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1. Introduction

It is well known that the semigroup operation defined on a discrete
semigroup S can be extended in a natural way to the Stone-Čech compactification
βS. This is done as follows: for each s ∈ S , the map t 7→ st from S to itself
extends to a continuous map from βS to itself. The image of the element τ of
βS under this extension is denoted by sτ . Then, for each τ in βS, the map
s 7→ sτ again extends to a continuous map from βS to itself. The image of the
element σ of βS under this second extension is denoted by στ . Thus

στ = LimαLimβsαtβ

where (sα), (tβ) denote nets in S converging to σ , τ respectively in βS .
The extended operation is associative, so that βS is again a semigroup.

It is a compact right topological semigroup because, for each τ in βS, the map
ρ τ : σ 7→ στ from βS to itself is continuous. (At this point, the reader should be
warned that the semigroup operation on S is frequently extended in the opposite
order, making S a left topological semigroup).

Compact right topological semigroups have remarkable algebraic prop-
erties (Cf. [1] or [8] ). The one with which we shall be concerned in this paper is
that any such semigroup has a smallest ideal, which is the union of all the min-
imal left ideals and also of all the minimal right ideals. It is a union of groups;
and so, for any element x in the smallest ideal, there will be an idempotent in
the smallest ideal which is both a left identity and a right identity for x.

In this paper, we shall be concerned with β N , the Stone-Čech com-
pactification of the set N of positive integers. The operation which we extend
is ordinary addition and we shall denote it additively even though it is wildly
non-commutative.

The semigroup (β N ,+) has interested several mathematicians. It is
interesting in itself, as a natural extension of the most familiar of all semigroups.
It is, in a sense, the largest possible extension of (N ,+). It also has significant
applications to combinatorial number theory [4] and to topological dynamics [3].

We remind the reader that the points of βN can be regarded as ul-
trafilters on N , with the points of N itself corresponding to the principal ul-
trafilters. The topology of βN can be defined by taking the sets of the form
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UA = {x ∈ βN : A ∈ x} as a base for the open sets, where A denotes a subset of
N . The sets UA are then clopen, and, for every A ⊆ N , UA = ClβNA .

In this paper, N∗ will be used to denote βN \ N and K will denote the
smallest ideal of βN .An idempotent in K will be called a minimal idempotent.
For any A ⊆ N , ClA or A will be used to denote ClβNA . It is not hard to see
that K is also an ideal of βN .

It will be convenient to regard N as embedded in Z and βN as embedded
in βZ . We observe that Z lies in the centre of βZ and that N∗ is a left ideal of
βZ .

We wish to explore the natural question of whether K or K is prime. Is
it possible to have q +p ∈ K (K ) if q, p ∈ N∗ \K (N∗ \K)? We cannot answer
this question, but can show that there are many elements p (q) of N∗ with the
property that q + p /∈ K whenever q ∈ N∗ \ K (p ∈ N∗ \ K), and that similar
results are valid for K .

Lemma 1. For any countable subsets A and B of βN , A∩B 6= Ø implies that
A ∩B 6= Ø or A ∩B 6= Ø .
Proof. This theorem, which is valid in any F-space, is due to Froĺık. A proof
can be found in [9, Lemma 1].

2. Prime properties of K and K

The following theorem is trivial and is obviously valid in any compact
right topological semigroup.

Theorem 1. Suppose that q, p ∈ N∗ \ K . If p is right cancellable in N∗ ,
q + p /∈ K . If q is left cancellable in N∗ , we again have q + p /∈ K .
Proof. If q + p ∈ K, then q + p = e + q + p for some idempotent e ∈ K . If p
is right cancellable, this implies that q = e + q ∈ K .

Similarly, if q is left cancellable, it will follow that p ∈ K .

Remark . Corresponding statements for K are less trivial. It is known that,
if p, q ∈ N∗ \K and if p is right cancellable, then q + p /∈ K [2]. We shall give a
short proof of this fact in Theorem 3, based on Theorem 2 below.

