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QUASI-CENTRAL SETS AND THEIR DYNAMICAL
CHARACTERIZATION

SHEA D. BURNS AND NEIL HINDMAN

Abstract. Central sets were originally defined for subsets
of N by Furstenberg using notions from topological dynam-
ics, and he proved the powerful Central Sets Theorem for such
sets. Subsequently, central sets in any semigroup S were char-
acterized as members of idempotents in the smallest ideal of
βS, the Stone-Čech compactification of S. Quasi-central sets
are members of idempotents in the closure of the smallest
ideal of βS. They have a much simpler combinatorial char-
acterization than do central sets. And they satisfy all known
versions of the Central Sets Theorem. We provide a sim-
ple proof of this latter assertion for commutative semigroups
and obtain a dynamical characterization of quasi-central sets
which is similar to Furstenberg’s original definition.

1. Introduction

We shall be concerned in this paper with two notions of largeness
in an arbitrary semigroup (S, ·), namely central and quasi-central
sets. These notions in turn are related to two other notions which
we define now. Given s ∈ S and A ⊆ S,

s−1A = {t ∈ S : st ∈ A} .
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(We are not assuming that s has an inverse, or that S has an
identity.) For any set X, Pf (X) is the set of finite nonempty subsets
of X.

Definition 1.1. Let S be a semigroup and let A ⊆ S.
(a) The set A is syndetic if and only if there is some G ∈ Pf (S)

such that S =
⋃

t∈G t−1A.
(b) The set A is piecewise syndetic if and only if there is some

G ∈ Pf (S) such that for all F ∈ Pf (S) there is some x ∈ S
with Fx ⊆

⋃
t∈G t−1A.

In the semigroup (N,+), a set A is syndetic if and only if it
has bounded gaps and is piecewise syndetic if and only if there are
arbitrarily long intervals in which that gaps of A are bounded by a
fixed bound.

In [3] H. Furstenberg defined a central subset of the set N of
positive integers in terms of the notions of proximality and uniform
recurrence in a dynamical system.

Definition 1.2.

(a) A dynamical system is a pair (X, 〈Ts〉s∈S) such that
(i) X is a compact Hausdorff space,
(ii) S is a semigroup,
(iii) for each s ∈ S, Ts : X → X and Ts is continuous, and
(iv) for all s, t ∈ S, Ts ◦ Tt = Tst.

(b) If (X, 〈Ts〉s∈S) is a dynamical system, then a point y ∈ X is
uniformly recurrent if and only if, for every neighborhood
U of y, {s ∈ S : Ts(y) ∈ U} is syndetic.

(c) If (X, 〈Ts〉s∈S) is a dynamical system, then points x and y
of X are proximal if and only if for every neighborhood U
of the diagonal in X × X, there is some s ∈ S such that(
Ts(x), Ts(y)

)
∈ U .

For Furstenberg the phase space X of a dynamical system was
assumed to be metric. In this case, one easily sees that points x
and y are proximal if and only if there is a sequence 〈sn〉∞n=1 in S
such that lim

n→∞
d
(
Tsn(x), Tsn(y)

)
= 0.

Furstenberg’s definition of central sets, generalized to apply to
an arbitrary semigroup, was the following.
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Definition 1.3. Let S be a semigroup and let C ⊆ S. Then C is
central if and only if there exist a dynamical system (X, 〈Ts〉s∈S),
points x and y of X, and a neighborhood U of y such that y is
uniformly recurrent, x and y are proximal, and C = {s ∈ S :
Ts(x) ∈ U}.

The importance of this notion came from the following theorem.

Theorem 1.4 (Furstenberg). Let l ∈ N and for each i ∈ {1, 2, . . . ,
l}, let 〈yi,n〉∞n=1 be a sequence in Z. Let C be a central subset of
N. Then there exist sequences 〈an〉∞n=1 in N and 〈Hn〉∞n=1 in Pf (N)
such that

(1) for all n, max Hn < minHn+1 and
(2) for all F ∈ Pf (N) and all i ∈ {1, 2, . . . , l},∑

n∈F (an +
∑

t∈Hn
yi,t) ∈ C.

Proof. [3, Proposition 8.21]. �

In [3] Furstenberg used the Central Sets Theorem to prove Rado’s
Theorem [7] by showing that any central subset of N contains solu-
tions to all partition regular systems of homogeneous linear equa-
tions. Many other strong properties of central sets have been de-
rived. See [6, Part III] for a number of these.

