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Abstract An IP* set in a semigroup is one which must intersect the set of finite
products from any specified sequence. (If the semigroup is noncommutative, one must
specify the order of the products, resulting in “left” and “right” IP* sets.) If A is a
subset of N with positive upper density, then the difference set A−A = {x ∈ N : there
exists y ∈ A with x + y ∈ A} is an IP* set in (N,+). Defining analogously the quotient
sets AA−1 and A−1A, we analyze notions of largeness sufficient to guarantee that one or
the other of these quotient sets are IP* sets. Among these notions are thick , syndetic,
and piecewise syndetic sets, all of which come in both “left” and “right” versions. For
example, we show that if A is any left syndetic subset of a semigroup S, then AA−1

is both a left IP* set and a right IP* set, while A−1A need be neither a left IP* set
nor a right IP* set, even in a group. We also investigate the relationships among these
notions of largeness.

1. Introduction.

In a commutative semigroup (S, +), we write FS(〈xn〉∞n=1) = {Σn∈F xn : F ∈
Pf (N)} where Pf (N) = {A : A is a finite nonempty subset of N}. Loosely following
Furstenberg [5] we say that a set A ⊆ S is an IP set if and only if there is a sequence
〈xn〉∞n=1 in S with FS(〈xn〉∞n=1) ⊆ A. A set C ⊆ S is then an IP* set if and only if
C ∩A 6= ∅ for every IP set A (equivalently if and only if C ∩FS(〈xn〉∞n=1) 6= ∅ for every
sequence 〈xn〉∞n=1 in S).

Recall that given a sequence of intervals 〈(an, bn]〉∞n=1 in N with lim
n→∞

(bn−an) = ∞,
there are associated natural notions of upper density and density of a subset A of

N, namely d(A) = lim sup
n→∞

|(an, bn] ∩A|
(bn − an)

and d(A) = lim
n→∞

|(an, bn] ∩A|
(bn − an)

if the latter

limit exists. (In N, the expressions d(A) and d(A) are typically used to refer to the
upper density and density, respectively, of A with respect to the sequence of intervals
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〈(0, n]〉∞n=1. We are using them here somewhat more liberally.) Further, these notions
are translation invariant. That is, given t ∈ N, d(A − t) = d(A). While upper density
d is certainly not additive, density d is, in the sense that if d(E) and d(F ) exist, where
E ∩ F = ∅, then d(E ∪ F ) exists and equals d(E) + d(F ).

If d(A) > 0, then by passing to a subsequence of the intervals used to determine
d(A) > 0, one can get the (positive) density of A to exist. This observation allows one
to prove the following simple (and well known) fact. (By the difference set A − A, we
mean {b ∈ N : there exists c ∈ A such that b + c ∈ A} = {x− y : x, y ∈ A and x > y}.)

1.1 Theorem. Let A ⊆ N and assume there is a sequence 〈(an, bn]〉∞n=1 of intervals in
N (with lim

n→∞
(bn−an) = ∞) with respect to which d(A) > 0. Then A−A is an IP* set.

Proof. Let α = d(A) = lim sup
n→∞

|(an, bn] ∩A|
(bn − an)

. Choose a subsequence 〈(cn, dn]〉∞n=1 of

〈(an, bn]〉∞n=1 with respect to which d(A) = α.

Let a sequence 〈xn〉∞n=1 in N be given. Then for each m ∈ N, d(A− Σm
t=1 xt) = α

(density relative to the sequence 〈(cn, dn]〉∞n=1). Pick k ∈ N such that 1/k < α. Since
d is additive one cannot have {A − x1, A − (x1 + x2), . . . , A − (x1 + x2 + . . . + xk)}
pairwise disjoint, so pick m < n such that (A − Σm

t=1 xt) ∩ (A − Σn
t=1 xt) 6= ∅. Then

Σn
t=m+1 xt ∈ A−A.

This simple result can be extended to a much wider class of semigroups. Let us
recall the notion of a Følner sequence.

1.2 Definition. Let (S, ·) be a countable semigroup. A sequence 〈An〉∞n=1 in Pf (S) is
said to be a left (respectively right) Følner sequence for S if for each s ∈ S,

lim
n→∞

|sAn 4An|
|An|

= 0 (respectively lim
n→∞

|Ans4An|
|An|

= 0).

Existence of Følner sequences in semigroups is related to the notion of amenability.
A discrete semigroup S is said to be left amenable if there exists a left invariant mean µ

(that is, positive linear functional satisfying µ(1) = 1) on l∞(S), the space of bounded
complex valued functions on S. By left invariance here we mean that for every x ∈ S

and every φ ∈ l∞(S) we have µ(xφ) = µ(φ), where xφ(t) = φ(xt) for t ∈ S. (That is,

xφ = φ ◦ λx where λx(t) = xt.) Right amenability is similarly defined. We shall usually
state our results for one side only, leaving the obvious left-right switches to the reader.

It is well known that the set of left invariant means µ is in one to one correspondence
with the set of left invariant finitely additive probability measures m via the mapping
m ↔ µ, where m(B) = µ(χB), µ extending continuously and linearly to l∞(S). See,
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for example, [10, Section 0.1]. Therefore, we shall sometimes refer to such measures as
“means”, as well.

We shall be using the following relationships between amenability and existence
of Følner sequences. If S admits a left Følner sequence, then S is left amenable. The
converse does not hold in general, however any left amenable semigroup which is also left
cancellative does admit a left Følner sequence. (See [10, Section 4.22] and [9, Corollary
3.6].)

For groups, left and right amenability are equivalent. Indeed, if S is a group and
µ is a left invariant mean we put f̃(x) = f(x−1), f ∈ l∞(S) and let ν(f) = µ(f̃). ν

is a right invariant mean. This equivalence does not hold for semigroups, which may
be left but not right amenable. Indeed, for any set S with |S| ≥ 2, letting xy = y for
x, y ∈ S (so that S is a “right zero” semigroup) one may show that S is a left amenable
semigroup that is not right amenable.

In this paper we shall be concerned with describing the “largeness” of certain
subsets B of a semigroup S. Our philosophy is that the best notions of largeness should
be closed under supersets, partition regular, and satisfy some sort of shift invariance.

A collection L of subsets of a set S is called partition regular if whenever A∪B ∈ L
one must have either A ∈ L or B ∈ L.

In a non-commutative semigroup, there are four possible kinds of shift invariance.
A set L of subsets of a set S is left invariant (respectively left inverse invariant) if and
only if whenever A ∈ L and s ∈ S one has sA ∈ L (respectively s−1A ∈ L), where
s−1A = {t ∈ S : st ∈ A}. If S is a group, so that s−1A = {s−1t : t ∈ A}, these notions
coincide. Right invariance and right inverse invariance are defined analogously.

1.3 Lemma. Let S be a left amenable semigroup, let m be a left invariant mean, let
s ∈ S, and let A ⊆ S. Then m(s−1A) = m(A). If in addition, S is left cancellative,
then m(sA) = m(A).

Proof. Let µ be the linear functional corresponding to m. Then m(s−1A) = µ(χs−1A) =
µ(χA ◦ λs) = µ(χA) = m(A). If S is left cancellative, then s−1(sA) = A and so
m(sA) = m

(
s−1(sA)

)
= m(A).

If S is left amenable and m is a left invariant mean then m(B) may be thought
of as the “size” of the set B, relative to m, at least. We will usually be interested in
distinguishing sets B for which there exists some left invariant mean m with m(B) > 0.
Accordingly, we define m∗

l (B) (respectively m∗
r(B)) to be the supremum of m(B) over

all left (respectively right) invariant means m. We call m∗
l (B) the left upper Banach
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mean density of B, and remark that one can always find a left invariant mean µ for
which µ(B) = m∗

l (B) (simply take a sequence of left invariant means (µi)∞i=1 such that
µi(B) converges to m∗

l (B), and let µ be any weak∗ limit point of this sequence). Then
the condition B ∈ L if and only if m∗

l (B) > 0 serves as a notion of largeness which has
the properties we desire, namely closure under supersets, partition regularity, and, by
Lemma 1.3, left inverse invariance. Also by Lemma 1.3, if S is left cancellative, then L
is left invariant.

A closely related notion of size for subsets B of semigroups S requires the existence
of Følner sequences. Suppose that S is a countable, left cancellative, left amenable semi-
group. For every left Følner sequence 〈An〉∞n=1 one has naturally associated notions of

upper density and density, namely d(B) = lim sup
n→∞

|An ∩B|
|An|

and d(B) = lim
n→∞

|An ∩B|
|An|

(provided the latter limit exists). Also d and d are left invariant and left inverse in-
variant: given s ∈ S and B ⊆ S, one has d(sB) = d(s−1B) = d(B). (It is routine to
verify these assertions. One only needs to note that, while s(s−1B) need not equal B,
it is true that s(A ∩ s−1B) = sA ∩ B.) We also let d∗l (B) be the supremum of d(B)
over all left Følner sequences 〈An〉∞n=1. Then d∗l (B) will be called the left upper Banach
density of B. Again, this supremum is achieved. In fact, for each B ⊆ S, there exists
a left Følner sequence 〈An〉∞n=1 (depending on B) such that d(B) (with respect to this
sequence) exists and equals d∗l (B). It follows that d∗l (sB) = d∗l (s

−1B) = d∗l (B) as well.
Furthermore, as it is well known that a left Følner sequence 〈An〉∞n=1 for which d(B)
exists may be used to define a left invariant mean m for which m(B) = d(B), one easily
obtains the inequality m∗

l (B) ≥ d∗l (B).