We do not know whether it is possible to have p, q ∈ N∗\K and q+p ∈ K
if q is left cancellable. We shall show in Theorem 4 that it is not possible to have
p, q ∈ N∗ \K and q + p ∈ K if q has a neighbourhood in βN consisting of left
cancellable elements.

We note that the set of elements of N∗ which are both right and left
cancellable contains a dense open subset of N∗ [5, Corollary 4.5]. This gives us
a rich set of elements p (q) with the property that q ∈ N∗ \ K (p ∈ N∗ \ K)
implies that q + p /∈ K. The corresponding remark for K is also valid.

The following theorem is our basic tool for much of the remainder of this
paper.

Theorem 2. Suppose that p ∈ N∗ \K and that B ⊆ N satisfies B ∩K = Ø
and (B+p)∩K 6= Ø . Then there is a finite subset F of N for which −F +B+p
contains a left ideal of βN .
Proof. Let V be a set containing B + p which is clopen in βN. Then we will
have x ∈ V for some x ∈ K . We shall show that βN + x is covered by sets of
the form −n + V , where n ∈ N . To see this, let y ∈ βN + x. Since βN + x is a
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minimal left ideal, x ∈ βN + y = Cl(N + y). So n + y ∈ V and y ∈ −n + V for
some n ∈ N . This shows that βN + x is covered by the sets of the form −n + V
and is therefore covered by a finite number of these sets.

Thus for every clopen neighbourhood V of B +p , there is a finite subset
F of N for which −F + V contains a left ideal of N∗ . Choose FV such that
−FV +V contains a left ideal of N∗ and has max FV as small as possible among
all such sets.

We now claim that there is one finite subset F of N such that, for
every clopen neighbourhood V of B + p , −F + V contains a left ideal of N∗ .
Suppose instead that there is a sequence (Vn) for which max FVn

→ ∞ . For
each n ∈ N , we define a function φn : B → p by φn(b) = −b + (Vn ∩ N). ( If
b ∈ B , Vn ∩ N ∈ b + p and so −b + (Vn ∩ N) ∈ p .) Choose A ∈ p for which
A ∩K = Ø and define a function φ : B → p by φ(b) =

( ⋂
n≤b φn(b)

)
∩ A . Let

V = Cl
( ⋃

b∈B(b + φ(b)
)
. Then V is a clopen subset of βN containing B + p .

(To see this, let q ∈ B . For each b ∈ B, b+p ∈ Cl(b+φ(b)) because p ∈ Clφ(b).
Since q + p ∈ Cl{b + p : b ∈ B}, q + p ∈ Cl

( ⋃
b∈B(b + φ(b))

)
.)

Observe that K ∩ Cl(r + φ(b)) = Ø for every r ∈ Z and every b ∈ B.
This follows from the fact that K is a left ideal in βZ and so K = −r + K, and
we know that K ∩ Clφ(b) = Ø.

Then −FV + V contains a minimal left ideal L of N∗ . Since L ⊆ K ,

L ∩ Cl
( ⋃

b∈B,b≤n

(−FV + b + φ(b))
)

= Ø

for every n ∈ N . However, if b > n , φ(b) ⊆ φn(b) and so

L ⊆ Cl
( ⋃

b∈B,b>n

(−FV + b + φn(b))
)
⊆ −FV + Vn.

Since maxFVn was chosen to be as small as possible, this implies that maxFVn ≤
maxFV , contradicting the assumption that maxFVn →∞ .

We therefore have a finite subset F of N such that, for every clopen
neighbourhood V of B + p , −F + V contains a left ideal of N∗ , as claimed.

