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Abstract: We show that there exist relatively small subsemigroups M
of βN with the property that if p + q and q + p are in M then both p and q
are in M + Z . We also show that it is consistent with the usual axioms of set
theory that there is some idempotent e in βN such that if p + q = e , then both
p and q are in e + Z .

1. Introduction

In [11] it was shown that it is consistent with the usual axioms of set
theory that βN, the Stone-Čech compactification of the positive integers, has
maximal groups that are as small as possible. That is they are just copies of the
group Z of integers. It was shown in fact that if e is the identity of such a group
and p + q = q + p = e , then p and q are in e + Z .

Two natural questions are thus raised. The first is whether one can
prove the existence of such small groups without making any special set theoretic
assumptions. The second is whether these identities can be written in any
nontrivial way as a sum.

In Section 2 we address the first of these questions, producing without
special assumptions semigroups M that are in some senses “small” (though not
in cardinality) with the property that if p + q ∈ M and q + p ∈ M , then p and
q are in M + Z .

In Sections 4 and 5 we answer the second of these questions. That is, we
show that the continuum hypothesis (or even only Martin’s Axiom) implies the
existence of an idempotent e such that if q + p = e one has both q and p are in
e + Z . Additional consistency results are derived in these sections.

We take the points of βN to be the ultrafilters on N, the principal
ultrafilters being identified with the points of N. As is well known (see for
example [14]), there is an operation + on βN making (βN,+) a right topological
semigroup with N contained in, in fact equal to, its topological center. (By “right
topological” we mean ρp is continuous for each p ∈ N , where ρp(q) = q + p .
By “topological center” we mean the set of points x for which λx is continuous,
where λx(p) = x + p .) Given p and q in βN, the sum p + q is characterized as
follows. For A ⊆ N , A ∈ p + q if and only if {x ∈ N : A − x ∈ q} ∈ p where
A − x = {y ∈ N : y + x ∈ A} . Alternatively if 〈xi〉i∈I and 〈yj〉j∈J are nets in
N converging to p and q respectively, then p + q = limi∈I limj∈J(xi + yj).
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The special idempotents that we utilize are called “strongly summable
ultrafilters” and “divisibly strongly summable ultrafilters”. (The names come
from the fact that they are generated by special sets of sums, obviously not from
the fact that they are hard to write as sums.) The existence of these ultrafilters
follows from the continuum hypothesis, or even Martin’s Axiom. (See [12] and
Section 5 of this paper.) On the other hand their existence cannot be proved in
ZFC. (See [19] or [5].)

Following [16] we define pre-orders (i.e. reflexive and transitive relations)
on the elements of βN by p ≤R q if and only if either p = q or p = q + p and
p ≤L q if and only if either p = q or p = p + q .

It was shown by Ruppert [20, Theorem I.2.7] that any compact right
topological semigroup has ≤R -maximal elements. As we shall see in Section 4,
all strongly summable ultrafilters are ≤R -maximal. In fact if p is a strongly
summable ultrafilter, then {q ∈ βN : p ≤R q} is finite.

The reader should be cautioned when looking at references [11], [12],
[14], and [15] that there (βN,+) is taken to be left topological rather than right
topological. To make matters worse, in referring to [20], the semigroup (βN,+)
is called right topological but has the continuity making it what we call left
topological.

We write N∗ = βN\N . Recall that the ordinal ω = {0, 1, 2, . . .} =
N ∪ {0} . We shall occasionally refer to βZ. We will brush over the distinction
between ultrafilters on N and ultrafilters on Z with N as a member and thereby
pretend that βN ⊆ βZ (just as we are pretending that N ⊆ βN).

We shall have need of the following lemma, apparently due originally to
Froĺık.

Lemma 1.1. Let A and B be countable subsets of βN. If c`(A)∩ c`(B) 6= Ø ,
then either A ∩ c`(B) 6= Ø or B ∩ c`(A) 6= Ø .
Proof. See [22, Lemma 1].

2. Divisible Sequences and Nearly Prime Subsemigroups

We will be concerned here with ultrafilters living on the tails of finite
sums of sequences, especially of divisible sequences.

Definition 2.1. Let 〈xn〉∞n=1be a sequence in N.
(a) For each m ∈ N , FS(〈xn〉∞n=m ) = {Σn∈F xn : F is a finite nonempty

subset of N and minF ≥ m} .
(b) The sequence 〈xn〉∞n=1 is divisible if and only if for each n ∈ N ,

xn+1 > xn > 1 and xn divides xn+1 .
(c) M(〈xn〉∞n=1 ) =

⋂∞
m=1 c`(FS(〈xn〉∞n=m )).

It is especially convenient to work with divisible sequences for the fol-
lowing well known reason. If 〈xn〉∞n=1 is a divisible sequence and x0 = 1, then
each y ∈ N has a unique representation of the form Σn∈F bnxn where each
bn ∈ {1, 2, . . . , xn+1

xn
− 1} and F is a finite nonempty subset of ω = N ∪ {0} .

Further, given such an expression, xt divides y if and only if minF ≥ t . (Thus
most of one’s intuition gained from years of dealing with the special sequence
xn = 10n remains valid.)

It is well known and easy to see that if for each n , xn+1 > Σn
t=1 xt ,

then expressions in FS(〈xn〉∞n=1) are unique. That is, if Σn∈F xn = Σn∈G xn ,
then F = G . We shall have need of the following stronger result. (We take
Σt∈Ø xt = 0.)
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Lemma 2.2. Let 〈xn〉∞n=1 be a sequence in N such that for each n , xn+1 >
Σn

t=1 xt . Let y ∈ N and let r ∈ N with xr ≥ y . If F and G are finite subsets
of N and y + Σt∈G xt = Σt∈F xt and either G = Ø or minG > r , then G ⊆ F
and y = Σt∈F\G xt .

Proof. We proceed by induction on |G| , the case |G| = 0 being immediate.
So assume |G| > 0 and the result holds for smaller sets. Trivially F 6= Ø. Let
m = maxG and n = maxF . If we had m < n , then we would have

Σt∈F xt ≥ xn > Σn−1
t=1 xt ≥ xr + Σt∈G xt ≥ y + Σt∈G xt = Σt∈F xt,

a contradiction. If we had m > n then we would have

y + Σt∈G xt > xm > Σm−1
t=1 xt ≥ Σt∈F xt = y + Σt∈G,

a contradiction. Thus m = n . Let F ∗ = F\{m} and G∗ = G\{m} . Then
y + Σt∈G∗ xt = Σt∈F∗ xt so by our induction hypothesis G∗ ⊆ F ∗ and y =
Σt∈F∗\G∗ xt = Σt∈F\G xt .

We need no divisibility assumptions for our first theorem.

Theorem 2.3. Let 〈xn〉∞n=1 be a sequence in N and let M = M(〈xn〉∞n=1 ) .
Then M is a compact subsemigroup of βN. Assume xn+1 > Σn

t=1 xt for each n
and let p, q ∈ βN . If q ∈ M and p + q ∈ M , then p ∈ M .
Proof. For each m ∈ N , let Bm = FS(〈xn〉∞n=m ). To see that M is a
subsemigroup, let r, s ∈ M and let m ∈ N be given. We show that Bm ⊆ {y ∈
N : Bm − y ∈ s} so that Bm ∈ r + s . Let y ∈ Bm and pick F with minF ≥ m
such that y = Σt∈F xt . Let k = maxF +1. Then Bk ⊆ Bm− y so Bm− y ∈ s .

Now assume q ∈ M and p + q ∈ M . Let m ∈ M be given. We show
Bm ∈ p . We know Bm ∈ p + q so if C = {y ∈ N : Bm − y ∈ q} , then C ∈ p .
We show C ⊆ Bm so let y ∈ C . Pick k ∈ N such that xk ≥ y . Now Bk+1 ∈ q
and Bm − y ∈ q so pick z ∈ Bk+1 ∩ (Bm − y). Since z ∈ Bk+1 , pick G with
minG ≥ k+1 such that z = Σt∈G xt . Since z+y ∈ Bm , pick F with minF ≥ m
such that z + y = Σt∈F xt . Then by Lemma 2.2 we have y = Σt∈F\G xt so that
y ∈ Bm as required.

Observe that any divisible sequence satisfies the hypothesis of Theorem
2.3. Observe also that if 〈xn〉∞n=1 is any divisible sequence then M(〈xn〉∞n=1 ) ⊆⋂∞

n=1 c`(Nxn). Equality is possible, for example if xn = 2n for each n or more
generally if xn+1

xn
is eventually equal to 2. If on the other hand infinitely often

xn+1
xn

≥ 3 the inclusion will be proper.
We are grateful to the referee for pointing out the following algebraic

characterizations of M(〈xn〉∞n=1 ) and
⋂∞

n=1 c`(Nxn). The algebraic proofs of
several of the remaining results of this section are also due to the referee.

Given a divisible sequence 〈xn〉∞n=1 , let a0 = x1 and for each n ∈
N , let an = xn+1

xn
, and let ~a = 〈an〉∞n=0 . Then the product space ∆~a =∏∞

n=0 {0, 1, . . . , an − 1} is the familiar ring of ~a-adic integers. (See [9, §10, pp.
107-114].) We will only be concerned with the additive group thereof, where
addition is defined as in ordinary arithmetic. That is, given ~x and ~y in ∆~a ,
one adds coordinate by coordinate, starting at the lower order coordinates, and
reduces the sum by an and carries 1 to the next coordinate, whenever the nth
coordinate sum is at least an . Then the non-negative integers are naturally
identified with the members of ∆~a with finitely many non-zero coordinates.
Thus, given n ∈ N if n is identified with α(n) one has n = Σ∞t=0 αt(n) ·xt where
x0 = 1.
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In the following definition we suppress the dependence of α , µ , ~a , and
supp on the particular divisible sequence because we never work with more than
one at a time.

