Observe that $K \cap C l(r+\phi(b))=\emptyset$ for every $r \in \mathbb{Z}$ and every $b \in B$. This follows from the fact that K is a left ideal in $\beta \mathbb{Z}$ and so $K=-r+K$, and we know that $K \cap C l \phi(b)=\varnothing$.

Then $-F_{V}+V$ contains a minimal left ideal L of \mathbb{N}^{*}. Since $L \subseteq K$,

$$
L \cap C l\left(\bigcup_{b \in B, b \leq n}\left(-F_{V}+b+\phi(b)\right)\right)=\emptyset
$$

for every $n \in \mathbb{N}$. However, if $b>n, \phi(b) \subseteq \phi_{n}(b)$ and so

$$
L \subseteq C l\left(\bigcup_{b \in B, b>n}\left(-F_{V}+b+\phi_{n}(b)\right)\right) \subseteq-F_{V}+V_{n} .
$$

Since $\max F_{V_{n}}$ was chosen to be as small as possible, this implies that $\max F_{V_{n}} \leq$ $\max F_{V}$, contradicting the assumption that $\max F_{V_{n}} \rightarrow \infty$.

We therefore have a finite subset F of \mathbb{N} such that, for every clopen neighbourhood V of $\bar{B}+p,-F+V$ contains a left ideal of \mathbb{N}^{*}, as claimed.

For each such V, there will be a maximum left ideal of $\beta \mathbb{N}, L_{V} \subseteq$ $-F+V$, because a union of left ideals is again a left ideal. L_{V} will be closed, because the closure of a left ideal of $\beta \mathbb{N}$ is also a left ideal. (This can be seen as follows: Let M be a left ideal of $\beta \mathbb{N}$. For each $n \in \mathbb{N}, n+\bar{M}=C l(n+M) \subseteq \bar{M}$, and so $\beta \mathbb{N}+\bar{M}=C l(\mathbb{N}+\bar{M}) \subseteq \bar{M}$.) Clearly, if V and V^{\prime} are clopen neighbourhoods of $\bar{B}+p$, we will have $L_{V} \cap L_{V^{\prime}} \subseteq L_{V \cap V^{\prime}}$. Thus the sets L_{V} have the finite intersection property and hence have a non-empty intersection. This will be a left ideal contained in $\bigcap_{V}(-F+V)=-F+\bigcap_{V} V=-F+\bar{B}+p$.

We now observe that we can replace $-F$ in Theorem 2 by F.
Corollary 1. Under the conditions of Theorem 2, there is a finite subset F of \mathbb{N} for which $F+\bar{B}+p$ contains a left ideal.
Proof. There will be a finite subset G of \mathbb{N} for which $-G+\bar{B}+p$ contains a left ideal, and which therefore contains a minimal left ideal L (by Theorem 2). Choose $r \in \mathbb{N}$ satisfying $r>\operatorname{maxG}$. Since r is in the centre of $\beta \mathbb{N}, r+L$ is a left ideal contained in L and so $L=r+L \subseteq r-G+\bar{B}+p$. Hence we can choose $F=r-G \subseteq \mathbb{N}$.

Corollary 2. Let $p \in \mathbb{N}^{*} \backslash \bar{K}$. If there exists $q \in \mathbb{N}^{*} \backslash \bar{K}$ such that $q+p \in \bar{K}$, then there exists $q^{\prime} \in \mathbb{N}^{*} \backslash \bar{K}$ such that $q^{\prime}+p$ is a minimal idempotent.
Proof. Pick $B \in q$ such that $\bar{B} \cap K=\emptyset$. Pick finite $F \subseteq \mathbb{N}$ and a minimal left ideal L of \mathbb{N}^{*} with $L \subseteq-F+\bar{B}+p$, by Theorem 2 . Pick $n \in F$ and $x \in \bar{B}$ such that $-n+x+p$ is an idempotent in L. Let $q^{\prime}=-n+x$. Then $q^{\prime} \notin \bar{K}$ since $n+q^{\prime}=x \notin \bar{K}$.

Theorem 3. Suppose that $p \in \mathbb{N}^{*} \backslash \bar{K}$ is right cancellable in \mathbb{N}^{*}. Then, if $q \in \mathbb{N}^{*} \backslash \bar{K}$, it follows that $q+p \notin \bar{K}$.