We want to consider analogues to Theorem 1.1 for semigroups S which are pos-
sibly non-commutative. In such semigroups there are two reasonable interpretations
for Πn∈F xn. That is, one may take the products in increasing or decreasing order of
indices. The “left” and “right” terminology in the following definition comes from the
choice of continuity in the Stone-Čech compactification βS of S, a topic that we shall
discuss later in this introduction.

1.4 Definition. Let S be a semigroup and let 〈xn〉∞n=1 be a sequence in S.

(a) Let F = {n1, n2, . . . , nk} ∈ Pf (N) with n1 < n2 < . . . < nk. Then ↑Πn∈F xn =
xn1 · xn2 · . . . · xnk

and ↓Πn∈F xn = xnk
· xnk−1 · . . . · xn1 .

(b) FPD(〈xn〉∞n=1) = { ↓Πn∈F xn : F ∈ Pf (N)}.
(c) FPI(〈xn〉∞n=1) = { ↑Πn∈F xn : F ∈ Pf (N)}.
(d) A subset A of S is a right (respectively left) IP set if and only if there is a
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sequence 〈xn〉∞n=1 in S with FPI(〈xn〉∞n=1) ⊆ A (respectively FPD(〈xn〉∞n=1) ⊆ A).
(e) A subset A of S is a right (respectively left) IP* set if and only if for every right

(respectively left) IP set B, A ∩B 6= ∅.

We shall see now that a natural analogue of Theorem 1.1 holds for any countable,
left cancellative, left amenable semigroup. The “quotient set” AA−1 = {x ∈ S : there
exists y ∈ A such that xy ∈ A} is a natural analogue of the difference set A − A used
in Theorem 1.1. (Another natural analogue is A−1A = {x ∈ S : there exists y ∈ A such
that yx ∈ A}.) Note that if S is a group, then AA−1 = {xy−1 : x, y ∈ A}.

Theorem 1.5 will be seen to be a corollary to Theorem 3.1. We include its (short)
proof now to illustrate how the proof of Theorem 1.1 is adapted.

1.5 Theorem. Let S be a countable, left cancellative, left amenable semigroup and let
B ⊆ S with d∗l (B) > 0. Then BB−1 is both a left IP* set and a right IP* set.

Proof. There exists a left Følner sequence 〈An〉∞n=1 with respect to which d(B) =
d∗l (B) > 0. Let a sequence 〈xn〉∞n=1 be given. For each n ∈ N we have d

(
( ↑Πn

t=1 xt)B
)

=
d(B) so by the additivity of d, {( ↑Πn

t=1 xt)B : n ∈ N} cannot be a disjoint collection.
Consequently one may pick m < n such that ( ↑Πm

t=1 xt)B∩( ↑Πn
t=1 xt)B 6= ∅. Pick a, b ∈ B

such that ( ↑Πm
t=1 xt)a = ( ↑Πn

t=1 xt)b. Cancelling ↑Πm
t=1 xt, one has that a = ( ↑Πn

t=m+1)b
so that ↑Πn

t=m+1 ∈ BB−1.
Similarly we may pick r < s such that ( ↓Πr

t=1 xt)−1B ∩ ( ↓Πs
t=1 xt)−1B 6= ∅. Let

a ∈ ( ↓Πr
t=1 xt)−1B ∩ ( ↓Πs

t=1 xt)−1B. Then ( ↓Πr
t=1 xt)a ∈ B. Let b = ( ↓Πr

t=1 xt)a. Then
( ↓Πs

t=r+1 xt)b = ( ↓Πs
t=1 xt)a ∈ B so ↓Πs

t=r+1 xt ∈ BB−1.

In Theorem 3.1, this result is expanded, replacing the condition d∗l (B) > 0 with
the condition m∗

l (B) > 0, to include the case of left amenable semigroups S not admit-
ting Følner sequences. The question naturally arises as to whether analogues of these
results are available in non-amenable semigroups. Without invariant means or Følner
sequences, none of our previous natural notions of largeness are applicable. We desire
a different notion of largeness, one which has meaning in any semigroup. One class of
sets which seem to be reasonable candidates to replace sets of positive upper Banach
density (or positive upper Banach mean density) as our class of “large sets” are piece-
wise syndetic sets. In Section 2 we investigate basic information about these sets and
the related notions of thick and syndetic sets.

In Section 3 of this paper we investigate the extent to which one can generalize
Theorem 1.5 to the situation of non-amenable semigroups, using left or right piecewise
syndetic or syndetic sets in place of sets having positive upper density. It turns out
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that the generalizations are surprisingly weak. We give examples showing that stronger
versions are not possible.

In Section 4, we define a property for groups which is stronger than the IP* property,
namely the ∆* property, and investigate the extent to which the results of Section 2
carry over to this stronger property. Finally, we conclude with a few of the more natural
questions which are suggested by the material we treat there.

Some of our proofs in Section 2 utilize the algebraic structure of the Stone-Čech
compactification βS of a discrete semigroup S. We take βS to be the set of all ultrafilters
on S, identifying the principal ultrafilters with the points of S. We denote also by ·
the operation on βS making (βS, ·) a right topological semigroup with S contained in
its topological center. That is, for all p ∈ βS, the function ρp : βS −→ βS defined by
ρp(q) = q · p is continuous and for all x ∈ S, the function λx : βS −→ βS defined by
λx(q) = x · q is continuous. The reader is referred to [6] for an elementary introduction
to this operation. The basic fact characterizing the right continuous operation on βS

is, given p, q ∈ βS and A ⊆ S, A ∈ p · q if and only if {x ∈ S : x−1A ∈ q} ∈ p where
x−1A = {y ∈ S : x · y ∈ A}.

The fact that one may extend the operation to βS so that (βS, ·) is either right
topological or left topological (but not both) is behind the “left” and “right” terminology
introduced earlier. Thus if one takes (βS, ·) to be right (respectively left) topological,
then a subset A of S is a right (respectively left) IP set if and only if A is a member of
some idempotent in βS and A is a right (respectively left) IP* set if and only if A is a
member of every idempotent in βS. (See [6, Theorem 5.12].)

2. Thick, Syndetic, and Piecewise Syndetic Sets.

In this section we study the notions of right and left thick, syndetic, and piecewise
syndetic sets and the relations among them. We state the definitions for the right
versions, leaving the obvious left versions to the reader to formulate.

2.1 Definition. Let S be a semigroup and let A ⊆ S.
(a) A is right thick if and only if for every F ∈ Pf (S) there is some x ∈ S such

that Fx ⊆ A.
(b) A is right syndetic if and only if there exists H ∈ Pf (S) such that S =⋃

t∈H t−1A.
(c) A is right piecewise syndetic if and only if there exists H ∈ Pf (S) such that⋃

t∈H t−1A is right thick.

We observe that right thickness is equivalent to a superficially stronger statement.
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2.2 Lemma. Let S be a semigroup and let A ⊆ S. Then A is right thick if and only if
for every F ∈ Pf (S) there is some x ∈ A such that Fx ⊆ A.

Proof. Let y ∈ S be arbitrary. By definition there exists z ∈ S such that (Fy∪{y})z ⊆
A. Now let x = yz.

Right thickness is a right invariant and left inverse invariant property. Indeed, if
B is right thick, F ∈ Pf (S), and g ∈ S, then choosing x ∈ S such that Fx ⊆ B we
have F (xg) ⊆ Bg, so that Bg is right thick. Similarly, one may show that if B is right
thick then g−1B is right thick. Therefore, if S is a group then right thickness is a left
invariant property as well.

Right thickness is easily seen not to be left invariant nor right inverse invariant in
general for semigroups S, however, indeed not even for cancellative semigroups. For
example, if S is the free semigroup on the letters a and b then clearly S is right thick in
itself. aS, however, is not right thick since bx 6∈ aS for all x ∈ S. Also, letting H = Sa,
one easily sees that H is right thick, but Hb−1 = ∅ and hence is not right thick.

Right syndeticity is a left invariant and right inverse invariant property. Indeed,
if E is right syndetic in S and g ∈ S, then S =

⋃
t∈H t−1E for some H ∈ Pf (S).

Then also S =
⋃

t∈gH t−1gE =
⋃

t∈H(gt)−1gE. To see this, simply note that for every
s ∈ S, ts ∈ E for some t ∈ H, so that gts ∈ gE and s ∈ (gt)−1gE. Also if E is right
syndetic, then Eg−1 is right syndetic for all g ∈ S. To see this, let H ∈ Pf (S) have
the property that

⋃
t∈H t−1E = S. We claim that

⋃
t∈H t−1Eg−1 = S. To see this, let

s ∈ S. Since sg ∈
⋃

t∈H t−1E, there exists t ∈ H such that tsg ∈ E, that is ts ∈ Eg−1

and s ∈ t−1Eg−1. It follows that right syndeticity is right invariant for groups.
Right syndeticity is neither right invariant nor left inverse invariant in general for

cancellative semigroups. Again let S be the free semigroup on the letters a and b. S is
right syndetic in itself, however Sa is not right syndetic, for b 6∈ x−1(Sa) for all x ∈ S.
Also, if we let J = aS, then a−1J = S, so that J is right syndetic. However, b−1J = ∅,
and hence is not right syndetic.