Definition 2.4. Let 〈xn〉∞n=1be a divisible sequence and let a0 = x1 and
an = xn+1

xn
for each n ∈ N . Then α : βN −→ ∆~a is the continuous extension

of the natural inclusion of N in ∆~a . For p ∈ βN , supp(p) = {t ∈ ω : αt(p) 6=
0} . Let N∞ denote the one point compactification N ∪ {∞} of N and define
µ : N −→ N∞ by µ(n) = max{αt(n) : t ∈ ω} . Denote also by µ its continuous
extension from βN to N∞ .

It should be observed that for p ∈ N∗ , µ(p) need not equal sup{αt(p) :
t ∈ ω} . To see this, let p be a cluster point of the sequence 〈xn〉∞n=1 . Given
t, k ∈ N one has αk(xt) is 1 if k = t and 0 otherwise. So µ(p) = 1. But
αt(p) = 0 for all t .

Lemma 2.5. The function µ is a homomorphism from α−1[{0}] to the semi-
group (N∞,max) .
Proof. If m,n ∈ N and supp(m)∩supp(n) = Ø, then for each t , αt(m+n) =
max{αt(m), αt(n)} .

Lemma 2.6. Let 〈xn〉∞n=1 be a divisible sequence.
(a)

⋂∞
n=1 c`(Nxn) = α−1[{0}] .

(b) M(〈xn〉∞n=1 ) = α−1[{0}] ∩ µ−1[{1}] .
(c) If p, q ∈ βN and any two of p, q, and p + q are in α−1[{0}] so is

the third.
(d) If p, q ∈ βN and any two of p, q, and p + q are in M(〈xn〉∞n=1 ) so

is the third.
(e) If p + q ∈ M(〈xn〉∞n=1 ) and either p ∈ α−1[{0}] or q ∈ α−1[{0}]

then both p and q are in M(〈xn〉∞n=1 ) .
Proof. Both (a) and (b) are routine computations and (c) is easy since α is
a homomorphism to a group. To prove (d) and (e), use (c) and the fact that µ
is a homomorphism from α−1[{0}] to (N∞,max).

Definition 2.7. Let 〈xn〉∞n=1be a divisible sequence.
(a) For A ⊆ N , SA = {n ∈ N : supp(n) ⊆ A} .
(b) For s ∈ N∗ , Ms =

⋂
A∈s(M(〈xn〉∞n=1 ) ∩ c`SA).

Lemma 2.8. Let 〈xn〉∞n=1 be a divisible sequence and let s ∈ N∗ .
(a) Ms is a compact subsemigroup of βN.
(b) If p ∈ βN, q ∈ α−1[{0}] , and p + q ∈ Ms , then p and q are in Ms .

Proof. (a). Given m,n ∈ SA with supp(m) ∩ supp(n) = Ø, one has that
m + n ∈ SA . Thus α−1[{0}] ∩ SA is a subsemigroup of βN. Further if B ⊆ A ,
then SB ⊆ SA so Ms 6= Ø, and is thus a compact semigroup.

(b) By Lemma 2.6(e) we have that p, q ∈ M(〈xn〉∞n=1 ). Take nets 〈ui〉i∈I

and 〈vj〉j∈J in N such that limi∈I ui = p and limj∈J vj = q . Take A ∈ s .
We can find i0 ∈ I such that for i ≥ i0, ui + q ∈ c`SA (for c`SA is a clopen
set containing p + q ). For each i , we can then find j(i) ∈ J such that for
j ≥ j(i) both ui + vj ∈ c`SA and max(supp(vj)) > max(supp(ui)) (the latter
since αt(q) = 0 for all t and limj∈J αt(vj) = αt(q) for each t). Fixing i
for the moment, we see that for j ≥ j(i), since supp(ui) ∩ supp(vj) = Ø and
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ui + vj ∈ N ∩ c`SA = SA we have supp(ui) ⊆ A and supp(vj) ⊆ A . As q
is the limit of the subnet 〈vj〉j≥j(i) , we have q ∈ c`SA . In a similar way, for
i ≥ i0 , using supp(ui) ⊆ A , we get p ∈ c`SA . So for each a ∈ S , we have
p, q ∈ M(〈xn〉∞n=1 ) ∩ c`SA , and our conclusion follows.

Lemma 2.9. Let 〈xn〉∞n=1 be a divisible sequence and assume an ≥ 3 for all n .
Assume p, q ∈ βN and p + q ∈ µ−1[{1}] . Then there is some r ∈ N such that
either αn(q) = an − 1 for all n ≥ r or αn(q) ≤ 1 for all n ≥ r .
Proof. For q ∈ βN , we write `(q) = sup{t ∈ ω : αt(q) 6= 0} (where we allow
`(q) = ∞ and put `(q) = −1 if αt(q) = 0 for every t).

Now µ−1[{1}] is a neighborhood of p + q = ρq(p) so pick u ∈ N such
that µ(u+q) = 1. Since αr(u) = 0 when r > `(u), for such values of r we have:
(a) If there is no carrying into the rth place, αr(u + q) = αr(q)
(b) If there is carrying into the rth place, αr(u + q) ≡ 1 + αr(q) (mod ar ).

Consequently, if there is any r > `(u) for which there is no carrying into
the rth place we have from (a) and the fact that µ(u + q) = 1, that eventually
αt(q) ≤ 1.

Alternately, for all r ≥ `(u) one has carrying into and out of the rth
place which means αr(q) = ar − 1.

The assumption that an ≥ 4 is not necessary for the following result. In
fact necessary and sufficient is the assertion that an is either eventually greater
than 2 or frequently greater than 3. The proof under these assumptions is more
complicated however.

Theorem 2.10. Let 〈xn〉∞n=1 be a divisible sequence and assume that an ≥ 4
for all n ∈ N . Let p, q ∈ βN and let M = M(〈xn〉∞n=1 ) . If p + q ∈ M and
q + p ∈ M , then p, q ∈ M + Z
Proof. The hypotheses say that α(q + p) = α(p + q) = 0 and µ(q + p) =
µ(p + q) = 1. Pick by Lemma 2.9 some r ∈ N such that either

(i) αn(q) = an − 1 for all n ≥ r or

(ii) αn(q) ≤ 1 for all n ≥ r .
We may assume also that p satisfies either statement (i) or (ii) for the same value
of r .

We show first that we can’t have both p and q satisfying (ii). Suppose
they do. Then given n ≥ r there is no carrying out of position n since 1+αn(p)+
αn(q) ≤ 3 < an . Thus for n > r, αn(p + q) = αn(p) + αn(q) so αn(p) = αn(q).
But then we pick k,m ∈ N with α(k) = α(p) and α(m) = α(q) so

α(k + m) = α(k) + α(m) = α(p) + α(q) = α(p + q) = 0

so k + m = 0, a contradiction.
Thus we can assume without loss of generality that q satisfies (i). We

claim that αn(p) = 0 for all but finitely many values of n . This will suffice since
that implies α(p) = α(m) for some m ∈ N and hence α(−m + p) = 0. Since
(−m + p) + (m + q) = p + q ∈ M we then have that −m + p and m + q are in
M by Lemma 2.6(e). To establish the claim, assume that we have some n > r
with αn(p) > 0. Then there is carrying out of position n . Further

0 = αn+1(p + q) ≡ 1 + αn+1(p) + an+1 − 1 (mod an+1)

so αn+1(p) = 0 and there is carrying out of position n + 1. By induction
αk(p) = 0 and there is carrying out of position k for all k > n . The claim is
established.
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Corollary 2.11. Let 〈xn〉∞n=1 be a divisible sequence such that an ≥ 4 for all
n , let M = M(〈xn〉∞n=1 ) , let e be an idempotent in M , and let H be the largest
group with e as identity. Then H = Z + (H ∩M) .
Proof. That Z + (H ∩ M) ⊆ H is immediate. For the reverse inclusion let
p ∈ H and pick q such that p + q = q + p = e . Then by 2.10, pick n ∈ Z
such that p − n ∈ M . Then also e − n ∈ H so p − n = p + (e − n) ∈ H so
p− n ∈ H ∩M .

The conclusion of Corollary 2.11 need not hold if xn+1
xn

is eventually equal
to 2. For then M(〈xn〉∞n=1 ) =

⋂∞
n=1 c`(Nxn) so intersects the smallest ideal

and hence contains a minimal idempotent e. Then H = e + βN + e (from
the standard structure theorem–see [2, Theorem I.2.12]) and e + βN + e 6=
Z + (H ∩M(〈xn〉∞n=1 )), by the following result.

Theorem 2.12. Let 〈xn〉∞n=1 be a divisible sequence and let e be any idempo-
tent. Then e + βN + e 6⊆ Z +

⋂∞
n=1 c`(Nxn) .

Proof. Let A = {Nx2n+1 + Σn
k=1 x2k : n ∈ N} . Then A has the finite

intersection property since it is nested. Pick p ∈ βN with A ⊆ p . Now given
any n ∈ N ,

x2n+1 − Σn
k=1 x2k > x2n+1 − x2n − x2n−1.