Proof. Let $B \in q$ satisfy $\bar{B} \cap K=\emptyset$. If $q+p \in \bar{K}$, Theorem 2 implies that there will be a finite subset F of \mathbb{N} for which $-F+\bar{B}+p$ intersects K. Thus $x+p \in K$ for some $x \in-F+\bar{B}$. Since $x+p=e+x+p$ for some minimal idempotent e and since p is right cancellable, this implies that $x=e+x \in K$. However, this is a contradiction, because the fact that $\bar{B} \cap K=\emptyset$ implies that $(-F+\bar{B}) \cap K=\emptyset$.

Theorem 4. Suppose that there is a set $B \in q$ with the property that every element of \bar{B} is left cancellable in \mathbb{N}^{*}. Then, if $p \in \mathbb{N}^{*} \backslash \bar{K}$, it follows that $q+p \notin \bar{K}$.
Proof. If $q+p \in \bar{K}$, we must have $-n+x+p \in K$ for some $n \in \mathbb{N}$ and some $x \in \bar{B}$ (by Theorem 2). Thus $-n+x+p=-n+x+p+e$ for some minimal idempotent e. Since $-n$ and x are left cancellable, it follows that $p=p+e \in K$ - a contradiction.

Recall that a p-point of \mathbb{N}^{*} is a point q with the property that the intersection of countably many neighbourhoods of q is again a neighbourhood of q (in $\left.\mathbb{N}^{*}\right)$.

Corollary 3. Let p be a p-point of \mathbb{N}^{*}.
(a) If $q \notin K$, then $p+q \notin K$ and $q+p \notin K$.
(b) If $q \notin \bar{K}$, then $p+q \notin \bar{K}$ and $q+p \notin \bar{K}$.

Proof. By [9, Theorem 1] p is right cancellable, since $p \notin p+\beta \mathbb{N}$ (if it were, it would be an accumulation point of the countable subset $\mathbb{N}+p$ of $\left.\mathbb{N}^{*}\right)$. By the proof of [5, Theorem 4.7] there is a member B of p such that every member of \bar{B} is left cancellable. (Be cautioned that in [5] $\beta \mathbb{N}$ is taken to be left rather than right topological.) Since no point of K is left cancellable, one has $\bar{B} \cap K=\emptyset$ and hence $p \notin \bar{K}$. Thus Theorems 1,3 and 4 apply.

Theorem 5. If \bar{K} is not prime, then K is not prime.
Proof. Suppose that $p, q \in \mathbb{N}^{*} \backslash \bar{K}$ and $q+p \in \bar{K}$. Pick $B \in q$ such that $\bar{B} \cap K=\emptyset$. By Theorem 2 pick $x \in \bar{B}$ and $n \in \mathbb{N}$ with $-n+x+p \in K$. Since $x \in \bar{B}, x \notin K$ and so $-n+x \notin K$.

Theorem 6. K and \bar{K} both have the property that they are prime if and only if they are semi-prime.
Proof. Suppose that $p, q \in \mathbb{N}^{*} \backslash K$ and that $q+p \in K$. It was shown in [10, Theorem 2] that there would be an element x of \mathbb{N}^{*} for which $x+q$ would be right cancellable. So we may replace q by $x+q$ and suppose that q is right cancellable. Hence $p+q \notin K$ (by Theorem 1). However, $(p+q)+(p+q) \in K$ and so K is not semi-prime.

Now suppose that $p, q \in \mathbb{N}^{*} \backslash \bar{K}$ and that $q+p \in \bar{K}$. Since $q \notin K$, it follows from [10, Theorem 2] that there is an infinite increasing sequence $\left\langle m_{n}\right\rangle_{n=1}^{\infty}$ of positive integers such that $m_{n} \mid m_{n+1}$ for each n and $x+q$ is right cancellable for every $x \in C l\left\{m_{n}: n \in \mathbb{N}\right\}$. By [5, Corollary 4.4$]$ every such x is left cancellable. Thus $x+q \notin \bar{K}$ by Theorem 4 . Thus we may presume that q is right cancellable and hence that $p+q \notin \bar{K}$ (by Theorem 3). Then the fact that $(p+q)+(p+q) \in \bar{K}$ shows that \bar{K} is not semi-prime.