Subsequently, after looking at an early draft of the paper [4]
by Furstenberg and Katznelson which derived Ramsey Theoretic
results using idempotents in enveloping semigroups, Vitaly Bergel-
son had the idea that one might be able to derive the conclusion of
the Central Sets Theorem for a set C ⊆ N which had an idempotent
in the smallest ideal of βN in its closure. He was right. We shall
consider this characterization after a brief review of the algebraic
structure of βS.

Given a discrete semigroup (S, ·) we take the points of the Stone-
Čech compactification βS of S to be the ultrafilters on S, the prin-
cipal ultrafilters being identified with the points of S. Given A ⊆ S,
A = {p ∈ βS : A ∈ p} and the set {A : A ⊆ S} is a basis for the
open sets (and a basis for the closed sets) of βS. Given p, q ∈ βS
and A ⊆ S, A ∈ p · q if and only if {x ∈ S : x−1A ∈ q} ∈ p. In
particular, the operation · on βS extends the operation · on S.

With this operation, (βS, ·) is a compact Hausdorff right topolog-
ical semigroup with S contained in its topological center. That is,
for each p ∈ βS, the function ρp : βS → βS defined by ρp(q) = q · p
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is continuous and for each x ∈ S, the function λx : βS → βS de-
fined by λx(q) = x · q is continuous. A subset I of a semigroup T
is a left ideal provided T · I ⊆ I, a right ideal provided I · T ⊆ I,
and a two sided ideal (or simply an ideal) provided it is both a left
ideal and a right ideal.

Any compact Hausdorff right topological semigroup T has a
smallest two sided ideal K(T ) =

⋃
{L : L is a minimal left ideal

of T} =
⋃
{R : R is a minimal right ideal of T}. Given a minimal

left ideal L and a minimal right ideal R, L ∩ R is a group, and
in particular contains an idempotent. An idempotent in K(T ) is
a minimal idempotent. If p and q are idempotents in T we write
p ≤ q if and only if pq = qp = p. An idempotent is minimal with
respect to this relation if and only if it is a member of the smallest
ideal. A point p ∈ βS is in c`K(βS) if and only if every member
of p is piecewise syndetic. See [6] for additional information on the
algebraic structure of βS.

Bergelson’s characterization can now be presented.

Definition 1.5. Let S be a discrete semigroup and let C be a
subset of S. Then C is central if and only if there is an idempotent
p in K(βS) such that C ∈ p.

In [1] it was shown, with the assistance of B. Weiss, that a subset
C of N is central according to Definition 1.5 if and only if C is central
according to Definition 1.3 and in [8] Hong-ting Shi and Hong-wei
Yang showed that the two definitions are equivalent in general.

The Central Sets Theorem has been extended a few times. The
most general version was recently obtained in [2]. We shall state
here the version for commutative semigroups which is much simpler
to state than the general version.

Theorem 1.6. Let S be a commutative semigroup and let T = NS,
the set of sequences in S. Let C be a central subset of S. There
exist functions α : Pf (T ) → S and H : Pf (T ) → Pf (N) such that

(1) if F,G ∈ Pf (T ) and F ⊆6 G, then max H(F ) < minH(G)
and

(2) whenever m ∈ N, G1, G2, . . . , Gm ∈ Pf (T ), G1 ⊆6 G2 ⊆6 . . .
⊆6 Gm, and for each i ∈ {1, 2, . . . ,m}, 〈yi,n〉∞n=1 ∈ Gi, one

has
∏m

i=1(α(Gi) ·
∏

t∈H(Gi)
yi,t) ∈ C.

Proof. [2, Theorem 2.2]. �
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The notion of quasi-central sets was introduced in [5].

Definition 1.7. Let S be a discrete semigroup and let C be a
subset of S. Then C is quasi-central if and only if there is an
idempotent p in c`K(βS) such that C ∈ p.

While quasi-central sets have received much less attention than
central sets, they have some significant virtues. In the first place,
Theorem 1.6 is true for quasi-central sets, as is its noncommutative
version as well. Secondly, in [2] combinatorial characterizations of
both central and quasi-central sets were obtained. The characteri-
zation of quasi-central sets is much simpler than the characteriza-
tion of central sets. In Section 2 we shall demostrate how easy it
is to prove Theorem 1.6 as applied to quasicentral sets and discuss
the combinatorial characterization of these sets.

In Section 3 we complete a cycle by providing a characterization
of quasi-central sets which is similar to Definition 1.3.

2. Quasi-central sets

We shall begin by showing that quasi-central sets satisfy the
commutative version of the Central Sets Theorem. It is a fact,
which follows from results in [2], that the same is true for the general
version as well. To illustrate precisely how easy it is, we present
the details of the following theorem which is taken from [2].