Consequently p /∈ Z+
⋂∞

n=1 c`(Nxn). By considering the natural homomorphisms
from βN to the integers mod xn , one sees that e + p + e /∈ Z +

⋂∞
n=1 c`(Nxn).

The following lemma is stated in greater generality than needed here
because we will use it again in Section 5.

Lemma 2.13. Let 〈xn〉∞n=1 be a divisible sequence in N such that an is fre-
quently greater than 2 and let S be a compact subsemigroup of βN satisfying the
following three statements:

(1) S ⊆ M(〈xn〉∞n=1 ) .
(2) If p, q ∈ βN , q + p ∈ S , and either p ∈

⋂∞
n=1 c`(Nxn) or q ∈⋂∞

n=1 c`(Nxn) , then p ∈ S and q ∈ S .
(3) Given any p ∈ S and any infinite L ⊆ N there is a sequence

〈zn〉∞n=1 such that FS(〈zn〉∞n=1 ) ⊆ FS(〈xn〉∞n=1) , FS(〈zn〉∞n=1 ) ∈ p , and
L\

⋃
{supp(y) : y ∈ FS(〈zn〉∞n=1 )} is infinite.

Then given any p, q ∈ N∗ if q + p ∈ S , then p ∈ S +Z and q ∈ S +Z .
Proof. Let p, q ∈ N∗ be given with q + p ∈ S . It suffices to show that p ∈
Z +

⋂∞
n=1 c`(Nxn). (Indeed assume we have n ∈ Z with p− n ∈

⋂∞
n=1 c`(Nxn).

Then (q + n) + (p − n) = q + p ∈ S so by assumption (2), p − n ∈ S and
q + n ∈ S .) So we suppose instead that p /∈ Z +

⋂∞
n=1 c`(Nxn).

By Lemma 2.9 and assumption (1) αn(p) is eventually an − 1 or is
eventually in {0, 1} . Since p /∈ Z +

⋂∞
n=1 c`(Nxn), we must have αn(p) is

eventually in {0, 1} and is not eventually equal to 0. Since an is frequently
greater than 2 and α(q + p) = 0 a simple consideration of carrying possibilities
shows that αn(p) is not eventually equal to 1. Thus we have that L = {t ∈ N :
αt(p) = 1 and αt−1(p) = 0} is infinite. Pick a sequence 〈zn〉∞n=1 as guaranteed
for L and q + p by assumption (3). Now FS(〈zn〉∞n=1 ) ∈ q + p so pick k ∈ N
such that FS(〈zn〉∞n=1 ) − k ∈ p . Pick m and t in L such that xm > k and
t > m and t /∈

⋃
{supp(y) : y ∈ FS(〈zn〉∞n=1 )} . Let V = {y ∈ N : for all

n ∈ {1, 2, . . . , t} αn(y) = αn(p)} . Then V ∈ p so pick y ∈ V ∩(FS(〈zn〉∞n=1 )−k).
Since y ∈ V and t ∈ L , αt(y) = 1 and αt−1(y) = 0. Since k < xm and m < t
there will be no carrying out of position t − 1 when k and y are added, so
αt(y + k) = 1. But y + k ∈ FS(〈zn〉∞n=1 ) so t /∈ supp(y + k), a contradiction.
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Theorem 2.14. Let 〈xn〉∞n=1 be a divisible sequence such that an is frequently
greater than 2 and let s ∈ N∗ . Given any p, q ∈ N∗ , if q + p ∈ Ms , then
p ∈ Ms + Z and q ∈ Ms + Z .
Proof. Assumption (1) of Lemma 2.13 holds trivially and assumption (2)
holds by Lemma 2.8(b). (If q ∈ α−1[{0}] , then since Ms ⊆ α−1[{0}] , one has
also that p ∈ α−1[{0}] .) It thus suffices to show that assumption (3) also holds.

To this end let p ∈ M and let an infinite L ⊆ N be given. Pick an
infinite subset B of L such that B /∈ s and let A = N\B . Let 〈zn〉∞n=1 enumerate
{xn : n ∈ A} in increasing order. Then B ⊆ L\

⋃
{supp(y) : y ∈ FS(〈zn〉∞n=1 )}

so 〈zn〉∞n=1 is as required.

In view of our results about elements of M(〈xn〉∞n=1 ), it is useful to
know when we can guarantee p ∈ M(〈xn〉∞n=1 ) from some weaker assumptions.
Recall that if p = p+p , then any A ∈ p contains FS(〈yn〉∞n=1 ) for some sequence
〈yn〉∞n=1 . In particular, p will satisfy the final hypothesis of the following lemma.

Lemma 2.15. Let 〈xn〉∞n=1 be a sequence in N such that for each n , xn+1 >
2 · Σn

t=1 xt and let p ∈ βN . If FS(〈xn〉∞n=1 ) ∈ p and for each A ∈ p there exist
y, z ∈ A with y + z ∈ A , then p ∈ M(〈xn〉∞n=1 ) .
Proof. Let m ∈ N be given and suppose FS(〈xn〉∞n=m ) /∈ p . Now

FS(〈xn〉∞n=1 ) = FS(〈xt〉mt=1) ∪
⋃

F⊆{1,2,...,m−1}

(Σt∈F xt + FS(〈xn〉∞n=m ))

(where Σt∈Ø xt = 0) and FS(〈xt〉mt=1) is finite. So pick a nonempty F ⊆
{1, 2, . . . ,m−1} such that A = FS(〈xn〉∞n=m )+Σt∈F xt ∈ p . Pick y, z ∈ A such
that y +z ∈ A . Pick G, H , and K contained in {m,m+1,m+2, . . .} such that
y = Σt∈G xt +Σt∈F xt , z = Σt∈H xt +Σt∈F xt , and y +z = Σt∈K xt +Σt∈F xt .
By [5, Lemma 1C], linear combinations of xt ’s with coefficients 0, 1, or 2 are
unique. In particular F ⊆ K while F ∩K = Ø, a contradiction.

We close this section with an additional contrast between minimal idem-
potents and those living on FS(〈xn〉∞n=1 ) for a thin sequence 〈xn〉∞n=1 . From
[1, Theorem 5.15] we have that if p is any minimal idempotent in βN, there is
another minimal idempotent q of βN such that p = −q + p . (From [11, Theo-
rem 4.2] we know p 6= −p + p .) By −q we mean of course {−A : A ∈ q} . Be
cautioned that −q + q 6= 0 unless q ∈ Z .

Theorem 2.16. Let 〈xn〉∞n=1 be a sequence in N such that limn→∞(xn+1 −
Σn

t=1 xt) = ∞ . If p ∈ M(〈xn〉∞n=1 ) and q ∈ N∗ , then p 6= −q + p .
Proof. Suppose we have such q . Then {y ∈ N : FS(〈xn〉∞n=1 ) + y ∈ p} ∈ q
so pick y ∈ N such that FS(〈xn〉∞n=1 ) + y ∈ p . Pick m such that for all
` ≥ m, x`+1 − Σ`

t=1 xt > y . Then FS(〈xn〉∞n=1 ) ∩ (FS(〈xn〉∞n=1 ) + y) ∈ p . So
we may pick z = Σn∈F xn in this intersection such that minF > m and |F |
is a minimum among all members of this intersection. Pick G ⊆ N such that
z = Σn∈G xn + y . Let k = maxF . If k > max G , then

Σn∈F xn ≥ xk > Σk−1
t=1 xt ≥ Σn∈G xn + y = Σn∈F xn,

a contradiction. If k < max G = ` , then

Σn∈G xn + y > x` > Σ`−1
t=1 xt ≥ Σn∈F xn = Σn∈G xn + y,

again a contradiction. Thus k = maxG . Let F ∗ = F\{k} and let G∗ = G\{k} .
Then Σn∈F∗ xn = Σn∈G∗ xn + y . By the minimality of |F | we must have
F ∗ = Ø or G∗ = Ø. Since y > 0, F ∗ 6= Ø so G∗ = Ø so y = Σn∈F∗ xn . But
Σn∈F∗ xn ≥ xm+1 > y , a contradiction.
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Corollary 2.17. Let 〈xn〉∞n=1 be a sequence in N such that xn+1 > 2 ·Σn
t=1 xt

for all n . If p ∈ βN, FS(〈xn〉∞n=1 ) ∈ p and for all A ∈ p there exist y, z ∈ A
with y + z ∈ A (in particular if p + p = p), then there does not exist q ∈ N∗
with p = −q + p .
Proof. By Lemma 2.15, p ∈ M(〈xn〉∞n=1 ) so Theorem 2.16 applies.

3. Points with Few ≤R Successors

Recall that for elements p and q of βN we write p≤R q when p = q + p
or p = q . We establish in this section additional contrasts between idempotents
in the smallest ideal and some far away from it.

If p is an element in the smallest ideal of βN, then for each idempotent q
of p+βN , one has p≤R q so {q ∈ βN : p≤R q} has 2c elements. As we shall see in
Section 4, if p is a strongly summable ultrafilter, then {q ∈ βN : p≤R q} = {p} .
We show in Theorem 3.5 below that we can get (in ZFC) idempotents p with
{q ∈ βN : p≤R q} finite.

As we remarked earlier, Ruppert [20] established the existence of ≤R -
maximal elements of βN. We shall see in Theorem 3.2 that they are plentiful.