Let T denote $\bigcap_{n=1}^{\infty} C l(\mathbb{N} n)$.
Lemma 2. For every $x \in \mathbb{N}^{*}$ there exists $y \in \mathbb{N}^{*}$ satisfying:
i) $y+x \in T$;
ii) $x+y \in T$;
iii) y is right cancellable;
iv) y has a neighbourhood consisting of left cancellable elements.

Proof. For each $n \in \mathbb{N}, q_{n}$ will denote the canonical homomorphism from \mathbb{Z} onto \mathbb{Z}_{n}. It is not hard to see that $q_{n}^{\beta}: \beta \mathbb{Z} \rightarrow \mathbb{Z}_{n}$ is also a homomorphism.

We can inductively choose a sequence $\left\langle m_{n}\right\rangle_{n=1}^{\infty}$ of positive integers satisfying $m_{n+1}-m_{n} \rightarrow \infty$ and $q_{k}\left(m_{n}\right)=-q_{k}^{\beta}(x)$ for every $k=1,2, . ., n$. That this is possible can be seen as follows: given $n \in \mathbb{N},\left\{r \in \mathbb{N}: q_{k}(r)=q_{k}^{\beta}(x)\right.$ for every $k=1,2, . ., n\}$ is a member of x. Pick r in this set. Then, for any $m \in \mathbb{N}$, $q_{k}(m \cdot n!-r)=-q_{k}^{\beta}(x)$.

Now let $y \in \mathbb{N}^{*} \cap C l\left\{m_{n}: n \in \mathbb{N}\right\}$. Since $q_{k}^{\beta}(y)=-q_{k}^{\beta}(x)$ for every $k \in \mathbb{N}, x+y \in T$ and $y+x \in T$.

By the remark on p .241 of $[9], y \notin \mathbb{N}^{*}+\mathbb{N}^{*}$ and y is therefore right cancellable.

It remains to show that any member of $C l\left\{m_{n}: n \in \mathbb{N}\right\}$ is left cancellable. Since every member of \mathbb{N} is left cancellable and we have assumed nothing about y except that it is in $C l\left\{m_{n}: n \in \mathbb{N}\right\}$, it is sufficient to show that y is left cancellable.

We first note that that there is at most one $a \in \mathbb{N}$ satisfying $q_{k}(a)=$ $-q_{k}^{\beta}(x)$ for every $k \in \mathbb{N}$. For, if $a, b \in \mathbb{N}$ and $a<b$, then $q_{k}(a) \neq q_{k}(b)$ if $k \geq b$. Thus we suppose that the sequence $\left\langle m_{n}\right\rangle_{n=1}^{\infty}$ does not contain an integer a with this property, because we could delete such an integer if necessary.

Suppose that $y+u=y+v$ for some $u, v \in \beta \mathbb{N}$. This implies that $q_{k}(u)=q_{k}(v)$ for every $k \in \mathbb{N}$. Since $y+u \in C l\left\{m_{n}+u: n \in \mathbb{N}\right\}$ and $y+v \in C l\left\{m_{n}+v: n \in \mathbb{N}\right\}$, an application of Lemma 1 allows us to suppose that $m_{n}+u=y^{\prime}+v$ for some $n \in \mathbb{N}$ and some $y^{\prime} \in C l\left\{m_{n}: n \in \mathbb{N}\right\}$. We then have $q_{k}\left(m_{n}\right)=q_{k}\left(y^{\prime}\right)$ for every $k \in \mathbb{N}$. We have, however, ruled out this possibility, and so $y^{\prime} \in \mathbb{N}$. But then $y^{\prime}=m_{n}$ and therefore $u=v$ because integers are cancellable in $\beta \mathbb{Z}$.

Theorem 7. If $q, p \in \mathbb{N}^{*} \backslash K$ and $q+p \in K$, then $q+p^{\prime} \in K$ for some $p^{\prime} \in T \cap\left(\mathbb{N}^{*} \backslash K\right)$ and $q^{\prime}+p \in K$ for some $q^{\prime} \in T \cap\left(\mathbb{N}^{*} \backslash K\right)$.

The same statement holds if K is replaced by \bar{K}.
Proof. The proof is an immediate consequence of Lemma 2 and Theorems 1, 3 and 4.