Theorem 2.1. Let S be a commutative semigroup and let l ∈ N.
For each i ∈ {1, 2, . . . , l}, let 〈yi,n〉∞n=1 be a sequence in S. Let C be
a piecewise syndetic subset of S and let m ∈ N. There exist a ∈ S
and H ∈ Pf (N) such that minH > m and for each i ∈ {1, 2, . . . , l},
a ·

∏
t∈H yi,t ∈ C.

Proof. Let Y = ×l
t=1βS. Then by [6, Theorem 2.22] Y is a com-

pact right topological semigroup and if x ∈ ×l
t=1S, then λx is

continuous. For i ∈ N, let

Ii = {(a ·
∏

t∈H y1,t, . . . , a ·
∏

t∈H yl,t) : a ∈ S , H ∈ Pf (N) ,
and min H > i}

and let Ei = Ii ∪ {(a, a, . . . , a) : a ∈ S}.
Let E =

⋂∞
i=1 Ei and let I =

⋂∞
i=1 Ii. We claim that E is a

subsemigroup of Y and I is an ideal of E. To this end, let p, q ∈ E.
We show that p · q ∈ E and if either p ∈ I or q ∈ I, then p · q ∈ I.
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Let U be an open neighborhood of p · q and let i ∈ N. Since ρq

is continuous, pick a neighborhood V of p such that V · q ⊆ U .
Pick x ∈ Ei ∩ U with x ∈ Ii if p ∈ I. If x ∈ Ii so that x =
(a·

∏
t∈H y1,t, . . . , a·

∏
t∈H yl,t) for some a ∈ S and some H ∈ Pf (N)

with minH > i, let j = maxH. Otherwise, let j = i. Since λx is
continuous, pick a neighborhood W of q such that x ·W ⊆ U . Pick
y ∈ Ej ∩W with y ∈ Ij if q ∈ I. Then x · y ∈ Ei ∩ U and if either
p ∈ I or q ∈ I, then x · y ∈ Ii ∩ U .

By [6, Theorem 2.23] K(Y ) =×l
t=1K(βS). Pick p ∈ K(βS)∩C.

Then p = (p, p, . . . , p) ∈ K(Y ). We claim that p ∈ E. To see this,
let U be a neighborhood of p, let i ∈ N, and pick A1, A2, . . . , Al ∈ p

such that ×l
t=1At ⊆ U . Pick a ∈

⋂l
t=1 At. Then

a = (a, a, . . . , a) ∈ U ∩ Ei .

Thus p ∈ K(Y )∩E so K(E) = K(Y )∩E by [6, Theorem 1.65] and
so p ∈ K(E) ⊆ I. Then Im ∩×l

t=1C 6= ∅ so pick z ∈ Im ∩×l
t=1C

and pick a ∈ S and H ∈ Pf (N) with minH > m such that z =
(a ·

∏
t∈H y1,t, . . . , a ·

∏
t∈H yl,t). �

Theorem 2.2. Let S be a commutative semigroup and let T = NS,
the set of sequences in S. Let C be a quasi-central subset of S.
There exist functions α : Pf (T ) → S and H : Pf (T ) → Pf (N)
such that

(1) if F,G ∈ Pf (T ) and F ⊆6 G, then max H(F ) < minH(G)
and

(2) whenever m ∈ N, G1, G2, . . . , Gm ∈ Pf (T ), G1 ⊆6 G2 ⊆6 . . .
⊆6 Gm, and for each i ∈ {1, 2, . . . ,m}, 〈yi,n〉∞n=1 ∈ Gi, one

has
∏m

i=1(α(Gi) ·
∏

t∈H(Gi)
yi,t) ∈ C.

Proof. Pick an idempotent p ∈ c`K(βS) such that C ∈ p. Let

C? = {x ∈ C : −x · C ∈ p} .

Since p · p = p, C? ∈ p. Also by [6, Lemma 4.14], if x ∈ C?, then
x−1C? ∈ p.