For each such V , there will be a maximum left ideal of βN , LV ⊆
−F + V , because a union of left ideals is again a left ideal. LV will be closed,
because the closure of a left ideal of βN is also a left ideal. (This can be seen as
follows: Let M be a left ideal of βN . For each n ∈ N , n+M = Cl(n+M) ⊆ M ,
and so βN + M = Cl(N + M) ⊆ M .) Clearly, if V and V ′ are clopen
neighbourhoods of B + p , we will have LV ∩ LV ′ ⊆ LV ∩V ′ . Thus the sets LV

have the finite intersection property and hence have a non-empty intersection.
This will be a left ideal contained in

⋂
V (−F +V ) = −F +

⋂
V V = −F +B+p .

We now observe that we can replace −F in Theorem 2 by F .

Corollary 1. Under the conditions of Theorem 2, there is a finite subset F
of N for which F + B + p contains a left ideal.

Proof. There will be a finite subset G of N for which −G+B + p contains a
left ideal, and which therefore contains a minimal left ideal L (by Theorem 2).
Choose r ∈ N satisfying r > maxG. Since r is in the centre of βN , r + L is
a left ideal contained in L and so L = r + L ⊆ r − G + B + p . Hence we can
choose F = r −G ⊆ N .
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Corollary 2. Let p ∈ N∗ \K . If there exists q ∈ N∗ \K such that q +p ∈ K ,
then there exists q′ ∈ N∗ \K such that q′ + p is a minimal idempotent.

Proof. Pick B ∈ q such that B ∩K = Ø. Pick finite F ⊆ N and a minimal
left ideal L of N∗ with L ⊆ −F + B + p, by Theorem 2. Pick n ∈ F and x ∈ B
such that −n + x + p is an idempotent in L . Let q′ = −n + x . Then q′ /∈ K
since n + q′ = x /∈ K .

Theorem 3. Suppose that p ∈ N∗ \ K is right cancellable in N∗ . Then, if
q ∈ N∗ \K , it follows that q + p /∈ K .

Proof. Let B ∈ q satisfy B ∩K = Ø. If q + p ∈ K , Theorem 2 implies that
there will be a finite subset F of N for which −F + B + p intersects K . Thus
x + p ∈ K for some x ∈ −F + B . Since x + p = e + x + p for some minimal
idempotent e and since p is right cancellable, this implies that x = e + x ∈ K .
However, this is a contradiction, because the fact that B ∩K = Ø implies that
(−F + B) ∩K = Ø.

Theorem 4. Suppose that there is a set B ∈ q with the property that every
element of B is left cancellable in N∗ . Then, if p ∈ N∗ \ K , it follows that
q + p /∈ K .
Proof. If q +p ∈ K , we must have −n+x+p ∈ K for some n ∈ N and some
x ∈ B (by Theorem 2). Thus −n + x + p = −n + x + p + e for some minimal
idempotent e . Since −n and x are left cancellable, it follows that p = p+e ∈ K
– a contradiction.

Recall that a p-point of N∗ is a point q with the property that the
intersection of countably many neighbourhoods of q is again a neighbourhood of
q (in N∗ ).

Corollary 3. Let p be a p-point of N∗ .
(a) If q /∈ K , then p + q /∈ K and q + p /∈ K .
(b) If q /∈ K , then p + q /∈ K and q + p /∈ K .

Proof. By [9, Theorem 1] p is right cancellable, since p /∈ p + βN (if it were,
it would be an accumulation point of the countable subset N+p of N∗ ). By the
proof of [5, Theorem 4.7] there is a member B of p such that every member of
B is left cancellable. (Be cautioned that in [5] βN is taken to be left rather than
right topological.) Since no point of K is left cancellable, one has B ∩ K = Ø
and hence p /∈ K . Thus Theorems 1, 3 and 4 apply.

Theorem 5. If K is not prime, then K is not prime.
Proof. Suppose that p, q ∈ N∗ \ K and q + p ∈ K . Pick B ∈ q such that
B ∩K = Ø. By Theorem 2 pick x ∈ B and n ∈ N with −n + x + p ∈ K . Since
x ∈ B , x /∈ K and so −n + x /∈ K .