Note that if p, q ∈ βN, p 6= q , and p≤R q , then p ∈ βN + p so that p is
not right cancellable [4, Theorem 2.1]. We see now that any element of βN which
is not right cancellable lies below an idempotent which is ≤R -maximal (among
idempotents) and more.

Lemma 3.1. Let p ∈ βN such that p ∈ βN + p . Then there is an idempotent
e of βN such that p≤R e and whenever f ∈ βN with f ∈ βN + f and e≤R f
one has f≤R e .
Proof. Let N = {f ∈ βN : f ∈ βN + f} . For each f ∈ N , let Bf = {q ∈
βN : f≤R q} . Then Bf 6= Ø and Bf = ρ−1

f [{f}] ∪ {f} so Bf is a compact
subsemigroup of βN. Let G = {Γ : Γ is a ≤R -chain in Nand p ∈ Γ} . Then
G 6= Ø since {p} ∈ G so pick a maximal member Γ of G . Given f≤R g in Γ
one has Bg ⊆ Bf so L =

⋂
f∈Γ Bf 6= Ø.

Pick by [7, Corollary 2.10] an idempotent e in L . Then e ∈ Bp so
p≤R e . Given f ∈ N with e≤R f one has for all q ∈ Γ, q≤R f so f ∈ Γ so
f≤R e .

Theorem 3.2. There are 2c ≤R -maximal idempotents in βN.
Proof. Define φ : N −→ N by φ(Σn∈F 2n) = 2min F . Denote also by φ its
continuous extension from βN to βN. We claim that given any p ∈ βN and any
q ∈

⋂∞
n=1 c`N2n , one has φ(p + q) = φ(p). For this it suffices to show that

for any x ∈ N and any q ∈
⋂∞

n=1 c`N2n , φ(x + q) = φ(x), for then φ ◦ ρq

and φ agree on N. To see this, given x = Σn∈F 2n let ` = minF . Then for
all y ∈ N2`+1 ,φ(x + y) = φ(x). We also observe that for p ∈ c`{2n : n ∈ N} ,
φ(p) = p .

Now we show that for each p ∈ N∗ ∩ c`{2n : n ∈ N} , there is a ≤R -
maximal idempotent f with φ(f) = p . Since |N∗ ∩ c`{2n : n ∈ N}| = 2c [8,
9.12] this will complete the proof. Given p ∈ N∗ ∩ c`{2n : n ∈ N} , p + βN
is a right ideal of βN which therefore contains a minimal right ideal and hence
contains an idempotent e [2, Corollary 1.3.12 and Theorem 1.3.11]. Pick r ∈ βN
with e = p+ r and note that both e and p are in

⋂∞
n=1 c`N2n and consequently

r ∈
⋂∞

n=1 c`N2n . Pick by Lemma 3.1 an idempotent f ∈ βN such that e≤R f
and f is ≤R -maximal. Then

φ(f) = φ(f + e) = φ(e) = φ(p + r) = φ(p) = p.
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Let H =
⋂∞

n=1 c`N2n . Then H contains all of the idempotents of
βN (since any idempotent is in the kernel of the natural homomorphism from
βN to Z2n ). We use this fact to show that ≤R -maximal idempotents are plentiful
very close to any idempotent in βN.

Corollary 3.3. Let p be any idempotent in βN and let 〈An〉∞n=1 be a sequence
of members of p . There exist c ≤R -maximal idempotents in

⋂∞
n=1 c`An .

Proof. Let B1 = A1 and let C1 = {x ∈ N : B1 − x ∈ p} . Then C1 ∈ p
so pick x1 ∈ B1 ∩ C1 . Let B2 = A2 ∩ (B1 − x1) ∩ N4x1 . Inductively, given
Bn = An ∩ (Bn−1 − xn−1) ∩ N4xn−1 , let Cn = {x ∈ N : Bn − x ∈ p} and pick
xn ∈ Bn ∩ Cn .

Then an easy induction (see for example [14, Theorem 8.6]) establishes
that whenever F is a finite nonempty subset of N and m ≤ minF one has
Σn∈F xn ∈ Bm . Consequently M = M(〈xn〉∞n=1 ) ⊆

⋂∞
n=1 c`An . Trivially

〈xn〉∞n=1 is a divisible sequence. The map τ : N −→ N defined by τ(Σn∈F 2n) =
Σn∈F xn extends to a map from βN to βNwhose restriction to H =

⋂∞
n=1 c`N2n

is an isomorphism onto M . Thus by Theorem 3.2 M contains 2c idempotents
which are ≤R -maximal in M . Given any one such, say q and given any
idempotent r with q≤R r one has by Lemma 2.6(d) that r ∈ M and hence
r≤R q .

Even though the operation in βN that we are using is “+” we use the
multiplicative terminology “right zero” semigroup to describe a semigroup in
which each element is a left identity.

Lemma 3.4. Let C be a compact right zero subsemigroup of βN . Then C is
finite.
Proof. This follows from [6, Theorem 8.4] but it has a simple self contained
proof, so we present it. Suppose C is infinite and pick an infinite discrete
sequence 〈pn〉∞n=1 in C . Pick an accumulation point q of the sequence 〈pn〉∞n=1 .
Then q = q + q ∈ βN + q = c`(N + q) so c`(N + q) ∩ c`{pn : n ∈ N} 6= Ø so by
Lemma 1.1, either (N+q)∩c`{pn : n ∈ N} 6= Ø or {pn : n ∈ N}∩c`(N+q) = Ø.

Assume first we have some m ∈ N with m + q ∈ c`{pn : n ∈ N} . Now
each pn = pn + pn and q = q + q so {q}∪{pn : n ∈ N} ⊆ c`N(m+1). (Consider
the natural homomorphism from βN to Zm+1 .) But then m ≡ 0 mod(m + 1), a
contradiction.

Thus we have some n ∈ N and some r ∈ βN such that pn = r + q . But
then q = pn + q = r + q + q = r + q = pn , a contradiction.

Lemma 3.1 guarantees a plentiful supply of elements satisfying the hy-
pothesis of the following theorem.

Theorem 3.5. Let e = e + e in βN and assume that whenever f ∈ βN with
f ∈ βN + f and e≤R f one has f≤R e . Let C = {f ∈ βN : e≤R f} . Then C is
a finite right zero semigroup.
Proof. We have that C is a compact subsemigroup of βN. As a compact right
topological semigroup, C has a smallest ideal K . (See [2, Theorem 1.3.11].) We
first observe that e ∈ K . Indeed, pick any g ∈ K . Then e = g+e ∈ K+C ⊆ K .
Also {e} = C + e so one, and hence all, of the minimal ideals are singletons.

We now claim that C = K . Suppose instead that we have some q ∈
C\K . Then q /∈ βN + q . (For if we had q ∈ βN + q , by hypothesis we would
have q≤R e so q = e + q ∈ K + C ⊆ K .) But then by [18, Theorem 3.3] there
exist idempotents f and g in the smallest compact semigroup containing q , and



10 Hindman and Strauss

hence in C , with f = g + f = f + g 6= g . Since g = g + g we have (as in the
parenthetical line above) that g ∈ K . But then C + g is a minimal left ideal so
C + g = {g} while f ∈ C + g and f 6= g , a contradiction.

Since K = C we have for each g ∈ C that C + g = {g} and hence C is
a right zero semigroup. By Lemma 3.4, C is finite.

If e and C are as in Theorem 3.5 we have for each g ∈ C that {f ∈ C :
f + e = g} is empty if g 6= e and equals C if g = e . We shall see in Theorem
3.7 that a similar behavior applies throughout βN.

Lemma 3.6. Let e = e + e in βN, let C = {f ∈ βN : e = f + e} and assume
C is finite. Let p, q ∈ βN . If p + e = q + e and p 6= q , then p ∈ q + C or
q ∈ p + C .
Proof. Let C = {c1, c2, . . . , cn} . Suppose p /∈ q + C and q /∈ p + C . Pick
X0 ∈ p and Y0 ∈ q such that X0 ∩ Y0 = Ø and for each i ∈ {1, 2, . . . , n}, X0 /∈
q + ci and Y0 /∈ p + ci . (So given i ∈ {y ∈ N : (N\Y0) − y ∈ ci} ∈ q and
{y ∈ N : (N\Y0) − y ∈ ci} ∈ p .) Let X = X0 ∩

⋂n
i=1{y ∈ N : (N\Y0) − y ∈ ci}

and let Y = Y0 ∩
⋂n

i=1{y ∈ N : (N\X0)− y ∈ ci} .
Now p + e ∈ (c`X) + e = c`(X + e) and q + e ∈ c`(Y + e) so by Lemma

1.1 we have either (X + e) ∩ c`(Y + e) 6= Ø or (Y + e) ∩ c`(X + e) 6= Ø. We
assume without loss of generality that we have some r ∈ c`X and some m ∈ Y
such that m + e = r + e .

One cannot have r ∈ N since then one would have r = m . (Consider
congruence classes mod max{r, m} .). But r ∈ c`X and m ∈ Y . Thus r ∈
(c`X)\N . But now e = (r − m) + e , so r − m ∈ C by definition. Pick
i ∈ {1, 2, . . . , n} such that r = m + ci . Since m ∈ Y , we have (N\X0)−m ∈ ci .
Since r ∈ c`X we have X − m ∈ ci . But (X − m) ∩ ((N\X0) − m) = Ø, a
contradiction.