Corollary 4. $K(\bar{K})$ is prime if and only if $K \cap T(\bar{K} \cap T)$ is prime.
In a similar vein, we have the following result, which we can only establish for K and for the left hand argument.

Theorem 8. If $q, p \in \mathbb{N}^{*} \backslash K$ and $q+p \in K$, then there is an idempotent $q^{\prime} \in \mathbb{N}^{*} \backslash K$ such that $q^{\prime}+p \in K$.
Proof. Pick a minimal left ideal L with $q+p \in L$. Then $\left\{x \in \mathbb{N}^{*}: x+p \in L\right\}$ is a compact semigroup which contains a right cancellable element x. (By [10, Theorem 2] there will be some y such that $y+q$ is right cancellable. Let $x=y+q$.) The smallest compact semigroup containing x misses $K[6$, Theorem 2.3]. This semigroup necessarily contains idempotents [3, Corollary 2.10].

Theorem 9. There are elements q of \mathbb{N}^{*} which are not left cancellative and have the property that $q+p \notin \bar{K}$ whenever $p \in \mathbb{N}^{*} \backslash \bar{K}$. In fact, there are idempotents with this property.
Proof. We choose an infinite increasing sequence $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ of positive integers for which $x_{1}=1$ and x_{n} is a factor of x_{n+1} for every $n=1,2,3, \ldots$. Every positive integer m has a unique expression as $m=\sum_{1}^{\infty} a_{n} x_{n}$, where each a_{n} is an integer satisfying $0 \leq a_{n}<x_{n+1} / x_{n}$. (This can be seen as follows: a_{1} is the remainder obtained when m is divided by x_{2}; then $a_{2} x_{2}$ is the remainder obtained when $m-a_{1} x_{1}$ is divided by x_{3}, etc.) If m is expressed in this way, $\operatorname{supp} m$ will denote $\left\{n \in \mathbb{N}: a_{n} \neq 0\right\}$.

Now let M be any infinite subset of \mathbb{N} for which $\mathbb{N} \backslash M$ is infinite, and let $B=\{m \in \mathbb{N}$: supp $m \cap M=\emptyset\}$.

We observe that $\bar{B} \cap T$ is a semigroup. To see this, suppose that $x, y \in$ $\bar{B} \cap T$. For any $m, n \in B$ satisfying $\min (\operatorname{supp} n)>\max ($ supp $m), m+n \in B$. Allowing n to converge to y shows that $m+y \in \bar{B}$. Then allowing m to converge to x shows that $x+y \in \bar{B}$. Thus \bar{B} will contain idempotents.

We claim that for any element $q \in \bar{B}$ and any $p \in \mathbb{N}^{*} \backslash \bar{K}, q+p \notin \bar{K}$.
In the light of Lemma 2 and Theorem 3, it suffices to prove our claim under the additional assumption that $p \in T$. (For pick right cancellable y with $p+y \in T$. By theorem $3, p+y \notin \bar{K}$. If $q+p+y \notin \bar{K}$, then of course $q+p \notin \bar{K}$.)

If $q+p \in \bar{K}$, there will be a finite subset F of \mathbb{N} for which $F+\bar{B}+p$ contains a left ideal L of $\beta \mathbb{N}$ (by Corollary 1). There will clearly be a positive integer k with the property that supp $n \cap M \cap(k, \infty)=\emptyset$ for every $n \in F+B$. Let $m \in M$ satisfy $m>k$ and let $A=\{a \in \mathbb{N}: \operatorname{supp} a \cap M \cap(k, m]=\varnothing\}$. We claim that $F+\bar{B}+p \subseteq \bar{A}$. To see this, let $x \in F+\bar{B}$. If $n, s \in \mathbb{N}$ satisfy $n \in F+B$ and $\min (\operatorname{supp} s)>m$ then $m+s \in A$. We can allow s to converge to p (since $p \in T$) and then allow n to converge to x, and hence deduce that $x+p \in \bar{A}$. However, $\left(x_{m}+A\right) \cap A=\varnothing$ and so $\left(x_{m}+\bar{A}\right) \cap \bar{A}=\varnothing$. This contradicts the inclusions $x_{m}+L \subseteq x_{m}+\bar{A}$ and $x_{m}+L \subseteq L \subseteq \bar{A}$.