We define α(F ) ∈ S and H(F ) ∈ Pf (N) for F ∈ Pf (T ) by
induction on |F | satisfying the following inductive hypotheses:

(1) if ∅ 6= G ⊆6 F , then max H(G) < minH(F ) and
(2) if n ∈ N, ∅ 6= G1 ⊆6 G2 ⊆6 . . . ⊆6 Gn = F , and

〈fi〉ni=1 ∈×n
i=1Gi, then

∏n
i=1

(
α(Gi) ·

∏
t∈H(Gi)

fi(t)
)
∈ C?.
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Assume first that F = {f}. Pick by Theorem 2.1 a ∈ S and
L ∈ Pf (N) such that a ·

∏
t∈L f(t) ∈ C?. Let α({f}) = a and

H({f}) = L.
Now assume that |F | > 1 and α(G) and H(G) have been defined

for all proper subsets G of F . Let K =
⋃
{H(G) : ∅ 6= G ⊆6 F} and

let m = max K. Let M = {
∏n

i=1

(
α(Gi) ·

∏
t∈H(Gi)

fi(t)
)

: n ∈
N , ∅ 6= G1 ⊆6 G2 ⊆6 . . . ⊆6 Gn ⊆6 F , and 〈fi〉ni=1 ∈×n

i=1Gi}. Then
M is finite and by hypothesis (2), M ⊆ C?. Let

B = C? ∩
⋂

x∈M x−1C? .

Then B ∈ p so pick by Theorem 2.1 a ∈ S and L ∈ Pf (N) such that
minL > m and for each f ∈ F , a ·

∏
t∈L f(t) ∈ B. Let α(F ) = a

and H(F ) = L.
Since minL ≥ m we have that hypothesis (1) is satisfied. To

verify hypothesis (2), let n ∈ N, let ∅ 6= G1 ⊆6 G2 ⊆6 . . . ⊆6 Gn = F ,
and let 〈fi〉ni=1 ∈×n

i=1Gi If n = 1, then∏n
i=1

(
α(Gi) ·

∏
t∈H(Gi)

f1(t)
)

= a ·
∏

t∈L f1(t) ∈ B ⊆ C? .

So assume that n > 1 and let y =
∏n−1

i=1

(
α(Gi) ·

∏
t∈H(Gi)

fi(t)
)
.

Then y ∈ M so a ·
∏

t∈L fn(t) ∈ B ⊆ y−1C? and thus∏n
i=1

(
α(Gi) ·

∏
t∈H(Gi)

fi(t)
)

= y · a ·
∏

t∈L fn(t) ∈ C?

as required. �

Consider now the following combinatorial characterization of
quasi-central sets from [5].

Theorem 2.3. Let S be an infinite semigroup and let A ⊆ S.
Statements (1) and (2) are equivalent and are implied by statement
(3). If S is countable, then all three statements are equivalent.

(1) A is quasi-central.
(2) There is a downward directed family 〈CF 〉F∈I of subsets of

A such that
(a) for each F ∈ I and each x ∈ CF there exists G ∈ I

with CG ⊆ x−1CF and
(b) for each F ∈ I, CF is piecewise syndetic.

(3) There is a decreasing sequence 〈Cn〉∞n=1 of subsets of A such
that
(a) for each n ∈ N and each x ∈ Cn, there exists m ∈ N

with Cm ⊆ x−1Cn and
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(b) for each n ∈ N, Cn is piecewise syndetic.

Proof. [5, Theorem 3.7]. �

By contrast, the characterization of central requires that the fam-
ily {CF : F ∈ I} (or the family {Cn : n ∈ N}) be collectionwise
piecewise syndetic, a very complicated notion which we are not go-
ing to inflict on the reader. (If she is curious, she may check [6,
Definition 14.19].)

3. A dynamical characterization

It seemed natural to us to ask whether quasi-central sets could
be characterized in term of notions defined in terms of dynamical
systems since that had, after all, been the origin of central sets. It
turns out that the answer is “yes”, although the crucial notion is
not one of the standard notions of topological dynamics.

Definition 3.1. Let (X, 〈Ts〉s∈S) be a dynamical system and let
x, y ∈ X. The pair (x, y) is jointly intermittently uniformly recur-
rent (abbreviated JIUR) if and only if for every neighborhood U of
y, {s ∈ S : Ts(x) ∈ U and Ts(y) ∈ U} is piecewise syndetic.

Notice that trivially if the pair (x, y) is JIUR, then x and y are
proximal. Further, one can show that if x and y are proximal and
y is uniformly recurrent, then the pair (x, y) is JIUR.

Recall that given p ∈ βS and 〈xs〉s∈S in a topological space,
p- lim

s∈S
xs = y if and only if for each neighborhood U of y,

{s ∈ S : xs ∈ U} ∈ p .

Definition 3.2. Let (X, 〈Ts〉s∈S) be a dynamical system, let x ∈
X, and let p ∈ βS. Then Tp(x) = p- lim

s∈S
Ts(x).