The right piecewise syndeticity property is both left and right invariant for semi-
groups.

2.3 Theorem. Suppose that S is a semigroup, a ∈ S, and E ⊆ S is right piecewise
syndetic. Then aE and Ea are both right piecewise syndetic.

Proof. There exists H ∈ Pf (S) such that
⋃

t∈H t−1E is right thick. Let F ∈ Pf (S).
There exists x ∈ S such that Fx ⊆

⋃
t∈H t−1E. One easily checks that F (xa) =

(Fx)a ⊆
( ⋃

t∈H t−1E
)
a ⊆

⋃
t∈H t−1(Ea). This shows that

⋃
t∈H t−1(Ea) is right thick
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and hence that Ea is right piecewise syndetic. On the other hand, one easily checks
that

⋃
t∈H t−1E ⊆

⋃
t∈H(at)−1(aE) and hence

⋃
t∈aH t−1(aE) is right thick. This shows

that aE is right piecewise syndetic.

The following theorem indicates some of the interrelationships among the various
notions we are dealing with.

2.4 Theorem. Let S be a semigroup and suppose that E ⊆ S.

(a) E is right syndetic if and only if E intersects every right thick set non-trivially.

(b) If E is right thick then E contains a right IP set.

(c) If E is a right IP∗ set then E is right syndetic.

(d) E is right piecewise syndetic if and only if there exist a right syndetic set B

and a right thick set C such that E = B ∩ C.

Proof. (a). If E is right syndetic then there exists H ∈ Pf (S) such that
⋃

t∈H t−1E =
S. Let B be a right thick set. There exists x ∈ S such that Hx ⊆ B. Furthermore, there
exists t ∈ H such that tx ∈ E. Therefore tx ∈ E ∩ B so E intersects B non-trivially.
Conversely, if E intersects every right thick set non-trivially then S\E fails to be right
thick. In other words, there exists H ∈ Pf (S) having the property that for every x ∈ S,
Hx ∩ E 6= ∅. This means that S =

⋃
t∈H t−1E.

(b). Suppose E is right thick. Choose x1 ∈ E. Now, by Lemma 2.2, choose x2 ∈ E

such that x1x2 ∈ E. Choose x3 ∈ E such that {x1, x2, x1x2}x3 ⊆ E. Continuing in this
fashion we obtain a sequence 〈xn〉∞n=1 such that FPI(〈xn〉∞n=1) ⊆ E.

(c). Suppose that E is a right IP∗ set. By (b), E must intersect every right thick
set non-trivially. By (a), E is therefore right syndetic.

(d). Suppose first that E is right piecewise syndetic and pick H ∈ Pf (S) such
that

⋃
t∈H t−1E is right thick. Let C = E ∪

⋃
t∈H t−1E and let B = E ∪ (S\C).

Then trivially C is right thick and E = B ∩ C. Thus it suffices to show that B is right
syndetic. Suppose not. Then by (a), S\B is right thick and

S\B = C\E ⊆
⋃

t∈H t−1E .

Pick by Lemma 2.2 some x ∈ S\B such that Hx ⊆ S\B. Then for some t ∈ H, tx ∈ E

so tx ∈ B, a contradiction.

Now assume that E = B ∩ C where B is right syndetic and C is right thick. Pick
H ∈ Pf (S) such that S =

⋃
t∈H t−1B. Let F ∈ Pf (S) be given and pick x such that

HFx ⊆ C. We claim that Fx ⊆
⋃

t∈H t−1(B ∩ C). To see this, let y ∈ F and pick
t ∈ H such that yx ∈ t−1B. Then tyx ∈ B ∩ C.
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The following theorem, together with Theorem 2.3 and the obvious fact that they
are closed under supersets, shows that the piecewise syndeticity properties give a satis-
factory notion of largeness.

2.5 Theorem. In a semigroup S, the right piecewise syndeticity property is partition
regular.

Proof. Assume that A ∪ B is right piecewise syndetic and pick H ∈ Pf (S) such that⋃
t∈H t−1(A∪B) is right thick. Suppose that neither A nor B is right piecewise syndetic.

Then
⋃

t∈H t−1A is not right thick so pick F ∈ Pf (S) such that for all x ∈ S there
exists y ∈ F such that yx /∈

⋃
t∈H t−1A. That is

(∗) for all x ∈ S there exists y ∈ F such that Hyx ∩A = ∅.

Also
⋃

t∈HF t−1B is not right thick so pick L ∈ Pf (S) such that for all x ∈ S, there
exists y ∈ L such that HFyx ∩B = ∅. Pick x ∈ S such that FLx ⊆

⋃
t∈H t−1(A ∪B).

Pick y ∈ L such that HFyx ∩ B = ∅. Then, replacing x by yx in (∗), pick z ∈ F such
that Hzyx ∩A = ∅. Then zyx /∈

⋃
t∈H t−1(A ∪B), a contradiction.

Alternatively, one may establish partition regularity using the fact (see Theorem
2.9 below) that a subset A of S is right piecewise syndetic if and only if A is a member
of some ultrafilter in the smallest ideal of (βS, ·) with its right topological structure.

Our next two theorems indicate how the properties of thickness, syndeticity, and
piecewise syndeticity relate to our previous notions of size in amenable semigroups.

2.6 Theorem. Suppose that S is a left amenable semigroup and E ⊆ S. Statements
(a) and (b) are equivalent and statements (c) and (d) are equivalent. If in addition S

is left cancellative, then all four statements are equivalent.

(a) E is right thick.

(b) m∗
l (E) = 1.

(c) There exists a left Følner sequence for S whose members are contained in E.

(d) d∗l (E) = 1.

Proof. (a) ↔ (b). See [10, Proposition 1.21].

(c) → (d). Obvious.

(d) → (c). Pick a left Følner sequence 〈An〉∞n=1 with respect to which d(E) = 1.
We claim that 〈An ∩ E〉∞n=1 is a left Følner sequence. To see this, let s ∈ S be given.
Then for any n,

s(An ∩ E)\
(
(An ∩ E) ∪ (sAn∆An)

)
⊆ An\E
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and

(An ∩ E)\
(
s(An ∩ E) ∪ (sAn∆An)

)
⊆ s(An\E)

so that |
(
s(An ∩ E)∆(An ∩ E)

)
\(sAn∆An)| ≤ 2|An\E|. Thus

|s(An ∩ E)∆(An ∩ E)|
|An ∩ E|

≤
|
(
s(An ∩ E)∆(An ∩ E)

)
\(sAn∆An)|+ |sAn∆An|

|An ∩ E|

≤ 2|An\E|+ |sAn∆An|
|An|

· |An|
|An ∩ E|

so that lim
n→∞

|s(An ∩ E)∆(An ∩ E)|
|An ∩ E|

= 0 as required.

Now assume that S is left cancellative.

(a) → (c). Since S is left amenable and left cancellative, there exists a left Følner
sequence 〈An〉∞n=1. Since E is left thick, for every n ∈ N there exists xn ∈ S such that
Anxn ⊆ E. Using the fact that for any s ∈ S and any n, sAnxn∆Anxn ⊆ (sAn∆An)xn,
one easily checks that 〈Anxn〉∞n=1 is a left Følner sequence.

(c) → (a). Let F = {x1, · · · , xk} ⊆ S be any finite set. There exists a left Følner
sequence 〈An〉∞n=1 such that An ⊆ E for all n. Let n be so large that for each i ∈ {1, 2,

. . . , k},

|An\xi
−1An|

|An|
≤ |xi

−1An4An|
|An|

=
|xi(xi

−1An4An)|
|An|

≤ |An4xAn|
|An|

<
1
k

.

(Left cancellation is used for the second to last inequality.) Then
⋂k

i=1 xi
−1An 6= ∅ Let

s ∈
⋂k

i=1 xi
−1An. Then Fs ⊆ An ⊆ E.

2.7 Theorem. Suppose that S is a left amenable semigroup and E ⊆ S.

(a) E is right syndetic if and only if there exists α > 0 such that m(E) > α for
every left invariant mean m.

(b) If E is right piecewise syndetic then m∗
l (E) > 0. If S is also left cancellative,

then d∗l (E) > 0.

Proof. (a). Suppose E is right syndetic. By Theorem 2.4(a), S\E fails to be right
thick. By Theorem 2.6, α = 1 −m∗

l (S\E) > 0. One easily checks that m(E) ≥ α for
every left invariant mean m. Conversely, if there exists α > 0 such that m(E) ≥ α for
every left invariant mean m, then m∗

l (S\E) ≤ 1−α < 1 and S\E fails to be right thick.
That is, E is right syndetic.

(b). Pick H ∈ Pf (S) such that A =
⋃

t∈H t−1E is right thick. By Theorem 2.6,
m∗

l (A) = 1, hence there is some left invariant mean m for S such that m(A) = 1.

10



Consequently, there is some t ∈ H such that µ(χt−1E) > 0. But µ(χA) = µ(χA ◦ λt) =
µ(χt−1A). The second assertion is proved similarly.

One can easily guess that the converse to Theorem 2.7(b) is false. We see now that
this is in fact the case.

2.8 Theorem. Let E = Z \
(⋃∞

n=2

⋃
k∈Z {kn3 + 1, kn3 + 2, . . . , kn3 + n}

)
. Then

d∗(E) > 0, but E fails to be piecewise syndetic.