Again we remark that Lemma 3.1 and Theorem 3.5 provide a plentiful
source of idempotents e satisfying the hypothesis of the following theorem.

Theorem 3.7. Let e = e + e in βN, let C = {f ∈ βN : e = f + e} and
assume C is a finite right zero semigroup. Let n = |C| . Then for each p ∈ βN ,
|{f ∈ βN : f + e = p}| is 0, n , or n + 1 .
Proof. Let p ∈ βN and assume {f ∈ βN : f + e = p} 6= Ø. By Lemma 3.6
there is at most one f ∈ βN\(βN + C) such that f + e = p . Also if c1 6= c2 in
C we claim (βN + c1) ∩ (βN + c2) = Ø. Indeed if (βN + c1) ∩ (βN + c2) 6= Ø, a
routine application of Lemma 1.1 yields that c1 ∈ βN + c2 or c2 ∈ βN + c1 . But
if, say, c1 ∈ βN + c2 then c1 = c1 + c2 while, since C is a right zero semigroup,
c1 + c2 = c2 . Thus it suffices to show that for each c ∈ C there is a unique
q ∈ βN + c with p = q + e , so let c ∈ C be given. Now p + c ∈ βN + c and
p+ c+ e = p+ e = p (since p ∈ βN+ e). Now assume q ∈ βN+ c and p = q + e .
Then q = q + c since c is an idempotent. So q = q + c = q + e + c = p + c .

4. Properties of Strongly Summable Ultrafilters

We begin by formally defining the special kinds of ultrafilters with which
we are concerned.

Definition 4.1. Let p ∈ βN .
(a) p is a strongly summable ultrafilter if and only if for every A ∈ p

there is a sequence 〈xn〉∞n=1 such that FS(〈xn〉∞n=1 ) ⊆ A and FS(〈xn〉∞n=1 ) ∈ p .
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(b) p is a divisibly strongly summable ultrafilter if and only if for every
A ∈ p there is a divisible sequence 〈xn〉∞n=1 such that FS(〈xn〉∞n=1 ) ⊆ A and
FS(〈xn〉∞n=1 ) ∈ p .

(c) p is a special divisibly stronly summable ultrafilter if and only if,
letting xn = (n + 1)!, p ∈ M(〈xn〉∞n=1 ) and p is divisibly strongly summable
and for each infinite L ⊆ N there is a sequence 〈zn〉∞n=1 such that FS(〈zn〉∞n=1 ) ⊆
FS(〈xn〉∞n=1) and FS(〈zn〉∞n=1 ) ∈ p and L\

⋃
{supp(y) : y ∈ FS(〈zn〉∞n=1 )} is

infinite (where supp is defined with respect to 〈xn〉∞n=1 ).

We discuss in this section properties of these ultrafilters in the order of
their definitions, postponing to Section 5 discussions of their existence.

Recall from [12, Theorem 2.3] that strongly summable ultrafilters are
idempotents. We show now that they are ≤R -maximal in a strong sense.

Theorem 4.2. Let p be a strongly summable ultrafilter. Then {q ∈ βN :
q + p = p} = {p} . Given any r ∈ βN, {q ∈ βN : q + p = r} has 0, 1 , or 2
members.
Proof. The first assertion is [4, Theorem 3.3]. The second assertion then
follows from Theorem 3.7.

When we say 〈xn〉∞n=1has “distinct finite sums” we mean that Σn∈F xn =
Σn∈G xn implies F = G . This holds in particular if xn+1 > Σn

t=1 xt for each
n ∈ N .

Lemma 4.3. Let 〈xn〉∞n=1and 〈yn〉∞n=1 be sequences in N with distinct finite
sums. Define τ : N −→ N as follows. If F is a finite nonempty subset of N,
then τ(Σn∈F yn) = Σn∈F xn . If z ∈ N\FS(〈yn〉∞n=1 ) , then τ(z) = 1 . Denote
also by τ its continuous extension from βN to βN. The restriction of τ to
M(〈yn〉∞n=1 ) is an isomorphism onto M(〈xn〉∞n=1 ) .
Proof. Define analogously δ(Σn∈F xn) = Σn∈F yn . Then δ ◦ τ is the
identity on FS(〈yn〉∞n=1 ) so τ is one-to-one on c` FS(〈yn〉∞n=1 ). That τ is
a homomorphism on M(〈yn〉∞n=1 ) follows from [15, Lemma 2.2]. Given p ∈
M(〈yn〉∞n=1 ) one immediately concludes that τ(p) ∈ M(〈xn〉∞n=1 ). Given q ∈
M(〈xn〉∞n=1 ), one has that δ(q) ∈ M(〈yn〉∞n=1 ) and τ(δ(q)) = q .

Our next result is a consequence of the existence of strongly summable
ultrafilters.

Theorem 4.4. Let E = {p ∈ βN : p is strongly summable and for all q 6=
p, q + p 6= p and p + q 6= p} and assume there exists some strongly summable
ultrafilter. Then E is dense in the set of idempotents. In particular, the set of
idempotents which are both ≤L -maximal and ≤R -maximal is dense in the set of
all idempotents.
Proof. Using [11, Lemma 2.5] one sees that
(*) if for each n ∈ N, xn+1 > 4 · Σn

t=1 xt and 〈zn〉∞n=1 is a sequence with
FS(〈zn〉∞n=1 ) ⊆ FS(〈xn〉∞n=1 ), there exists a sequence 〈Fm〉∞m=1 of pairwise
disjoint finite sets such that zm = Σt∈Fm

xt for each m ∈ N .
Let r be an idempotent of βN and let V ∈ r . Pick (by [13, Theorem

3.3]) a sequence 〈xn〉∞n=1with FS(〈xn〉∞n=1 ) ⊆ V . By thinning we may presume
xn+1 > 4 · Σn

t=1 xt for all n ∈ N . Pick a strongly summable ultrafilter s and
pick by [11,Lemma 2.4] a sequence 〈yn〉∞n=1with yn+1 > 4 · Σn

t=1 yt for each n
and with FS(〈yn〉∞n=1 ) ∈ s . Let τ be as in Lemma 4.3 and let p = τ(s). Using
(*) one easily sees that p is strongly summable.
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Since p is strongly summable we have by Theorem 4.2 that for all
q 6= p, q + p 6= p .

Now let q 6= p be given and suppose that p+q = p . Since p is idempotent
we have that for all n, Nn ∈ p and consequently for all n, Nn ∈ q . Pick A ∈ p\q.
Since p is strongly summable, pick by [12, Lemma 2.2] a sequence 〈zn〉∞n=1with
p ∈ M(〈zn〉∞n=1 ) and FS(〈zn〉∞n=1 ) ⊆ A∩FS(〈xn〉∞n=1) . Let B = FS(〈zn〉∞n=1 ).
Then B ∈ p = p+q so {y ∈ N : B−y ∈ q} ∈ p so pick y ∈ B such that b−y ∈ q .
Now y = Σn∈F zn for some F . Note that if n 6= m then supp(zn)∩ supp(zm) =
Ø. (For if we had t ∈ supp(zn) ∩ supp(zm) we would have αt(zn + zm) = 2.)
Let H =

⋃
n∈F supp(zn). Then H = supp(y) and in fact y = Σt∈H xt . Let

k = maxH + 1. Then Nxk ∈ q so pick w ∈ Nxk ∩ (B − y) ∩ (N\A). Since
xk divides w we have min supp(w) > k so supp(w + y) = supp(w) ∪ supp(y).
Since w + y ∈ B we have for each t ∈ supp(w + y) that αt(w + y) = 1. We also
have for some L ⊆ N , w + y = Σn∈L zn . Then supp(w + y) =

⋃
n∈L supp(zn).

Consequently we have F ⊆ L and w = Σn∈L\F zn ∈ A , a contradiction.

We now turn our attention to divisibly strongly summable ultrafilters.

Lemma 4.5. Let p be a divisibly strongly summable ultrafilter and let A ∈
p . There is a divisible sequence 〈xn〉∞n=1 such that FS(〈xn〉∞n=1) ⊆ A , p ∈
M(〈xn〉∞n=1 ) , and for each n, xn+1 > 4 · Σn

t=1 xt .

Proof. This may be taken nearly verbatim from the proof of [11, Lemma
2.4].

Theorem 4.6. Let p be a divisibly strongly summable ultrafilter and let
q, r ∈ βN . If r ∈

⋂∞
n=1 c`Nn and p = q + r , then q=r=p. In particular, if

q 6= p , then p + q 6= p .

Proof. It suffices by Theorem 4.2 to show r = p . Suppose instead that r 6= p
and pick A ∈ p\r . Pick a divisible sequence 〈xn〉∞n=1 as guaranteed by Lemma
4.5. By Lemma 2.6(e), r ∈ M(〈xn〉∞n=1 ) so A ∈ r , a contradiction.

Finally we see that special divisibly strongly summable ultrafilters can
only be written as sums in a trivial fashion.

Theorem 4.7. Let p be a special divisibly strongly summable ultrafilter and
let q and r be in βN. If p = q + r , then for some n ∈ Z, q = p + n and
r = p− n .