In the following theorem we show that there are elements p of \mathbb{N}^{*} which are not right cancellable and have the property that $q+p \notin K$ if $q \in \mathbb{N}^{*} \backslash K$, as well as the property that $q+p \notin \bar{K}$ if $q \in \mathbb{N}^{*} \backslash \bar{K}$. Indeed, there idempotents p for which these statements hold.

Following [8], we define a quasi-order \leq_{R} on the elements of \mathbb{N}^{*} by stating that $x \leq_{R} y$ if $y+x=x$. It was shown in [8] that every idempotent in \mathbb{N}^{*} is dominated in this quasi-order by an idempotent which is \leq_{R}-maximal. If p is a \leq_{R}-maximal idempotent, then, by [7, Lemma 3.1 and Theorem 3.5] there is an idempotent q with $p \leq_{R} q$ such that the set $C=\left\{x \in \mathbb{N}^{*}: x+q=q\right\}$ is a finite right zero semigroup. But since p is \leq_{R}-maximal, one has that $C=\left\{x \in \mathbb{N}^{*}: x+p=p\right\}$. (We note that this implies that $p \notin K$, because any idempotent in K has $2^{\text {c }}$ left identities.) Furthermore, the map ρ_{p} is one-one on $\beta \mathbb{N} \backslash(\beta \mathbb{N}+C)$.

Theorem 10. Let p be $a \leq_{R}$-maximal idempotent of \mathbb{N}^{*}. If $q \in \beta \mathbb{N} \backslash K$, $q+p \notin K$.
Proof. Suppose, on the contrary, that $q+p \in K$. Then $q+p=e+q+p$ for some minimal idempotent e.

Let $C=\left\{x \in \mathbb{N}^{*}: x+p=p\right\}$. As observed above, C is finite and, for all $x, y \in C, x+y=y$. Note first that $q \notin \beta \mathbb{N}+C$. For, if we had $q=u+c$ for some $u \in \beta \mathbb{N}$ and some $c \in C$, we would have $q=q+c=q+(p+c) \in K$. Thus we may pick $X \in q$ such that $\bar{X} \cap(\beta \mathbb{N}+C)=\emptyset$. (Since C is finite, $\beta \mathbb{N}+C$ is compact.)

Next we claim that $e+q \notin \beta \mathbb{N}+C$. Indeed, if $e+q \in \beta \mathbb{N}+c$ for some $c \in C$, then by [9, Theorem 2], $q \in \beta \mathbb{N}+c$ or $c \in \beta \mathbb{N}+q$. We have already seen that the first of these alternatives is impossible. But if $c \in \beta \mathbb{N}+q$, then $p=c+p \in \beta \mathbb{N}+q+p \subseteq K$. Thus the second alternative is ruled out too.

Since $e+q \notin \beta \mathbb{N}+C$, we can choose $Y \in e+q$ such that $\bar{Y} \cap(\beta \mathbb{N}+C)=\varnothing$. Since $e+q \in K$ and $q \notin K$, we may assume that $X \cap Y=\varnothing$.

Since $q+p \in C l(X+p)$ and $e+q+p \in C l(Y+p)$ it follows from Lemma 1 that $n+p=y+p$ for some $n \in X$ and some $y \in \bar{Y}$, or else $x+p=n+p$ for some $x \in X$ and some $y \in \bar{Y}$. Since $m+p \neq n+p$ if $m, n \in \mathbb{N}$ and $m \neq n$ (as can be seen by considering congruences), we can take y or x to be in \mathbb{N}^{*}.

But the first possibility implies that $p=-n+y+p$ and hence that $-n+y \in C$, contradicting our assumption that $Y \cap(\beta \mathbb{N}+C)=\varnothing$. Similarly, the second possibility contradicts the assumption that $\bar{X} \cap(\beta \mathbb{N}+C)=\varnothing$.

We have already noted that, if e is any idempotent in \mathbb{N}^{*}, there is a \leq_{R}-maximal idempotent p satisfying $e \leq_{R} p$. If $e \notin \bar{K}$ then $p \notin \bar{K}$. So there are \leq_{R}-maximal idempotents in $\mathbb{N}^{*} \backslash \bar{K}$.