Proof. To see that E is not piecewise syndetic suppose instead that we have H ∈ Pf (Z)
such that

⋃
t∈H(−t + E) is thick. Pick even n ∈ N such that |t| < n

2 for all t ∈ H. Let
F = {1, 2, . . . , n3 + n

2 } and pick x ∈ Z such that F + x ⊆
⋃

t∈H(−t + E). Pick k ∈ Z
such that (k − 1)n3 < x ≤ kn3. Let y = kn3 + n

2 − x and note that y ∈ F . Pick t ∈ H

such that t+y +x ∈ E. But t+y +x ∈ {kn3 +1, kn3 +2, . . . , kn3 +n}, a contradiction.
Next note that for fixed n ≥ 2, and L ∈ N,

|{−L3 + 1,−L3 + 2, . . . , 0} ∩
⋃

k∈Z{kn3 + 1, kn3 + 2, . . . , kn3 + n}| =
|{−L3 + 1,−L3 + 2, . . . , 0} ∩

⋃{
{kn3 + 1, kn3 + 2, . . . , kn3 + n} : −L3

n3 ≤ k ≤ −1
}
|

≤ L3

n2 .

Moreover {−L3+1,−L3+2, . . . , 0}∩
⋃

k∈Z{kn3+1, kn3+2, . . . , kn3+n} = ∅ for n > L.
It follows that

| {−L3 + 1,−L3 + 2, . . . , 0}\E|
L3

≤
∑L

n=2
1

n2 ≤
π2

6
− 1 .

This implies that
|{−L3 + 1,−L3 + 2, . . . , 0} ∩ E|

L3
≥ 2 − π2

6
. Since L is arbitrary,

d∗(E) ≥ 2− π2

6 > 0.

Any compact right (or left) topological semigroup S has a (unique) smallest two
sided ideal K(S), which is the union of all minimal left ideals and is also the union of all
minimal right ideals. (See [3] or [6] for these and other unfamiliar algebraic facts.) The
smallest ideal of βS and its closure may be characterized in terms of piecewise syndetic
and syndetic sets. We thank the referee for providing the characterizations in (c) and
(d) below.

2.9 Theorem. Let S be a discrete semigroup and assume that the operation has been
extended to βS making (βS, ·) a right topological semigroup with S contained in its
topological center.

(a) Let p ∈ βS. Then p ∈ K(βS) if and only if for every A ∈ p, {x ∈ S : x−1A ∈ p}
is right syndetic.

(b) Let A ⊆ S. Then c`A∩K(βS) 6= ∅ if and only if A is right piecewise syndetic.

11



(c) Let A ⊆ S. Then A is right thick if and only if c`A contains a left ideal of βS.

(d) Let A ⊆ S. Then A is right syndetic if and only if for every left ideal L of βS,
c`A ∩ L 6= ∅.

Proof. (a) [6, Theorem 4.39].

(b) [6, Theorem 4.40].

(c) Necessity. Since A is right thick, {t−1A : t ∈ S} has the finite intersection
property. Pick p ∈ βS such that {t−1A : t ∈ S} ⊆ p. Then Sp ⊆ c`A and thus
βSp ⊆ c`A.

Sufficiency. Pick a left ideal L of βS such that L ⊆ c`A and pick p ∈ L. Then for
each t ∈ S, tp ∈ c`A and so t−1A ∈ p. Given F ∈ Pf (S), pick x ∈

⋂
t∈F t−1A.

(d) Necessity. Pick H ∈ Pf (S) such that S =
⋃

t∈H t−1A and let L be a left ideal
of βS. Pick p ∈ L and pick t ∈ H such that t−1A ∈ p. Then tp ∈ L ∩ c`A.

Sufficiency. Suppose that for each H ∈ Pf (S), S\
⋃

t∈H t−1A 6= ∅. Then {S\t−1A :
t ∈ S} has the finite intersection property so pick p ∈ βS such that {S\t−1A : t ∈ S} ⊆
p. Then c`A ∩ βSp 6= ∅ so pick q ∈ βS such that A ∈ qp. Then {t ∈ S : t−1A ∈ p} ∈ q

so for some t ∈ S, t−1A ∈ p, a contradiction.

It is worth noting that one is guaranteed (as an easy consequence of a result of P.
Anthony) a certain minimal connection between right piecewise syndetic sets and left
piecewise syndetic sets.

2.10 Theorem. Let S be a semigroup, let r ∈ N, and let S =
⋃r

i=1 Ai. Then some Ai

is both left piecewise syndetic and right piecewise syndetic.

Proof. Let K` be the smallest ideal of (βS, ·) with its left topological structure and let
Kr be the smallest ideal of (βS, ·) with its right topological structure. By [1, Theorem
4.1] K` ∩ c`Kr 6= ∅ so pick p ∈ K` ∩ c`Kr. Pick r ∈ {1, 2, . . . , r} such that Ai ∈ p. Then
by Theorem 2.9(b) Ai is both left and right piecewise syndetic.

We now introduce one more class of sets. One will notice that this class is a hybrid
of what have been for us left and right notions.

2.11 Definition. Let S be a semigroup and let A ⊆ S. Then A is strongly right
piecewise syndetic if and only if there exists H ∈ Pf (S) such that

⋃
t∈H At−1 is right

thick.

Justification for our choice of terminology in the previous definition is given by the
following result.

12



2.12 Theorem. Let S be a semigroup. Then any strongly right piecewise syndetic
subset of S is right piecewise syndetic.

Proof. Let A be a strongly right piecewise syndetic subset of S and pick H ∈ Pf (S)
such that

⋃
t∈H At−1 is right thick. Then

⋃
t∈H At−1 is right piecewise syndetic

so, by Theorem 2.5 there is some t ∈ H such that At−1 is right piecewise syndetic.
Pick K ∈ Pf (S) such that for each F ∈ Pf (S),

⋃
s∈K s−1At−1 is right thick. Given

F ∈ Pf (S), pick x ∈ S such that Fx ⊆
⋃

s∈K s−1At−1. Then Fxt ⊆
⋃

s∈K s−1A so
that

⋃
s∈K s−1A is right thick.

We then have that all of the implications in the following diagram hold.

l.s. r.s.
↘↙

l.t. s.l.p.s. s.r.p.s. r.t.
↓ ↙ ↘ ↓
l.p.s. r.p.s.

/
/

︷︷

∖
∖

︷︷
We set out now to show that none of the missing implications is valid in general.

Wherever possible, we shall present counterexamples in a group, specifically the free
group on two generators. The one case in which this is not possible is the proof that
not every right thick set is strongly right piecewise syndetic.

2.13 Theorem. If S is a semigroup with nonempty center, then every right thick subset
of S is strongly right piecewise syndetic. In particular, every right thick subset of a group
is strongly right piecewise syndetic.

Proof. Let A be a right thick subset of S. Pick y in the center of S and let H = {y}.
To see that Ay−1 is right thick, let F ∈ Pf (S) be given and pick x ∈ S such that
(Fy)x ⊆ A. Then (Fx)y ⊆ A so that Fx ⊆ Ay−1 as required.

2.14 Theorem. There is a subset of the free semigroup on countably many generators
which is right thick but not strongly right piecewise syndetic.

Proof. Let S be the free semigroup on the letters {yn : n ∈ N} (without identity). For
w ∈ S, let `(w) be the length of w, that is the number of occurrences of letters in w.
For n ∈ N, let Tn = {w ∈ S : `(w) ≤ n} and let A =

⋃∞
n=1 Tnyn.

Then A is trivially right thick. Now suppose we have some H ∈ Pf (S) such that⋃
t∈H At−1 is right thick. Let m = max{n : there is some t ∈ H such that yn occurs in

t}. Let F = {y1
m} and pick x ∈ S such that Fx ⊆

⋃
t∈H At−1. Pick t ∈ H such that

y1
mxt ∈ A and pick n ∈ N and z ∈ Tn such that y1

mxt = zyn. Then yn occurs in t so

13



n ≤ m and consequently `(z) ≤ m. But then `(zyn) ≤ m + 1 while `(y1
mxt) ≥ m + 2,

a contradiction.

Since a free semigroup on two generators contains a copy of a free semigroup on
countably many generators, we find the following contrast to Theorem 2.14 interesting.

2.15 Theorem. Any right thick subset of a free semigroup on two generators is strongly
right piecewise syndetic.

Proof. Let S be the free semigroup on the letters a and b and let A be a right thick
subset of S. Let H = {a, b}. To see that

⋃
t∈H At−1 is right thick, let F ∈ Pf (S) be

given. Then Fa ∈ Pf (S) so pick x ∈ S such that Fax ⊆ A. Let t be the rightmost
letter of x. Then x = zt for some z ∈ S∪{∅}. Thus az ∈ S and t ∈ H and Faz ⊆ At−1.

2.16 Theorem. There is a subset of the free group G on the letters a and b which is
right syndetic and left thick but is not right thick and is not strongly right piecewise
syndetic.

Proof. Let A = {w ∈ G\{e} : the leftmost letter of w is a or a−1}. Let H = {a, a−1}.
Then G =

⋃
t∈H t−1A so that A is right syndetic. Also given F ∈ Pf (G), if m =

max{`(w) : w ∈ F} (where `(w) is the length of w), then am+1F ⊆ A so A is left thick.