Theorem 6. K and K both have the property that they are prime if and only
if they are semi-prime.
Proof. Suppose that p, q ∈ N∗ \ K and that q + p ∈ K . It was shown in
[10, Theorem 2] that there would be an element x of N∗ for which x + q would
be right cancellable. So we may replace q by x + q and suppose that q is right
cancellable. Hence p + q /∈ K (by Theorem 1). However, (p + q) + (p + q) ∈ K
and so K is not semi-prime.
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Now suppose that p, q ∈ N∗ \ K and that q + p ∈ K . Since q /∈ K , it
follows from [10, Theorem 2] that there is an infinite increasing sequence 〈mn〉∞n=1
of positive integers such that mn|mn+1 for each n and x+ q is right cancellable
for every x ∈ Cl{mn : n ∈ N} . By [5, Corollary 4.4 ] every such x is left
cancellable. Thus x + q /∈ K by Theorem 4. Thus we may presume that q is
right cancellable and hence that p + q /∈ K (by Theorem 3). Then the fact that
(p + q) + (p + q) ∈ K shows that K is not semi-prime.

Let T denote
⋂∞

n=1 Cl(Nn).

Lemma 2. For every x ∈ N∗ there exists y ∈ N∗ satisfying:
i) y + x ∈ T ;
ii) x + y ∈ T ;
iii) y is right cancellable;
iv) y has a neighbourhood consisting of left cancellable elements.

Proof. For each n ∈ N , qn will denote the canonical homomorphism from Z
onto Zn . It is not hard to see that qβ

n : βZ → Zn is also a homomorphism.
We can inductively choose a sequence 〈mn〉∞n=1 of positive integers sat-

isfying mn+1 − mn → ∞ and qk(mn) = −qβ
k (x) for every k = 1, 2, .., n . That

this is possible can be seen as follows: given n ∈ N , {r ∈ N : qk(r) = qβ
k (x) for

every k = 1, 2, .., n} is a member of x . Pick r in this set. Then, for any m ∈ N ,
qk(m · n!− r) = −qβ

k (x).
Now let y ∈ N∗ ∩ Cl{mn : n ∈ N} . Since qβ

k (y) = −qβ
k (x) for every

k ∈ N , x + y ∈ T and y + x ∈ T .
By the remark on p.241 of [9], y /∈ N∗ + N∗ and y is therefore right

cancellable.
It remains to show that any member of Cl{mn : n ∈ N} is left can-

cellable. Since every member of N is left cancellable and we have assumed
nothing about y except that it is in Cl{mn : n ∈ N} , it is sufficient to show that
y is left cancellable.

We first note that that there is at most one a ∈ N satisfying qk(a) =
−qβ

k (x) for every k ∈ N . For, if a, b ∈ N and a < b , then qk(a) 6= qk(b) if k ≥ b .
Thus we suppose that the sequence 〈mn〉∞n=1 does not contain an integer a with
this property, because we could delete such an integer if necessary.

Suppose that y + u = y + v for some u, v ∈ βN . This implies that
qk(u) = qk(v) for every k ∈ N . Since y + u ∈ Cl{mn + u : n ∈ N} and
y + v ∈ Cl{mn + v : n ∈ N} , an application of Lemma 1 allows us to suppose
that mn + u = y′ + v for some n ∈ N and some y′ ∈ Cl{mn : n ∈ N} . We
then have qk(mn) = qk(y′) for every k ∈ N . We have, however, ruled out this
possibility, and so y′ ∈ N . But then y′ = mn and therefore u = v because
integers are cancellable in βZ .

Theorem 7. If q, p ∈ N∗ \ K and q + p ∈ K , then q + p′ ∈ K for some
p′ ∈ T ∩ (N∗ \K) and q′ + p ∈ K for some q′ ∈ T ∩ (N∗ \K) .

The same statement holds if K is replaced by K .
Proof. The proof is an immediate consequence of Lemma 2 and Theorems 1,
3 and 4.

Corollary 4. K (K) is prime if and only if K ∩ T (K ∩ T ) is prime.