Proof. For each n let xn = (n + 1)! . Let S = {p} . Then hypotheses (1)
and (3) of Lemma 2.13 hold immediately. Now

⋂∞
n=1 c`Nn =

⋂∞
n=1 c`Nxn so

hypothesis (2) of Lemma 2.13 holds by Theorem 4.6 (because if q ∈
⋂∞

n=1 c`Nn
and p = q + r , then r ∈

⋂∞
n=1 c`Nn). The hypotheses being satisfied, Lemma

2.13 yields the desired result.

Corollary 4.8. Let p be a special divisibly strongly summable ultrafilter. Then
p+ N∗ is maximal among right ideals of the form q+ N∗ and N∗ +p is maximal
among left ideals of the form N∗ + q .

Proof. We prove only the assertion about right ideals since the other proof is
nearly identical. Assume p+N∗ ⊆ q+N∗ . Then p ∈ q+N∗ so p = q+r for some
r ∈ N∗ . By Theorem 4.7, q = p + n for some n ∈ Z . Thus q + N∗ ⊆ p + N∗ .
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5. Existence of Divisibly Strongly Summable Ultrafilters

We show in this section that Martin’s Axiom implies the existence of
divisibly strongly summable ultrafilters very close (i.e. sharing any fewer than c
prespecified members) to any idempotent. Similarly Martin’s Axiom also implies
the existence of special divisibly strongly summable ultrafilters very close to any
idempotent in M(〈n!〉∞n=1). (As was shown in [19] and [5] the existence of strongly
summable ultrafilters cannot be proved in ZFC.)

Since the continuum hypothesis (CH) implies Martin’s Axiom (MA)
these results also follow from CH. However, because CH constructions are more
familiar to many people, we present in Theorem 5.2 a CH construction of a
special divisibly strongly summable ultrafilter.

The following lemma is well known among aficianados.

Lemma 5.1. Let 〈xn〉∞n=1 be an increasing sequence in N, let r ∈ N , and
assume FS(〈xn〉∞n=1) ⊆

⋃r
i=1 Ci . There exist i ∈ {1, 2, . . . , r} and a sequence

〈yn〉∞n=1 such that
(1) FS(〈yn〉∞n=1 ) ⊆ Ci ∩ FS(〈xn〉∞n=1) ,
(2) for each n, yn > 2 · Σn

t=1 yt ,
(3) for each n, FS(〈yt〉∞t=n) ⊆ FS(〈xt〉∞t=n) ,
(4) for each n, yn|yn+1 , and
(5) if for some m, FS(〈xn〉∞n=m ) ⊆ FS(〈(n + 1)!〉∞n=1) , then

FS(〈yn〉∞n=1 ) ⊆ FS(〈(n + 1)!〉∞n=1) .
Proof. If there is some integer m such that FS(〈xn〉∞n=m ) ⊆
FS(〈(n + 1)!〉∞n=1), pick the first such and replace each xn by xn+m−1 . For
each i ∈ {1, 2, . . . , r} , let Ei = {F : F is a finite nonempty subset of N and
Σn∈F xn ∈ Ci} . By [10, Corollary 3.2], pick an infinite sequence 〈Hn〉∞n=1 of
pairwise disjoint finite nonempty subsets of N and i ∈ {1, 2, . . . , r} such that⋃

n∈F Hn ∈ Ei whenever F is a finite nonempty subset of N. By discarding
some of the Hn ’s we may presume that for each n, max Hn < minHn+1 . Now let
y1 = Σt∈H1 xt . Given yn = Σk∈GnΣt∈Hk

xt , pick ` such that x` > 2 · Σn
k=1 yk .

Choose a subset Gn+1 of {` + 1, ` + 2, . . .} such that |Gn+1| = y + n and so
that for k, s ∈ Gn+1, Σt∈Hk

xt ≡ Σt∈Hs
xt (mod yn). Then letting yn+1 =

Σk∈Gn+1Σt∈Hk
xt , we have yn|yn+1 and yn+1 > 2 · Σn

t=1 yt .

Theorem 5.2. Assume the continuum hypothesis. There exists a special
divisibly strongly summable ultrafilter.
Proof. Let xn = (n + 1)! for each n and let α and supp be as given in
Definition 2.4 for 〈xn〉∞n=1 . Well order P(N) as 〈Aσ〉σ<ω1 with A0 = N . Let
Z0 = A0 and let Π0 = {FS(〈(2t)!〉∞t=m) : m ∈ N}∪{N} . Let δ < ω1 be given and
assume we have chosen Zσ and Πσ for σ < δ satisfying the following induction
hypotheses.

(1) Zσ = Aσ or Zσ = N\Aσ ;
(2) Zσ ∈ Πσ ;
(3) |Πσ| = ω ;
(4) Πσ is closed under finite intersections;
(5) if σ < τ , then Πσ ⊆ Πτ ;
(6) for each B ∈ Πσ there is a divisible sequence 〈yn〉∞n=1 such that

FS(〈yn〉∞n=1 ) ⊆ B and for each m ∈ N, FS(〈yn〉∞n=m) ∈ Πσ ;
(7) if Aσ is infinite, then there is a sequence 〈zn〉∞n=1 such that

FS(〈zn〉∞n=1 ) ∈ Πσ and FS(〈zn〉∞n=1 ) ⊆ FS(〈xn〉∞n=1) and Aσ\
⋃
{supp(y) : y ∈

FS(〈zn〉∞n=1 )} is infinite.
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We observe that all hypotheses are satisfied at σ = 0.
Now let Π

′

δ =
⋃

σ<δ Πσ and note that Π
′

δ satisfies hypotheses (3),
(4), and (6). Let 〈Vn〉∞n=1 enumerate Π

′

δ with V1 = FS(〈(2t)!〉∞t=1). Let
U1 = V1 . Pick 〈y1,n〉∞n=1 as guaranteed by (6) for U1 , let w1 = y1,1 , and
let U2 = U1 ∩ V2 ∩ FS(〈y1,k〉∞k=2). Note that U2 ∈ Π

′

δ .
Inductively, given Un ∈ Π

′

δ , pick 〈yn,k〉∞k=1 as guaranteed by (6) for Un .
Let wn = yn,1 , and let Un+1 = Un ∩ Vn+1 ∩ FS(〈yn,k〉∞k=2).

Now we observe that for each n, Un+1 ⊆ Un − wn . Indeed, given
z ∈ Un+1 we have z ∈ FS(〈yn,k〉∞k=2) so z + wn ∈ FS(〈yn,k〉∞k=2) ⊆ Un . Thus
one routinely proves by induction on |F | that if F is a finite subset of N and
` = min F , then Σt∈F wt ∈ U` (and hence FS(〈wn〉∞n=`) ⊆ U` ).

Let C0 = Aδ and C1 = N\Aδ . By Lemma 5.1, pick an increasing
sequence 〈un〉∞n=1 and i ∈ {0, 1} such that FS(〈un〉∞n=1) ⊆ FS(〈wn〉∞n=1) ∩ Ci

and for each n, un|un+1 and for each n, FS(〈ut〉∞t=n) ⊆ FS(〈wt〉∞t=n).
If i = 0, let Zδ = Aδ . If i = 1, let Zδ = N\Aδ . If Aδ is finite, let

zn = un for each n.
If Aδ is infinite, proceed as follows. Observe that FS(〈un〉∞n=1) ⊆

FS(〈wn〉∞n=1) ⊆ U1 ⊆ FS(〈xn〉∞n=1) . Let z1 = u1 . Inductively given zn = u`(n) ,
let t = max supp(zn), pick j ∈ Aδ with j > t and pick `(n + 1) such that
min supp(u`(n+1)) > j . Let zn+1 = u`(n+1) .

Let Π∗δ = Π
′

δ ∪ {Zδ} ∪ {FS(〈zm〉∞n=m) : m ∈ N} and let Πδ = {
⋂
F : F

is a finite nonempty subset of Π∗δ} . Then hypotheses (1), (2), (3), (4), (5), and
(7) follow immediately.

To verify hypothesis (6), let B ∈ Πδ be given. Then pick W ∈ Π
′

δ
and m ∈ N such that W ∩ FS(〈zk〉∞k=m) ⊆ B . Further W = Vn for some n
so let ` = max{n, m} and let yk = z`+k for all k ∈ N . Then given r ∈ N ,
FS(〈yk〉∞k=r) = FS(〈zk〉∞k=`+r) ∈ Πα . Also FS(〈yk〉∞k=1) ⊆ FS(〈zk〉∞k=m) and

FS(〈yk〉∞k=1) ⊆ FS(〈zk〉∞k=n) ⊆ FS(〈uk〉∞k=n) ⊆ FS(〈wk〉∞k=n) ⊆ Un ⊆ Vn.

Thus FS(〈yk〉∞k=1) ⊆ B so (6) holds.
Let p =

⋃
δ<ω1

Πδ . Then p is a special divisibly strongly summable
ultrafilter.

We now turn our attention to an MA construction of divisibly strongly
summable ultrafilters and special divisibly strongly summable ultrafilters. The
reader unfamiliar with MA is referred to [17, pp. 53-61] for an elementary
introduction (with the caution that an inequality is reversed in the definition
of “filter”).

Definition 5.3. (a) Pf (A) is the set of finite nonempty subsets of A and
[A]ω is the set of countably infinite subsets of A .