To see that A is not right thick, let F = {b, b−1}. Then for any x ∈ G, either
bx /∈ A or b−1x /∈ A.

To see that A is not strongly right piecewise syndetic, suppose that one has H ∈
Pf (G) such that

⋃
t∈H At−1 is right thick. Let m = max{`(w) : w ∈ H}, let F =

{b2m+1, b−2m−1}, and pick x ∈ G such that Fx ⊆
⋃

t∈H At−1. Pick t ∈ H such that
b2m+1xt ∈ A. Then the leftmost 2m + 1 letters of xt must all be b−1 so `(xt) ≥ 2m + 1,
while `(xt) ≤ `(x) + `(t) ≤ `(x) + m. Consequently, `(x) ≥ m + 1 and thus the leftmost
letter of x is also the leftmost letter of xt, and thus the leftmost letter of x must be b−1.
Similarly, choosing s ∈ H such that b−2m−1xs ∈ A, one concludes that the leftmost
letter of x is b.

2.17 Theorem. There is a subset of the free group G on the letters a and b which is
right and left syndetic but is neither right nor left thick.

Proof. Let A = {w ∈ G : `(w) is even}. Letting H = {e, a} one easily sees that
G =

⋃
t∈H t−1A =

⋃
t∈H At−1, so that A is both right and left syndetic. (If `(w) is

odd, then `(aw) = `(w)± 1.)
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Similarly, if F = {e, a}, one easily sees that there is no x ∈ G with either Fx ⊆ A

or xF ⊆ A.

2.18 Theorem. There is a subset of the free group G on the letters a and b which is
right thick and strongly right piecewise syndetic but is not left piecewise syndetic.

Proof. Let A = {wan : w ∈ G, n ∈ N, n ≥ `(w), and either w = e or the rightmost letter
of w is not a−1}. To see that A is right thick (and consequently, by Theorem 2.13, is
strongly right piecewise syndetic), let F ∈ Pf (G) be given. Let m = max{`(w) : w ∈ F}.
Then Fa2m ⊆ A.

To see that A is not left piecewise syndetic, suppose instead that we have H ∈
Pf (G) such that

⋃
t∈H At−1 is left thick. Let m = max{`(w) : w ∈ H}, let F =

{bm+1, b−m−1}, and pick x ∈ G such that xF ⊆
⋃

t∈H At−1. Without loss of generality
assume that either x = e or the rightmost letter of x is not b−1, and pick t ∈ H such
that xbm+1t ∈ A. This is clearly impossible.

Theorems 2.16, 2.17, and 2.18 (and their left-right switched versions) establish that
none of the missing implications in the diagram appearing before Theorem 2.13 is valid
in the free group on 2 generators, except that in any group right thick sets are strongly
right piecewise syndetic (and left thick sets are strongly left piecewise syndetic).

We saw in Theorem 2.5 that the property of being right piecewise syndetic is
partition regular. On the other hand, we saw in the proof of Theorem 2.16 that in the
free group G on the letters a and b, the set A = {w ∈ G\{e} : the leftmost letter of w

is a or a−1} is not strongly right piecewise syndetic and similarly B = {w ∈ G\{e} :
the leftmost letter of w is b or b−1} is not strongly right piecewise syndetic. Since
A ∪ B = G\{e} is trivially left thick, and hence strongly right piecewise syndetic, one
sees that the property of being strongly right piecewise syndetic is not partition regular.

We shall see in Theorem 3.6 that in any semigroup, the quotient set AA−1 of a
strongly right piecewise syndetic A is both a left IP* set and a right IP* set. Conse-
quently, if S is a semigroup in which the notions of strongly right piecewise syndetic
and right piecewise syndetic coincide, one has the corollary that whenever r ∈ N and
S =

⋃r
i=1 Ai, one has for some i ∈ {1, 2, . . . , r} that AiAi

−1 is both a left IP* set and
a right IP* set.

Other strong combinatorial consequences are also obtainable in semigroups for
which these notions coincide. They obviously coincide in commutative semigroups,
so it is of interest to determine how much noncommutativity is needed to separate the
notions of strongly right piecewise syndetic and right piecewise syndetic. In our final
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result of this section, we shall show that the answer is “not much”.
Let G be the Heisenberg group. That is, G = Z3 with the operation defined by

(x, y, z) · (u, v, w) = (x + u, y + v + xw, z + w) .

(To see that G is a group note that it is isomorphic to the upper triangular 3 × 3
matrices with integer entries and 1’s on the main diagonal.) It is well known that G

is a nilpotent group of rank 2. The center of G is rather large, namely {0} × Z × {0}.
Also, the centralizer of any element of G is always strictly larger than the center.

We thank the referee for providing a significant simplification of the following proof.

2.19 Theorem. Let G = Z3 with the operation defined above. There is a right piecewise
syndetic subset of G which is not strongly right piecewise syndetic.

Proof. Let

A = {(d, 22l · d + e, 22l + f) : l ∈ N , l ≥ 9 , d, e, f ∈ {0, 1, . . . , 2l} , and d ∈ 2N} .

To see that A is right piecewise syndetic, let H = {(0, 0, 0), (1, 0, 0)}. Let F ∈ Pf (G)
be given and pick n ∈ N\{1} such that F ⊆ {m ∈ Z : |m| ≤ n}3. Let l = n2 + 3n and
let x = (l, 22l · l + l, 22l + n). To see that Fx ⊆

⋃
t∈H t−1A, let y = (u, v, w) ∈ F . Pick

c ∈ {0, 1} such that l + u + c is even and let t = (c, 0, 0). Then

tyx = (l + u + c, 22l(l + u + c) + l + v + nu + cw + cn, 22l + w + n) .

Let d = u+l+c, e = l+v+nu+cw+cn, and f = w+n. Then tyx = (d, 22l ·d+e, 22l+f).
Now d = l + u + c ≤ l + n + 1 < 2l, d = l + u + c ≥ l − n > 0, and c was chosen to
make d even. Also 0 = n − n ≤ n + w ≤ n + n < 2l so f ∈ {0, 1, . . . , 2l}. Finally,
e = l + v + nu + (w + n)c ≥ l − n − n2 + 0 > 0 and e = l + v + nu + (w + n)c ≤
l + n + n2 + 2n = 2l. Thus tyx ∈ A.

To see that A is not strongly right piecewise syndetic, suppose instead that one
has H ∈ Pf (G) such that

⋃
t∈H At−1 is right thick. Let m = max({max{|u|, |v|, |w|} :

(u, v, w) ∈ H} ∪ {9}).
Pick by Theorem 2.9(c) a left ideal L of βG such that L ⊆ c`(

⋃
t∈H At−1. By

[6, Corollary 4.33], G∗ = βG\G is a right ideal of βG and so G∗ ∩ L 6= ∅. Pick
q ∈ L ∩G∗. Then Gq ⊆ c`(

⋃
t∈H At−1). Choose t and s in H such that At−1 ∈ q and

As−1 ∈ (1, 0, 0)q. Let t−1 = (u, v, w) and let s−1 = (u′, v′, w′). Let

B = {(d, 22l · d + e, 22l + f) : l ∈ N , l ≥ m , d, e, f ∈ {0, 1, . . . , 2l} , and d ∈ 2N}

and notice that A\B is finite. Consequently Bs−1 ∈ (1, 0, 0)q and, because
(1, 0, 0)At−1 ∈ (1, 0, 0)q, (1, 0, 0)Bt−1 ∈ (1, 0, 0)q. Choose x ∈ Bs−1 ∩ (1, 0, 0)Bt−1 and
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pick l, d, e, f, l′, d′, e′, f ′ such that l, l′ ∈ N , l, l′ ≥ m , d, e, f ∈ {0, 1, . . . , 2l} , d′, e′, f ′ ∈
{0, 1, . . . , 2l′} , d, d′ ∈ 2N, and

x = (1 + d + u, 22l(1 + d) + e + v + dw + f + w, 22l + f + w)
= (d′ + u′, 22l′d′ + e′ + v′ + d′w′, 22l′ + f ′ + w′) .

Now the largest power of 2 less than or equal to 22l + f + w is either 22l or 22l−1

and the largest power of 2 less than or equal to 22l′ + f ′ + w′ is either 22l′ or 22l′−1 and
consequently, l = l′.

Also |e + v + dw + f + w − e′ − v′ − d′w′| < 13l2 < 22l and thus, since 22l divides
e + v + dw + f + w − e′ − v′ − d′w′, e + v + dw + f + w = e′ + v′ + d′w′. Consequently
22l(1 + d) = 22ld′, which is a contradiction because 1 + d is odd, while d′ is even.

3. Quotient Sets and the IP* Property.

We show that we can get a generalization of Theorem 1.5 in any left amenable
semigroup. Making a left-right switch in the semigroup multiplication, it is clearly
equivalent to a version for right amenable semigroups which may be formulated as
easily. As before, we shall leave left-right switches to the reader. Recall that we have
defined AA−1 = {x ∈ S : there exists y ∈ A such that xy ∈ A} and A−1A = {x ∈ S :
there exists y ∈ A such that yx ∈ A}.

3.1 Theorem. Let S be a left amenable semigroup and let A ⊆ S. If m∗
l (A) > 0, then

AA−1 is a left IP* set. If also S is left cancellative, then AA−1 is a right IP* set.