In a similar vein, we have the following result, which we can only establish
for K and for the left hand argument.
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Theorem 8. If q, p ∈ N∗ \ K and q + p ∈ K , then there is an idempotent
q′ ∈ N∗ \K such that q′ + p ∈ K .

Proof. Pick a minimal left ideal L with q+p ∈ L . Then {x ∈ N∗ : x+p ∈ L}
is a compact semigroup which contains a right cancellable element x . (By [10,
Theorem 2] there will be some y such that y + q is right cancellable. Let
x = y+q .) The smallest compact semigroup containing x misses K [6, Theorem
2.3 ]. This semigroup necessarily contains idempotents [3, Corollary 2.10 ].

Theorem 9. There are elements q of N∗ which are not left cancellative and
have the property that q + p /∈ K whenever p ∈ N∗ \ K . In fact, there are
idempotents with this property.

Proof. We choose an infinite increasing sequence 〈xn〉∞n=1 of positive integers
for which x1 = 1 and xn is a factor of xn+1 for every n = 1, 2, 3, ... . Every
positive integer m has a unique expression as m =

∑∞
1 anxn , where each an

is an integer satisfying 0 ≤ an < xn+1/xn . (This can be seen as follows: a1 is
the remainder obtained when m is divided by x2 ; then a2x2 is the remainder
obtained when m − a1x1 is divided by x3 , etc.) If m is expressed in this way,
suppm will denote {n ∈ N : an 6= 0} .

Now let M be any infinite subset of N for which N \M is infinite, and
let B = {m ∈ N : supp m ∩M = Ø}.

We observe that B ∩ T is a semigroup. To see this, suppose that x, y ∈
B ∩ T. For any m,n ∈ B satisfying min(supp n) > max(supp m), m + n ∈ B.
Allowing n to converge to y shows that m+y ∈ B . Then allowing m to converge
to x shows that x + y ∈ B. Thus B will contain idempotents.

We claim that for any element q ∈ B and any p ∈ N∗ \K, q + p /∈ K.
In the light of Lemma 2 and Theorem 3, it suffices to prove our claim

under the additional assumption that p ∈ T. (For pick right cancellable y with
p+y ∈ T. By theorem 3, p+y /∈ K. If q +p+y /∈ K, then of course q +p /∈ K.)

If q + p ∈ K, there will be a finite subset F of N for which F + B + p
contains a left ideal L of βN (by Corollary 1). There will clearly be a positive
integer k with the property that supp n∩M ∩ (k,∞) = Ø for every n ∈ F +B.
Let m ∈ M satisfy m > k and let A = {a ∈ N : supp a ∩ M ∩ (k,m] = Ø} .
We claim that F + B + p ⊆ A . To see this, let x ∈ F + B . If n, s ∈ N satisfy
n ∈ F + B and min(supp s) > m then m + s ∈ A . We can allow s to converge
to p (since p ∈ T ) and then allow n to converge to x , and hence deduce that
x + p ∈ A . However, (xm + A) ∩ A = Ø and so (xm + A) ∩ A = Ø. This
contradicts the inclusions xm + L ⊆ xm + A and xm + L ⊆ L ⊆ A .

In the following theorem we show that there are elements p of N∗ which
are not right cancellable and have the property that q + p /∈ K if q ∈ N∗ \K , as
well as the property that q + p /∈ K if q ∈ N∗ \K . Indeed, there idempotents p
for which these statements hold.

Following [8], we define a quasi-order ≤R on the elements of N∗ by
stating that x ≤R y if y + x = x . It was shown in [8] that every idempotent in
N∗ is dominated in this quasi-order by an idempotent which is ≤R -maximal. If p
is a ≤R -maximal idempotent, then, by [7, Lemma 3.1 and Theorem 3.5] there is
an idempotent q with p ≤R q such that the set C = {x ∈ N∗ : x + q = q}
is a finite right zero semigroup. But since p is ≤R -maximal, one has that
C = {x ∈ N∗ : x + p = p} . (We note that this implies that p /∈ K , because any
idempotent in K has 2c left identities.) Furthermore, the map ρp is one-one on
βN \ (βN + C).
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Theorem 10. Let p be a ≤R -maximal idempotent of N∗ . If q ∈ βN \ K ,
q + p /∈ K .
Proof. Suppose, on the contrary, that q + p ∈ K . Then q + p = e + q + p for
some minimal idempotent e .