Lemma 3.3. Let (X, 〈Ts〉s∈S) be a dynamical system and let x, y ∈
X. The following statements are equivalent.

(a) The pair (x, y) is JIUR.
(b) There exists r ∈ c`K(βS) such that Tr(x) = Tr(y) = y.
(c) There exists r ∈ c`K(βS) such that rr = r and

Tr(x) = Tr(y) = y.

Proof. (a) ⇒ (b). For each neighborhood U of y, let

BU = {s ∈ S : Ts(x) ∈ U and Ts(y) ∈ U} .
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By assumption each BU is piecewise syndetic. Further, the property
of being piecewise syndetic is partition regular in the sense that if
a finite union of sets is piecewise syndetic, one of them is. Also, if
U and V are neighborhoods of y, then BU∩V ⊆ BU ∩BV . Thus by
[6, Theorem 3.11] we may pick r ∈ βS such that

{BU : U is a neighborhood of y} ⊆ r

and each member of r is piecewise syndetic. Then by [6, Corollary
4.41], r ∈ c`K(βS). Then Tr(x) = Tr(y) = y.

(b) ⇒ (c). Let M = {r ∈ c`K(βS) : Tr(x) = Tr(y) = y}. By
assumption M 6= ∅. Note also that M is closed. (If, say, Tr(x) 6= y,
pick a neighborhood U of y such that A = {s ∈ S : Ts(x) ∈ U} /∈ r,
then S \A is a neighborhood of r missing M .) We need to show
that M is a subsemigroup of βS, since then, as a compact right
topological semigroup, it will have an idempotent. So let q, r ∈ M .
Then qr ∈ c`K(βS) by [6, Theorem 4.44] and by [6, Remark 19.13]
Tqr(x) = Tq

(
Tr(x)

)
= Tq(y) = y and Tqr(y) = Tq

(
Tr(y)

)
= Tq(y) =

y.
(c) ⇒ (a). Pick r as guaranteed. Let U be a neighborhood of

y. Then {s ∈ S : Ts(x) ∈ U} ∈ r and {s ∈ S : Ts(y) ∈ U} ∈ r, so
{s ∈ S : Ts(x) ∈ U and Ts(y) ∈ U} ∈ r and is therefore piecewise
syndetic. �

We should emphasize that we are not making any special as-
sumptions about the semigroup S in the following theorem. The
proof of the necessity in the following theorem is very similar to
the corresponding part of the proof that Definitions 1.3 and 1.5 are
equivalent.

Theorem 3.4. Let S be a semigroup and let C ⊆ S. The set
C is quasi-central if and only if there exist a dynamical system
(X, 〈Ts〉s∈S), points x and y of X such that x and y are JIUR, and
a neighborhood U of y such that C = {s ∈ S : Ts(x) ∈ U}.

Proof. Sufficiency. By Lemma 3.3 pick r ∈ c`K(βS) such that
rr = r and Tr(x) = Tr(y) = y. Since U is a neighborhood of y and
Tr(x) = y we have that C ∈ r.

Necessity. Let R = S ∪ {e} where e is an identity adjoined to
S (even if S already had an identity. Let X = R{0, 1}, the set of
functions from R to {0, 1} with the product topology. For s ∈ S
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define Ts : X → X by Ts = f ◦ρs. By [6, Lemma 19.14] (X, 〈Ts〉s∈S)
is a dynamical system.

Let x = χC , the characteristic function of C. Pick an idempotent
r ∈ c`K(βS) such that C ∈ r and let y = Tr(x). Then by [6,
Remark 19.13] we have that Tr(y) = Tr

(
Tr(x)

)
= Trr(x) = Tr(x) =

y so by Lemma 3.3 the pair (x, y) is JIUR.
Let U = {z ∈ X : z(e) = y(e)}. Then U is a neighborhood

of y in X. Notice that y(e) = 1. Indeed, y = Tr(x) so {s ∈
S : Ts(x) ∈ U} ∈ r so pick s ∈ C such that Ts(x) ∈ U . Then
y(e) = Ts(x)(e) = χC ◦ ρs(e) = χC(s) = 1. Now given any s ∈ S,

s ∈ C ⇔ x(s) = 1
⇔ χC(es) = 1
⇔ Ts(x) ∈ U .

�

In [5, Theorem 4.4] there is an example of a quasi-central set
in (N,+) which is not central. If x and y are as produced in the
proof of the necessity in Theorem 3.4 for that set, then the pair
(x, y) is JIUR (and in particular, x and y are proximal) but y is
not uniformly recurrent.
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