(b) (A, f) is a divisibly strongly summable pair if and only if
(1) Ø 6= A ⊆ [N]ω ,
(2) f : Pf (A) −→ [N]ω ,
(3) if F ∈ Pf (A) and 〈yn〉∞n=1 enumerates f(F ) in increasing order

then
(i) FS(〈yn〉∞n=1 ) ⊆

⋂
F

(ii) {FS(〈yn〉∞n=m) : m ∈ N} ⊆ A
(iii) for all n, yn|yn+1 .
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(c) (A, f) is a weakly summable pair if and only if
(1) Ø 6= A ⊆ [N]ω ,
(2) f : Pf (A) −→ [N]ω ,
(3) for all F ∈ Pf (A) ,

(i) f(F ) ⊆
⋂
F , and

(ii) for all x ∈ f(F ) there exists B ∈ A such that B ⊆
(
⋂
F ) ∩ (

⋂
F − x).

(d) Given A ⊆ [N]ω , Q(A) = {〈s, F 〉 : s ∈ Pf (N) and F ∈ Pf (A)} .
(e) Given A ⊆ [N]ω and 〈s, F 〉and 〈s′, F ′〉 in Q(A), 〈s′, F ′〉 ≤ 〈s, F 〉

if and only if
(1) s ⊆ s′ ,
(2) F ⊆ F ′ ,
(3) for all y ∈ s′\s and all x ∈ s , x < y ,
(4) there exists g : s′\s −→ F ′ such that for x and y in s′\s

(i) x ∈
⋂
F and g(x) ⊆ (

⋂
F ) ∩ (

⋂
F − x), and

(ii) if x < y , then y ∈ g(x) and g(y) ⊆ g(x) ∩ (g(x)− y).
(f) Given A ⊆ [N]ω , V ∈ A , and n ∈ N ,

(1) D(V ) = {〈s, F 〉 ∈ Q(A) : V ∈ F } ,
(2) E(n) = {〈s, F 〉 ∈ Q(A) : s\{1, 2, . . . , n} 6= Ø} .

Observe that a divisibly strongly summable pair is also a weakly summa-
ble pair. (To verify (c) (3) (ii), given f(F ) = {yn : n ∈ N} one has for each m
that FS(〈yn〉∞n=m+1) ⊆ (

⋂
F ) ∩ (

⋂
F − ym).)

Lemma 5.4. Let ω ≤ κ < c and assume MA(κ). Let (A , f) be a weakly
summable pair with |A| = κ and let C ⊆ N . There exists a divisibly strongly
summable pair (B ,g) such that

(1) A ⊆ B ,
(2) |B | = κ ,
(3) C ∈ B or N\C ∈ B ,
(4) there is a sequence 〈yn〉∞n=1 such that

(i) FS(〈yn〉∞n=1 ) ∈ B
(ii) for each n , yn+1 > 2 · Σn

t=1 yt ,
(iii) for each H ∈ Pf (B) there exists m ∈ N such that FS(〈yn〉∞n=m)

⊆
⋂
H , and

(iv) if FS(〈(n + 1)!〉∞n=1) ∈ A and |C| = ω , then FS(〈yn〉∞n=1 ) ⊆
FS(〈(n + 1)!〉∞n=1) and |C\

⋃∞
n=1 supp(yn)| = ω , where supp is as given in

Definition 2.4 for xn = (n + 1)! .
(5) if (A , f) is a divisibly strongly summable pair, then f ⊆ g .

Proof. By [12, Lemma 3.7], Q(A) is a c.c.c partial order. By [12, Lemmas 3.5
and 3.6] {D(V ) : V ∈ A}∪{E(n) : n ∈ N} is a set of κ dense subsets of Q(A).
Pick by MA(κ), a filter G in Q(A) such that G ∩D(V ) 6= Ø for each V ∈ A
and G ∩ E(n) 6= Ø for each n ∈ N . Let A =

⋃
{s : for some F , 〈s, F 〉 ∈ G} .

Since G ∩E(n) 6= Ø for each n we have that A is infinite. Let 〈zn〉∞n=1 enumerate
A in increasing order

We now show that if FS(〈(n + 1)!〉∞n=1) ∈ A , then there is some ` such
that FS(〈zn〉∞n=`) ⊆ FS(〈(n+1)!〉∞n=1). To this end, let W = FS(〈(n+1)!〉∞n=1)
and assume W ∈ A . Pick 〈sW , FW 〉 ∈ G ∩D(W ). Let ` = max(sW )+1. To see
that FS(〈zn〉∞n=`) ⊆ W , let L ∈ Pf (N) with minL ≥ ` . For each n ∈ L , pick
〈sn, F n〉 ∈ G with zn ∈ sn . Pick 〈s, F 〉 ∈ G such that 〈s, F 〉 ≤ 〈sW , FW 〉
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and 〈s, F 〉 ≤ 〈sn, F n〉 for each n ∈ L . Then {zn : n ∈ L} ⊆ s\sW . Now by
[12, Lemma 3.7(b)], Σn∈L zn ∈

⋂
FW ⊆ W .

Let C0 = C and C1 = N\C . Pick by Lemma 5.1 some i ∈ {0, 1}
and a sequence 〈wn〉∞n=1 such that FS(〈wn〉∞n=1) ⊆ Ci ∩ FS(〈zn〉∞n=1 ), for each
n wn+1 > 2 · Σn

t=1 wt , FS(〈wt〉∞t=n) ⊆ FS(〈zt〉∞t=n), and wn|wn+1 and so
that if for some ` , FS(〈zt〉∞t=`) ⊆ FS(〈(n + 1)!〉∞n=1), then FS(〈wn〉∞n=1) ⊆
FS(〈(n + 1)!〉∞n=1).

If FS(〈(n + 1)!〉∞n=1) /∈ A or C is finite let yn = wn for each n .
Otherwise proceed as follows. We have shown that for some ` , FS(〈zn〉∞n=`) ⊆
FS(〈(n + 1)!〉∞n=1) so we have that FS(〈wt〉∞t=1) ⊆ FS(〈(t + 1)!〉∞t=1). Let
y1 = w1 and inductively assume we have yn = w`(n) . Let t = max supp(yn),
pick j ∈ C with j > t , pick `(n + 1) with min supp(w`(n+1)) > j . (Since
FS(〈wt〉∞t=1) ⊆ FS(〈(t+1)!〉∞t=1), we know supp(wr)∩ supp(ws) = Ø for r 6= s .)
Let yn+1 = w`(n+1) . Observe that conclusion (4) (iv) holds for 〈yn〉∞n=1 .

Let B = A ∪ {Ci} ∪ {FS(〈yn〉∞n=m) : m ∈ N} . Then conclusions (1),
(2), (3), (4) (i), (4) (ii), and (4) (iv) hold immediately. We claim it suffices to
establish (4) (iii). Indeed, assume we have done this. Given H ∈ Pf (B) , pick
m ∈ N such that FS(〈yn〉∞n=m) ⊆

⋂
H . If H ⊆ A and (A , f) is a divisibly

strongly summable pair, let g(H) = f(H) (so that (5) will hold). Otherwise
g(H) = {yn : n ≥ m} . We claim that (B , g) is a divisibly strongly summable
pair. Certainly requirements (1) and (2) of the definition are immediate. Let
H ∈ Pf (B) . If H ⊆ A and (A , f) is a divisibly strongly summable pair, then
(3) holds for (B , g) because it holds for (A , f). Otherwise, g(H) = {yn : n ≥
m} and conclusions (3) (i), (ii), and (iii) hold for y′k = ym+k−1 .

It thus remains to establish statement (4) (iii) of this lemma. If H∩A =
Ø, then H is nested so we easily pick m with FS(〈yn〉∞n=m) ⊆

⋂
H . So we

assume H∩A 6= Ø. If H\A 6= Ø, pick m such that FS(〈yn〉∞n=m) ⊆
⋂

(H\A).
If H ⊆ A , let m = 1.

For each V ∈ H∩A , pick 〈sV , F V 〉 ∈ G ∩D(V ). Pick 〈s, F 〉 ∈ G such
that 〈s, F 〉 ≤ 〈sV , F V 〉 for each V ∈ H ∩ A . Let ` = max(s ∪ {m}) + 1. We
claim that FS(〈yn〉∞n=`) ⊆

⋂
H . Since FS(〈yn〉∞n=`) ⊆ FS(〈yn〉∞n=m) and since

H ∩ A ⊆ F , it suffices to show FS(〈yn〉∞n=`) ⊆
⋂
F . Since FS(〈yn〉∞n=`) ⊆

FS(〈wn〉∞n=`) ⊆ FS(〈zn〉∞n=`), it suffices to show FS(〈zn〉∞n=`) ⊆
⋂
F . So let

T ∈ Pf (N) with min T ≥ ` . For each n ∈ T pick 〈sn, F n〉 ∈ G with zn ∈ sn .
Pick 〈s′, F ′〉 ∈ G with 〈s′, F ′〉 ≤ 〈s, F 〉 and for each n ∈ T , 〈s′, F ′〉 ≤
〈sn, F n〉 . Now given n ∈ T , zn ≥ n ≥ ` > max s so {zn : n ∈ T} ⊆ s′\s . Thus
by [12, Lemma 3.7(b)], Σn∈T zn ∈

⋂
F as required.

Recall that MA is the assertion that for all κ < c , MA(κ) holds.