Let C = {x ∈ N∗ : x + p = p} . As observed above, C is finite and, for
all x, y ∈ C , x+ y = y . Note first that q /∈ βN+C . For, if we had q = u+ c for
some u ∈ βN and some c ∈ C , we would have q = q + c = q +(p+ c) ∈ K . Thus
we may pick X ∈ q such that X ∩ (βN + C) = Ø. (Since C is finite, βN + C is
compact.)

Next we claim that e + q /∈ βN + C . Indeed, if e + q ∈ βN + c for some
c ∈ C , then by [9, Theorem 2], q ∈ βN + c or c ∈ βN + q . We have already
seen that the first of these alternatives is impossible. But if c ∈ βN + q , then
p = c + p ∈ βN + q + p ⊆ K . Thus the second alternative is ruled out too.

Since e+q /∈ βN+C , we can choose Y ∈ e+q such that Y ∩(βN+C) = Ø.
Since e + q ∈ K and q /∈ K , we may assume that X ∩ Y = Ø.

Since q+p ∈ Cl(X +p) and e+q+p ∈ Cl(Y +p) it follows from Lemma
1 that n + p = y + p for some n ∈ X and some y ∈ Y , or else x + p = n + p for
some x ∈ X and some y ∈ Y . Since m + p 6= n + p if m,n ∈ N and m 6= n (as
can be seen by considering congruences), we can take y or x to be in N∗ .

But the first possibility implies that p = −n + y + p and hence that
−n + y ∈ C , contradicting our assumption that Y ∩ (βN + C) = Ø. Similarly,
the second possibility contradicts the assumption that X ∩ (βN + C) = Ø.

We have already noted that, if e is any idempotent in N∗ , there is a
≤R -maximal idempotent p satisfying e ≤R p . If e /∈ K then p /∈ K . So there
are ≤R -maximal idempotents in N∗ \K .

Theorem 11. Suppose that p is a ≤R -maximal idempotent in N∗ \K . Then,
if q ∈ N∗ \K , it follows that q + p /∈ K .
Proof. Exactly as in the proof of Theorem 10, we can show that q /∈ βZ + C .
Hence there is a set X ∈ q for which X ∩ ( βZ + C) = Ø and X ∩K = Ø. We
note that (n + X) ∩ (βZ + C) = Ø for every n ∈ Z .

Suppose that q + p ∈ K . There will be a finite subset F of N for which
−F + X + p contains a minimal left ideal L (by Theorem 2). Observe that
(−F + X) ∩ (βZ + C) = Ø.

Let x ∈ L . Then x = y + p for some y ∈ −F + X . For each n ∈ N ,
n+x ∈ L and so n+x = yn+p for some yn ∈ −F +X . Now n+y /∈ βN+C and
yn /∈ βN + C . Since ρp is one-one on βN \ (βN + C), it follows that n + y = yn .
This implies that n + y ∈ −F + X and hence that βN + y ⊆ −F + X . But this
contradicts our assumption that (−F + X) ∩K = Ø.

The following theorem is trivial, but seems worth noting.

Theorem 12. If p ∈ N∗ \ K (N∗ \ K) , then N∗ + p is not contained in K
(K) .
Proof. Suppose that p ∈ N∗ \K . If p is not right cancellable, p ∈ N∗ + p [9,
Theorem 1] and so N∗ + p is not contained in K .

Otherwise, if p is right cancellable, q + p /∈ K (by Theorem 1) if
q ∈ N∗ \K . So we can again assert that N∗ + p is not contained in K .

The corresponding theorem for K follows in the same way from Theorem
3.
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