Proof. Pick a left invariant mean m such that m(A) > 0. Let a sequence 〈xn〉∞n=1

be given. Then for each n ∈ N we have by Lemma 1.3, m
(
( ↓Πn

t=1 xt)−1A
)

= m(A)
so by the additivity of m, {( ↓Πn

t=1 xt)−1A : n ∈ N} cannot be a disjoint collection.
Consequently we may pick r < s such that ( ↓Πr

t=1 xt)−1A ∩ ( ↓Πs
t=1 xt)−1A 6= ∅. Let

a ∈ ( ↓Πr
t=1 xt)−1A ∩ ( ↓Πs

t=1 xt)−1A. Then ( ↓Πr
t=1 xt)a ∈ A. Let b = ( ↓Πr

t=1 xt)a. Then
( ↓Πs

t=r+1 xt)b = ( ↓Πs
t=1 xt)a ∈ A so ↓Πs

t=r+1 xt ∈ AA−1.
Now assume that S is left cancellative. Then one has by Lemma 1.3 for each

n ∈ N that m
(
( ↑Πm

t=1 xt)A
)

= m(A). Consequently one may pick m < n such that
( ↑Πm

t=1 xt)A∩( ↑Πn
t=1 xt)A 6= ∅. So pick a, b ∈ A such that ( ↑Πm

t=1 xt)a = ( ↑Πn
t=1 xt)b. Then

cancelling ↑Πm
t=1 xt on the left, one has that a = ( ↑Πn

t=m+1)b so that ↑Πn
t=m+1 ∈ AA−1.

In light of the inequality d∗l (A) ≤ m∗
l (A) for left cancellative left amenable semi-

groups, one sees that we have in fact generalized Theorem 1.5. Another corollary is the
following, which follows from Theorem 2.7.
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3.2 Corollary. Let S be a left amenable semigroup and let A be a right piecewise
syndetic subset of S. Then AA−1 is a left IP* set. If S is left cancellative, then AA−1

is a right IP* set.

A natural question is whether one can use A−1A instead of AA−1 without changing
the other conditions. The answer, as we now see, is “no”.

3.3 Theorem. There exist a left cancellative, left amenable semigroup S and a subset
A of S which is both right piecewise syndetic (in fact right thick) and left piecewise
syndetic such that A−1A is neither a left IP* set nor a right IP* set.

Proof. Let S be a finite right zero (i.e. x · y = y for all x, y ∈ S) semigroup with
at least two members. As is well known, and easy to see, the function µ defined by

µ(f) =
Σs∈S f(s)

|S|
is a left invariant mean for S. (See for example [3, p. 80].)

Now pick x ∈ S and let A = {x}. Then S = Ax−1 and Sx = A so A is both left
and right piecewise syndetic. Also A−1A = A. Pick z ∈ S\A and for each n ∈ N let
yn = z. Then FPD(〈yn〉∞n=1) = FPI(〈yn〉∞n=1) = {z}.

The reader may wish to verify that if one replaces the condition of Theorem 3.3
that S be left amenable and left cancellative by the condition that S be an amenable
group, then as a consequence of the left-right switched version of Corollary 3.2, A−1A

must be both left IP* and right IP*.
We have seen that in one sense, given a left amenable semigroup, AA−1 is a better

analog than A−1A to the difference set A−A obtained when S is commutative.
In the left-right switched version of Corollary 3.2, A is left piecewise syndetic. This

prompts the question of whether we may replace right piecewise syndeticity of A with
left piecewise syndeticity in Corollary 3.2. Again, the answer is “no”, as we now show
via an example which is almost exactly that given in [1, Theorem 3.3].

3.4 Theorem. There exist an amenable group (T, ·) and a left piecewise syndetic (in
fact left thick) subset A of T such that AA−1 is neither a left IP* set nor a right IP*
set.

Proof. Let T be the group of all permutations of N that move only finitely many
points. It is well known that (T, ◦) is amenable. Indeed, if for each n ∈ N we let
Sn =

{
g ∈ T : {x ∈ N : g(x) 6= x} ⊆ {1, 2, . . . , n}

}
, then 〈Sn〉∞n=1 is a two-sided Følner

sequence. Let fn = (1, n + 1)(2, n + 2) . . . (n, 2n). That is,

fn(k) =

{
k + n if k ≤ n
k − n if n < k ≤ 2n
k if k > 2n .

18



Let A =
⋃∞

n=2 fnSn. One easily checks that A is left thick and hence left piecewise
syndetic.

We now claim that AA−1 ⊆ {g ∈ T : g(1) 6= 1 or g(2) = 2}. To see this let
g ∈ AA−1 and pick n, m ∈ N\{1} and h ∈ Sn and k ∈ Sm such that g ◦ fm ◦ k = fn ◦ h.
Then g = fn ◦ h ◦ k−1 ◦ fm, since fm = fm

−1. If n = m, then g(2) = 2. If n > m, then
g(1) = n + h(m + 1) 6= 1. If n < m, then g(1) = fn(m + 1) 6= 1.

Now for each n ∈ N, let gn = (2, n + 2). Given F ∈ Pf (N), let k = minF and let
` = maxF . Then ( ↓Πn∈F gn)(1) = ( ↑Πn∈F gn)(1) = (1) and ( ↓Πn∈F gn)(2) = k + 2 and
( ↑Πn∈F gn)(2) = ` + 2 so FPD(〈gn〉∞n=1) ∩AA−1 = FPI(〈gn〉∞n=1) ∩AA−1 = ∅.

Notice that d∗r(A) = 1 and (due to the fact that AA−1 is not IP*) d∗l (A) = 0 for
the set A constructed in the previous theorem.

If a semigroup S is partitioned into finitely many cells, then by Theorem 2.10, some
cell is both left and right piecewise syndetic. Consequently, if a left and right amenable
semigroup S is partitioned into finitely many cells then some cell A of the partition will
have the property that AA−1 is a left IP* set and A−1A is a right IP* set. We see now
that this can fail badly if the amenability assumption is deleted.

3.5 Theorem. Let G be the free group with identity e on the letters a and b. There is
a partition F of G into four sets such that
(1) each A ∈ F is both left and right piecewise syndetic,
(2) for each A ∈ F , neither A−1A nor AA−1 is either a left IP* set nor a right IP*
set.

Proof. Let

A1 ={e} ∪ {w ∈ G\{e} : the leftmost letter of w is a or a−1

and the rightmost letter of w is a or a−1}

A2 ={w ∈ G\{e} : the leftmost letter of w is b or b−1

and the rightmost letter of w is b or b−1}

A3 ={w ∈ G\{e} : the leftmost letter of w is a or a−1

and the rightmost letter of w is b or b−1}

A4 ={w ∈ G\{e} : the leftmost letter of w is b or b−1

and the rightmost letter of w is a or a−1}

and let F = {A1, A2, A3, A4}.
To see that A2 is left piecewise syndetic, let H = {b, b−1} and let F ∈ Pf (G) be

given. Let m be the maximum length of a word in F . Then given any w ∈ F one has
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either bwbm+2 ∈ A2 or b−1wbm+2 ∈ A2 so Fbm+2 ⊆
⋃

t∈H t−1A2. Similarly, A2 is right
piecewise syndetic. Proofs for left and right piecewise syndeticity of the other cells in
the partition are nearly identical.

It is easy to see that

A2
−1A2 = A2A2

−1 ={e} ∪ {w ∈ G\{e} : the leftmost letter of w is b or b−1

or the rightmost letter of w is b or b−1} .

Similarly one sees that

A1
−1A1 = A1A1

−1 ={e} ∪ {w ∈ G\{e} : the leftmost letter of w is a or a−1

or the rightmost letter of w is a or a−1}

and that A3
−1A3 = A4A4

−1 = A2A2
−1 and A4

−1A4 = A3A3
−1 = A1A1

−1.
Consequently, given any A ∈ F one has that AA−1 and A−1A each miss either

FP (〈an〉∞n=1) or FP (〈bn〉∞n=1) (where we omit the subscripts I and D because the prod-
ucts in any order are the same).

Theorem 3.5 demonstrates the following circumstance for sufficiently badly non-
commutative semigroups S: any family L of subsets of S having the property that
AA−1 is left or right IP∗ for any A ∈ L, must fail partition regularity. In other words,
it must be possible to partition some set from L into two sets, neither of which is an
element of L. As a result, membership in L will not constitute a good notion of largeness
according to our established criteria. For instance in Theorem 3.5, if B = {w ∈ G\{e} :
the rightmost letter of w is b or b−1}, then BB−1 = G and B = A2 ∪A4.

In spite of this considerable drawback, we nevertheless proceed now to show that
the strongly right piecewise syndetic sets form a class of sets sufficient to guarantee that
AA−1 is left (and right) IP* for all members A of that class.

3.6 Theorem. Let S be a semigroup and let A be a strongly right piecewise syndetic
subset of S. Then AA−1 is both a left IP∗ set and a right IP* set.

Proof. Pick H ∈ Pf (S) such that
⋃

t∈H At−1 is right thick and let l = |H|. Let a
sequence 〈xn〉∞n=1 in S be given.