Theorem 5.5. Assume MA. Let p ∈ βN with p + p = p and let A ⊆ p
with |A| < c . There exists a divisibly strongly summable ultrafilter q such that
A ⊆ q . If FS(〈(n + 1)!〉∞n=1) ∈ p , then q can be chosen to be a divisibly strongly
summable ultrafilter.
Proof. If FS(〈(n + 1)!〉∞n=1) ∈ p , then we may presume that
FS(〈(n + 1)!〉∞n=1) ∈ A . We may also presume |A| ≥ ω . By [12, Lemma 3.10],
pick a weakly summable pair (C , f) such that A ⊆ C and |C | = |A| . Well
order P(N) as 〈Cσ〉σ<c . Pick a divisibly strongly summable pair (B 0, g0) as
guaranteed by Lemma 5.4 for (A , f) and C0 .

Inductively, let σ < c be given and assume for δ < σ we have chosen
(B δ, gδ)such that:

(1) (B δ, gδ) is a divisibly strongly summable pair,
(2) if τ < δ , then B τ ⊆ B δ and gτ ⊆ gδ ,
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(3) Cδ ∈ B δ or N\Cδ ∈ B δ ,
(4) |B δ| ≤ max{|C |, |δ|} , and
(5) if FS(〈(n + 1)!〉∞n=1) ∈ A and |Cδ| = ω , then there is a sequence

〈yn〉∞n=1 such that FS(〈yn〉∞n=1 ) ∈ B δ and FS(〈yn〉∞n=1 ) ⊆ FS(〈(n + 1)!〉∞n=1)
and |Cδ\

⋃∞
n=1 supp(yn)| = ω .

Let B
′

σ =
⋃

δ<σ B δ and let g′σ =
⋃

δ<σ gδ and note that (B
′

σ, g′σ)
is a divisbly strongly summable pair. Choose a divisibly strongly summable
pair (Bσ, gσ) as guaranteed by Lemma 5.4 for (B

′

σ, g′σ) and Cσ . All induction
hypotheses are satisfied.

Let q =
⋃

σ<c Bσ . By hypothesis (3), q is an ultrafilter. To see that
q is divisibly strongly summable, let A ∈ q and pick σ < c such that A ∈ Bσ .
Let 〈yn〉∞n=1 enumerate gσ({A}) in increasing order. Then FS(〈yn〉∞n=2) ⊆ A ,
FS(〈yn〉∞n=2) ∈ Bσ ⊆ q , and for each n , yn|yn+1 . (The reason for starting the
sequence at y2 rather than y1 is to handle the minor technical requirement that
the first term of a divisible sequence is bigger than 1.)

Finally, assume that FS(〈(n + 1)!〉∞n=1) ∈ A . We need to show that
q ∈ M(〈(n + 1)!〉∞n=1) and that given any L ∈ [N]ω , there is a divisible se-
quence 〈yn〉∞n=1with FS(〈yn〉∞n=1 ) ∈ q , FS(〈yn〉∞n=1 ) ⊆ FS(〈(n + 1)!〉∞n=1) ,
and L\

⋃
{supp(z) : z ∈ FS(〈yn〉∞n=1 )} is infinite. The second assertion fol-

lows from hypothesis (5) at stage δ where L = Cδ . (Since FS(〈yn〉∞n=1 ) ⊆
FS(〈(n + 1)!〉∞n=1) we have for n 6= m that supp(yn) ∩ supp(ym) = Ø so⋃
{supp(z) : z ∈ FS(〈yn〉∞n=1 )} =

⋃∞
n=1 supp(yn).) To see that q ∈

M(〈(n + 1)!〉∞n=1), let m ∈ N be given and suppose that FS(〈(n + 1)!〉∞n=m) /∈ q .
Now q is divisibly strongly summable so q = q+q . Since FS(〈(n + 1)!〉∞n=1) ∈ q
and

FS(〈(n + 1)!〉∞n=1) = FS(〈(n + 1)!〉m−1
n=1 ) ∪ FS(〈(n + 1)!〉∞n=m) ∪

⋃
{FS(〈(n + 1)!〉∞n=m) + Σn∈F (n + 1)! : Ø 6= F ⊆ {1, 2, . . . ,m− 1}}.

The first of these sets is finite and the second is not in q by assumption so pick a
nonempty F ⊆ {1, 2, . . . ,m−1} such that FS(〈(n+1)!〉∞n=m)+Σn∈F (n+1)! ∈ q .
Since q + q = q , pick y and z such that {y, z, y + z} ⊆ FS(〈(n + 1)!〉∞n=m) +
Σn∈F (n + 1)!. Then pick t ∈ F . One has αt(y) = αt(z) = 1 so αt(y + z) = 2,
a contradiction. (Here α is as defined for the sequence xn = (n + 1)!.)

It is easy (assuming MA) to produce divisibly strongly summable ultrafil-
ters which are not special divisibly strongly summable; just pick any idempotent
p with FS(〈(n + 1)!〉∞n=1) /∈ p , let A = {N\FS(〈(n + 1)!〉∞n=1)} , and apply
Theorem 5.5. However it is conceivable that all strongly summable ultrafilters
are in fact divisibly strongly summable. We conclude by showing that this is not
the case (again assuming MA). We first introduce some notions from [3].

Definition 5.6. (a) Given a sequence 〈Fn〉∞n=1 in Pf (N), FU(〈Fn〉∞n=1) =
{
⋃

n∈G Fn : G ∈ Pf (N)} .
(b) U is a union ultrafilter if an only if U is an ultrafilter on Pf (N)and

for all A ∈ U , there exists a sequence 〈Fn〉∞n=1 of pairwise disjoint members of
Pf (N)such that FU(〈Fn〉∞n=1) ∈ U and FU(〈Fn〉∞n=1) ⊆ A .

(c) U is an ordered union ultrafilter if and only if U is an ultrafilter on
Pf (N)and for all A ∈ U , there exists a sequence 〈Fn〉∞n=1 in Pf (N)such that for
each n ∈ N , maxFn < minFn+1 and FU(〈Fn〉∞n=1) ∈ U and FU(〈Fn〉∞n=1) ⊆
A .
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Lemma 5.7. Define a sequence inductively by x1 = 2 , x2 = 8 , and for n > 2 ,
xn = Π{Σt∈F xt : Ø 6= F ⊆ {1, 2, . . . , n − 1}} . If F,G ∈ Pf (N) , F ∩ G = Ø ,
and Σt∈G xt|Σt∈F xt , then max G < minF .
Proof. Let r = maxG and suppose that minF < r . Let F1 = F∩{1, 2, . . . , r}
and F2 = F\F1 . Let b = Σt∈F1 xt and let a = Σt∈G xt . If F2 = Ø we have
directly that a|b . If F2 6= Ø, let c = Σt∈F2 xt and note that by the construction
of the sequence a|c so again we conlude that a|b . But 0 < b < xr ≤ a , a
contradiction.

Theorem 5.8. Assume MA. There is a strongly summable ultrafilter which is
not divisibly strongly summable.
Proof. Let 〈xn〉∞n=1be the sequence which is defined in Lemma 5.7. Define
γ : Pf (N) −→ N by γ(F ) = Σn∈F xn . Pick by [5, Theorem 4] a union ultrafilter
U which is not an ordered union ultrafilter. Let p = {A ⊆ N : γ−1[A] ∈ U } .
Then p is an ultrafilter on N. To see thatt p is strongly summable, let A ∈ p
be given. Pick a sequence 〈Fn〉∞n=1 of pairwise disjoint members of Pf (N)such
that FU(〈Fn〉∞n=1) ∈ U and FU(〈Fn〉∞n=1) ⊆ γ−1[A] . For each n , let yn =
Σt∈Fn

xt . Then FS(〈yn〉∞n=1 ) = γ[FU(〈Fn〉∞n=1)] so FS(〈yn〉∞n=1 ) ∈ p and
FS(〈yn〉∞n=1 ) ⊆ A .

To see that p is not divisibly strongly summable, pick A ∈ U such that
there is no sequence 〈Fn〉∞n=1 in Pf (N)with maxFn < minFn+1 for each n and
FU(〈Fn〉∞n=1) ⊆ A and FU(〈Fn〉∞n=1) ∈ U . Let A = {Σt∈F xt : F ∈ A} . Then
A ∈ p . Suppose we have a divisible sequence 〈yn〉∞n=1with FS(〈yn〉∞n=1 ) ⊆ A
and FS(〈yn〉∞n=1 ) ∈ p . For each n , let Fn = supp(yn), i.e. yn = Σt∈Fn

xt .
Observe that Fn ∩ Fm = Ø for n 6= m . (If we had t ∈ Fn ∩ Fm we would have
αt(yn + ym) = 2, while yn + ym ∈ A) Then FU(〈Fn〉∞n=1) = γ−1[FS(〈yn〉∞n=1 )]
so FU(〈Fn〉∞n=1) ∈ U and FU(〈Fn〉∞n=1) ⊆ A . Also given n ∈ N we have by
Lemma 5.7 that max Fn < minFn+1 . This contradiction completes the proof.

References

[1] Bergelson, V., N. Hindman, and B. Kra, Iterated spectra of numbers –
elementary, dynamical, and algebraic approaches, manuscript.

[2] Berglund, J., H. Junghenn, and P. Milnes,“Analysis on Semigroups”,
Wiley, New York, 1989.

[3] Blass, A., Ultrafilters related to Hindman’s finite-unions theorem and its
extensions, in “Logic and Combinatorics” (S. Simpson, ed.), Contempo-
rary Math. 65(1987), 89-124.

[4] Blass, A., and N. Hindman, Sums of ultrafilters and the Rudin-Keisler
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