Theorem 11. Suppose that p is a \leq_{R}-maximal idempotent in $\mathbb{N}^{*} \backslash \bar{K}$. Then, if $q \in \mathbb{N}^{*} \backslash \bar{K}$, it follows that $q+p \notin \bar{K}$.
Proof. Exactly as in the proof of Theorem 10, we can show that $q \notin \beta \mathbb{Z}+C$. Hence there is a set $X \in q$ for which $\bar{X} \cap(\beta \mathbb{Z}+C)=\varnothing$ and $\bar{X} \cap \bar{K}=\varnothing$. We note that $(n+\bar{X}) \cap(\beta \mathbb{Z}+C)=\varnothing$ for every $n \in \mathbb{Z}$.

Suppose that $q+p \in \bar{K}$. There will be a finite subset F of \mathbb{N} for which $-F+\bar{X}+p$ contains a minimal left ideal L (by Theorem 2). Observe that $(-F+\bar{X}) \cap(\beta \mathbb{Z}+C)=\varnothing$.

Let $x \in L$. Then $x=y+p$ for some $y \in-F+\bar{X}$. For each $n \in \mathbb{N}$, $n+x \in L$ and so $n+x=y_{n}+p$ for some $y_{n} \in-F+\bar{X}$. Now $n+y \notin \beta \mathbb{N}+C$ and $y_{n} \notin \beta \mathbb{N}+C$. Since ρ_{p} is one-one on $\beta \mathbb{N} \backslash(\beta \mathbb{N}+C)$, it follows that $n+y=y_{n}$. This implies that $n+y \in-F+\bar{X}$ and hence that $\beta \mathbb{N}+y \subseteq-F+\bar{X}$. But this contradicts our assumption that $(-F+\bar{X}) \cap K=\varnothing$.

The following theorem is trivial, but seems worth noting.
Theorem 12. If $p \in \mathbb{N}^{*} \backslash K\left(\mathbb{N}^{*} \backslash \bar{K}\right)$, then $\mathbb{N}^{*}+p$ is not contained in K (\bar{K}).
Proof. Suppose that $p \in \mathbb{N}^{*} \backslash K$. If p is not right cancellable, $p \in \mathbb{N}^{*}+p[9$, Theorem 1] and so $\mathbb{N}^{*}+p$ is not contained in K.

Otherwise, if p is right cancellable, $q+p \notin K$ (by Theorem 1) if $q \in \mathbb{N}^{*} \backslash K$. So we can again assert that $\mathbb{N}^{*}+p$ is not contained in K.

The corresponding theorem for \bar{K} follows in the same way from Theorem 3.

References

[1] Berglund, J., H. Junghenn and P. Milnes, "Analysis on Semigroups," Wiley, New York, 1989.
[2] Davenport, D., and N. Hindman, Subprincipal closed ideals in $\beta \mathbb{N}$, Semigroup Forum 36(1987), 223-245.
[3] Ellis, R., "Lectures on Topological Dynamics," Benjamin, New York, 1969.
[4] Hindman, N., The semigroup $\beta \mathbb{N}$ and its applications to number theory, in "The analytical and topological theory of semigroups," (K. Hofmann, J. Lawson and J. Pym, eds), Walter de Gruyter \& Co., Berlin, 1990, 347-360.
[5] Hindman, N., and D. Strauss, Cancellation in the Stone-Čech compactification of a discrete semigroup, Proc. Edinburgh Math. Soc. 37(1994), 379-397.
[6] Hindman, N., and D. Strauss, Chains of idempotents in $\beta \mathbb{N}$, Proc. Amer. Math. Soc., to appear.
[7] Hindman, N., and D. Strauss, Nearly prime subsemigroups of $\beta \mathbb{N}$, Semigroup Forum, to appear.
[8] Ruppert, W., "Compact Semitopological Semigroups: An Intrinsic Theory," Lecture Notes in Math. 1079, Springer-Verlag, Berlin, 1984.
[9] Strauss, D., Semigroup structures on $\beta \mathbb{N}$, Semigroup Forum 44(1992), 238-244.
[10] Strauss, D., Ideals and commutativity in $\beta \mathbb{N}$, Topology and its Applications, to appear.

Department of Mathematics
Howard University
Washington, DC 20059
USA

Department of Pure Mathematics
University of Hull
Hull HU6 7RX
United Kingdom