Choose a ∈ S such that { ↓Πn
k=1 xk : 1 ≤ n ≤ l + 1}a ⊆

⋃
t∈H At−1. Pick t ∈ H

and m,n with 1 ≤ m < n ≤ l + 1 such that
(
↓Πn

k=1 xk

)
a and

(
↓Πm

k=1 xk

)
a both lie in

At−1. Then ( ↓Πm
k=1 xk)at ∈ A and ( ↓Πn

k=1 xk)at ∈ A so ( ↓Πn
k=m+1 xk) ∈ AA−1. This

shows that AA−1 is a left IP∗ set.
To see that AA−1 is right IP∗, choose a ∈ S such that { ↑Πl+1

k=n xk : 1 ≤ n ≤ l+1}a ⊆⋃
t∈H At−1. Pick t ∈ H and m,n with 1 ≤ m < n ≤ l + 1 such that

(
↑Πl+1

k=n xk

)
a and
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(
↑Πl+1

k=m xk

)
a both lie in At−1. Then ( ↑Πl+1

k=m xk)at ∈ A and ( ↑Πl+1
k=n xk)at ∈ A so

( ↑Πn−1
k=m xk) ∈ AA−1.

We saw in Section 2 that not every right syndetic set is strongly right piecewise
syndetic but that every left syndetic set is. Thus we come to the following, which,
paradoxically, we have arrived at via a very “rightward” train of thought.

3.7 Corollary. Let S be a semigroup and let A be a left syndetic subset of S. Then
AA−1 is both a left IP* set and a right IP* set.

Notice that the left-right switch of the previous corollary yields the result that if
A is right syndetic then A−1A is both a left IP* set and a right IP* set. This prompts
the question of whether a hybrid of these two versions is true. The answer, as we now
see most strongly, is “no”.

3.8 Theorem. Let G be the free group with identity e on the letters a and b. There is
a partition of G into two sets A and B such that

(1) A and B are each right syndetic and

(2) AA−1 and BB−1 are each neither left nor right IP*.

Proof. Let

A ={e} ∪ {w ∈ G\{e} : the leftmost letter of w is a or a−1} and

B ={w ∈ G\{e} : the leftmost letter of w is b or b−1}.

Let H = {a, a−1} and let K = {b, b−1}. Then S =
⋃

t∈H t−1A =
⋃

t∈K t−1B so that
A and B are right syndetic.

It is easy to check that AA−1 then consist of e and all words either beginning or
ending with a or a−1 and that BB−1 consists of e and all words either beginning or
ending with b or b−1. Hence AA−1 ∩ FP (〈bn〉∞n=1) = ∅, and BB−1 ∩ FP (〈an〉∞n=1) = ∅.
Consequently neither AA−1 nor BB−1 is either left or right IP*.

It is a routine fact that in (N,+), if A is a piecewise syndetic set then there is a
syndetic set C with C − C ⊆ A− A, so that, as far as difference sets are concerned, it
does not matter whether one is talking about syndetic or piecewise syndetic sets. (We
remark that there exist sets A of positive density in N such that for no syndetic set
C do we have C − C ⊆ A − A. This observation was made by Forrest in [4], and is
a corollary of a result of Kriz ([7], see also [8]).) With the choice of AA−1 to replace
the notion of difference sets one has the corresponding result in any semigroup. We are
grateful to Imre Leader for providing a simple proof of this result, showing in fact that
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the same set H which establishes that A is right piecewise syndetic also establishes that
C is right syndetic.

3.9 Theorem. Let S be a semigroup, let A be a right piecewise syndetic subset of S,
and pick H ∈ Pf (S) such that

⋃
t∈H t−1A is right thick. Then there exists a right

syndetic subset C of S (in fact S =
⋃

t∈H t−1C) such that whenever F ∈ Pf (S) and
F ⊆ C, there exists x ∈ S such that Fx ⊆ A. In particular, CC−1 ⊆ AA−1.

Proof. For each F ∈ Pf (S), let BF = {τ ∈ SH : (∃x ∈ S)(∀s ∈ F )(τ(s) · s · x ∈ A)},
where SH is the set of functions from S to H. Given F ∈ Pf (S), pick x ∈ S such that
Fx ⊆

⋃
t∈H t−1A and for each s ∈ F , pick τ(s) ∈ H such that τ(s) ·s ·x ∈ A. Defining τ

at will on the rest of S, one has τ ∈ BF . Given F,G ∈ Pf (S) one has BF∪G ⊆ BF ∩BG.
Thus {BF : F ∈ Pf (S)} has the finite intersection property.

Also, given F ∈ Pf (S) and τ ∈ SH\BF one has that {σ ∈ SH : σ|F = τ|F } is a
neighborhood of τ missing BF . Thus {BF : F ∈ Pf (S)} is a collection of closed subsets
of the compact space SH with the finite intersection property. Pick τ ∈

⋂
F∈Pf (S) BF

and let C = {τ(s) · s : s ∈ S}. Then trivially S =
⋃

t∈H t−1C.

Let F ∈ Pf (S) such that F ⊆ C. Pick G ∈ Pf (S) such that F = {τ(s) · s : s ∈ G}.
Since τ ∈ BG, pick x ∈ S such that for all s ∈ G, τ(s) · s · x ∈ A.

To see the “in particular” conclusion, let a ∈ CC−1 and pick b ∈ C such that
ab ∈ C. Let F = {b, ab} and pick x ∈ S such that Fx ⊆ A. Then a ∈ AA−1.

Our original proof of (a slightly weaker version of) Theorem 3.9 used the algebraic
structure of βS. It is so short (given that one knows the characterizations of the smallest
ideal of βS and its closure) that we present it now for comparison. (The slightly weaker
version does not guarantee that the same H establishes the right piecewise syndeticity
of A and the right syndeticity of C.)

Alternate proof. Let (βS, ·) have the right continuous operation. By Theorem
2.9(b), c`A ∩ K(βS) 6= ∅ so pick p ∈ c`A ∩ K(βS). Let C = {x ∈ S : x−1A ∈ p}.
Then by Theorem 2.9(a), C is right syndetic. Let F ∈ Pf (S) such that F ⊆ C. Pick
x ∈

⋂
t∈F t−1A. Then Fx ⊆ A.

On the other hand one does not get the corresponding result for A−1A, even in an
amenable group, or even if one assumes A to be both left and right piecewise syndetic.

3.10 Theorem.

(a) There exists a group G and a set A ⊆ G such that A is both left and right
piecewise syndetic but there does not exist a right syndetic set C with C−1C ⊆ A−1A.
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(b) There exists an amenable group T and a right piecewise syndetic (in fact right
thick) set B such that there does not exist a right syndetic set C such that C−1C ⊆
B−1B.

Proof. (a). Let G be the free group with identity e on the letters a and b and let
A = {w ∈ G\{e} : the leftmost letter of w is b or b−1 and the rightmost letter of w is
b or b−1}. We saw in the proof of Theorem 3.5 that A is both left and right piecewise
syndetic and that A−1A = {e}∪{w ∈ G\{e} : the leftmost letter of w is b or b−1 or the
rightmost letter of w is b or b−1}.

Now suppose that we have a right syndetic set C with C−1C ⊆ A−1A. Pick
H ∈ Pf (G) such that G =

⋃
t∈H t−1C. By the pigeon hole principle pick m < n in N

and t ∈ H such that tan ∈ C and tam ∈ C. Then an−m ∈ C−1C\A−1A.
(b). Let T be the group of Theorem 3.4, and B = A−1, where A is the set appearing

there. Then B is right thick, but B−1B is neither left nor right IP*. Since the left-right
switched version of Theorem 3.7 guarantees that C−1C is left and right IP* for every
right syndetic C, we cannot have C−1C ⊆ B−1B.

We now establish a dynamical equivalence pertaining to the kinds of questions we
have been considering.

3.11 Definition. A dynamical system is a pair (X, 〈Ts〉s∈S) where X is a compact
Hausdorff space, S is a semigroup, for each s ∈ S, Ts is a continuous function from X

to X (with Te as the identity on X if e is an identity for S), and for each s, t ∈ S,
Ts ◦ Tt = Tst. The dynamical system (X, 〈Ts〉s∈S) is minimal if and only if no proper
closed subset of X is invariant under Ts for each s ∈ S.

We state the following theorem for general classes that are closed under supersets.
In our previous results in this section we have been taking G = {A ⊆ S : A is an IP*
set}.

3.12 Theorem. Let S be a semigroup and let G ⊆ P(S) such that G is closed under
supersets. The following statements are equivalent.

(a) For every right piecewise syndetic subset B of S, BB−1 ∈ G.
(b) For every right syndetic subset B of S, BB−1 ∈ G.
(c) For every minimal dynamic system (X, 〈Ts〉s∈S) and every nonempty open sub-

set U of X, {s ∈ S : U ∩ Ts
−1U 6= ∅} ∈ G.

Proof. That (a) implies (b) is trivial. To see that (b) implies (c) let (X, 〈Ts〉s∈S) be a
minimal dynamic system and let U be a nonempty open subset of X. Pick any x ∈ S

and let B = {s ∈ S : Ts(x) ∈ U}.

23



We claim that B is right syndetic. By the minimality of (X, 〈Ts〉s∈S), pick H ∈
Pf (S) such that X =

⋃
t∈H Tt

−1U . (See for example [5, Lemma 1.14].) Then, as can
be routinely verified, S =

⋃
t∈H t−1B.

It is then easy to see that BB−1 ⊆ {s ∈ S : U ∩ Ts
−1U 6= ∅} so that {s ∈ S :

U ∩ Ts
−1U 6= ∅} ∈ G.

To see that (c) implies (a), let B be right piecewise syndetic. Then by Theorem
2.9(b), c`B ∩K(βS) 6= ∅. Since K(βS) is the union of all of the minimal left ideals of
βS, pick a minimal left ideal L of βS such that c`B ∩ L 6= ∅.

We claim that (L, 〈λs〉s∈S) is a minimal dynamical system. Each λs is continuous
since s ∈ S, and since L is a left ideal, λs : L −→ L. Trivially λs ◦λt = λst. To see that
(L, 〈λs〉s∈S) is minimal let Y be a closed nonempty subset of L which is invariant under
each λs and pick p ∈ Y . Then βS ·p is a left ideal which is contained in the minimal left
ideal L so βS ·p = L and since Y is invariant, S ·p ⊆ Y . Thus L = βS ·p = c`(S ·p) ⊆ Y .

Let U = c`B ∩ L. Then U is a nonempty open subset of L. We claim that
{s ∈ S : U ∩ λs

−1U 6= ∅} ⊆ BB−1. Let s ∈ S such that U ∩ λs
−1U 6= ∅ and pick

p ∈ U ∩ λs
−1U . Then B ∈ p and B ∈ s · p and hence s−1B ∈ p. Pick t ∈ B ∩ s−1B.

Then st ∈ B so s ∈ BB−1.

To summarize, right syndeticity and right piecewise syndeticity of A each guaran-
tee by Corollary 3.2 that AA−1 will be both left and right IP* in left amenable, left
cancellative semigroups, but not for free groups (Theorem 3.8). Left syndeticity of A,
on the other hand, guarantees that AA−1 will be left and right IP* in general semi-
groups (Corollary 3.7), but left piecewise syndeticity does not, even for amenable groups
(Theorem 3.4).

4. Quotient Sets and the ∆* Property.

According to Theorem 1.1, if A ⊆ N with d∗(A) > 0, then A − A is an IP* set.
Upon examination of the proof, one sees in fact that A − A intersects non-trivially
the set of differences of any infinite set. Namely, if B is an infinite subset of N, then
(A−A)∩(B−B) 6= ∅. This is a stronger property, for every IP-set in N, say FS(〈xn〉∞n=1),
contains the difference set of some infinite set (for example, the set B = {Σn

t=1xt : n ∈
N}). We call a set of the form B − B, where B is an infinite subset of N, a ∆ set, and
accordingly a subset E ⊆ N which intersects every ∆ set non-trivially a ∆* set.

Hence in N, the ∆* property is stronger than the IP* property. We wish to fashion
a definition of ∆ sets in more general semigroups or groups in such a way that the
resulting ∆* property remains stronger than the corresponding IP* property. One
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immediate concern is that we may need separate notions of “left” and “right” ∆* sets
in the non-commutative situation to correspond to the separate notions of left IP* and
right IP*. There is another consideration, however, even more basic.

Consider the group Z. Clearly the set E of negative integers will intersect B − B

non-trivially for any set B of infinite cardinality, but E is obviously not IP*. This
motivates the following definition.

4.1 Definition. Let S be a semigroup and let E ⊆ S.
(a) Given a sequence 〈bn〉∞n=1 in S, let ∆I(〈bn〉∞n=1) = {x ∈ S : there exist m < n

in N such that bmx = bn} and let ∆D(〈bn〉∞n=1) = {x ∈ S : there exist m < n in N such
that xbm = bn}.

(b) E is a right (respectively left) ∆ set if and only if there exists a one-to-one
sequence 〈bn〉∞n=1 in S such that ∆I(〈bn〉∞n=1) ⊆ E (respectively ∆D(〈bn〉∞n=1) ⊆ E).

(c) E is a right (respectively right) ∆* set if and only if E intersects every right
(respectively left) ∆ set in G non-trivially.

Notice that, if B = {bn : n ∈ N}, then ∆I(〈bn〉∞n=1) ⊆ B−1B and ∆D(〈bn〉∞n=1) ⊆
BB−1.

In some semigroups, even cancellative semigroups, there may be no ∆* sets. For
example, in the free semigroup on the letters a and b, if cn = abna, then ∆I(〈cn〉∞n=1) =
∆D(〈cn〉∞n=1) = ∅. On the other hand, in a group any ∆ set must be infinite and so all
cofinite sets are ∆* sets.

4.2 Theorem. Let S be a left cancellative semigroup. Every right ∆* set in S is a
right IP* set.

Proof. Let E be a right ∆* set, and let a sequence 〈xn〉∞n=1 in S be given. For each
n ∈ N let bn = ↑Πn

t=1xt. Pick y ∈ E and m < n in N such that bmy = bn. Since also
bm

↑Πn
t=m+1xt = bn we have by left cancellation that y = ↑Πn

t=m+1xt.

We continue our practice of leaving the obvious left-right switches to the reader.
The converse to the previous result is false, even for ∆ sets, as we shall see in

Theorem 4.4. For this we need the following lemma.

4.3 Lemma. Let (G, +) be a countable abelian group and let T be a thick subset of G.
There is a sequence 〈an〉∞n=1 in G such that T = ∆I(〈an〉∞n=1).

Proof. Enumerate T as {tn : n ∈ N}. Pick any a1 ∈ G and let a2 = a1 + t1. Inductively
let k ∈ N and assume that a1, a2, . . . , a2k have been chosen so that a2k − a2k−1 = tk

and whenever i < j in {1, 2, . . . , 2k}, aj − ai ∈ T . Let F = {−a1,−a2, . . . ,−a2k} ∪
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{tk+1 − a1, tk+1 − a2, . . . , tk+1 − a2k} and pick a2k+1 such that F + a2k+1 ⊆ T . Let
a2k+2 = a2k+1 + tk+1.

4.4 Theorem. There is a sequence 〈an〉∞n=1 in Z such that ∆I(〈an〉∞n=1) is an IP* set
but not a ∆* set.

Proof. It is easy to see that Z\∆I(〈2n〉∞n=1) is thick and an IP* set, and it is trivially
not a ∆* set. Pick by Lemma 4.3 a sequence 〈an〉∞n=1 such that Z\∆I(〈2n〉∞n=1) =
∆I(〈an〉∞n=1).

As is well known to aficionados, the right IP* property in any semigroup S is
preserved by finite intersections. That is, if A and B are both right IP* sets in S, then
A ∩ B is right IP* as well [6, Remark 16.7]. We show now that the same result holds
for right ∆* sets in any left cancellative semigroup. (But recall that there may be no
right ∆* sets.)

4.5 Theorem. Let S be a left cancellative semigroup. If E and F are right ∆* sets in
S, then E ∩ F is a right ∆* set.

Proof. Let 〈bn〉∞n=1 be a sequence in S. For a set X, let [X]2 denote the set of two
element subsets of X. Let A0 =

{
{m,n} ∈ [N]2 : m < n and there exists x ∈ E such

that bmx = bn

}
and let A1 = [N]2\A0. Pick by Ramsey’s Theorem [11] an infinite

subset C of N and i ∈ {0, 1} such that [C]2 ⊆ Ai. Enumerate C in increasing order
as 〈k(n)〉∞n=1. Since E ∩ ∆I(〈bk(n)〉∞n=1) 6= ∅ and thus i = 0. Since F is a right ∆*
set, pick y ∈ F ∩∆I(〈bk(n)〉∞n=1) and pick m < n in N such that bk(m)y = bk(n). Since
{k(m), k(n)} ∈ [C]2 ⊆ A0, pick x ∈ E such that bk(m)x = bk(n). By left cancellation,
x = y and so E ∩ F ∩∆I(〈bk(n)〉∞n=1) 6= ∅ as required.

One may easily check that in a group, AA−1 is left ∆* if and only if it is right
∆* . This is a consequence of the fact that AA−1 is closed under inverses, so that
xix

−1
j ∈ AA−1 if and only if xjx

−1
i ∈ AA−1. Trivially, if a semigroup is commutative

then the left ∆* and right ∆* properties are equivalent. This is not true in general.
Indeed, if G is the free group on the letters 〈xn〉∞n=1, one may readily check that the set
B = G \ {xix

−1
j : i < j} is a left ∆* set (it is obviously not right ∆* ). However, we do

have the general fact that in any group B is left ∆* if and only if B−1 is right ∆* .
The following theorem is a strengthening (for groups) of Theorem 3.1 and Corollary

3.2.

4.6 Theorem. Let G be a countable, left amenable group.
(a) If B ⊆ G with m∗

l (B) > 0, then BB−1 is both a left ∆* set and a right ∆* set.
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(b) If B ⊆ G is left piecewise syndetic, then BB−1 is both a left ∆* set and a right
∆* set.

Proof. (a). Let m be a left invariant mean with m(B) = m∗
l (B). Let a sequence

A = 〈xn〉∞n=1 be given. For each n ∈ N we have m(x−1
n B) = m(B), so

{
x−1

n B :
n ∈ N

}
cannot be a disjoint collection. Consequently one may pick n < m such that

x−1
m B ∩ x−1

n B 6= ∅. Let b1 and b2 be elements of B such that x−1
m b1 = x−1

n b2. Then
xnx−1

m = b2b
−1
1 ∈ BB−1. Hence BB−1 ∩∆IA 6= ∅ and BB−1 is a right ∆* set. Since

the left and right ∆* properties are equivalent for quotient sets, BB−1 is a right ∆* set
as well. Statement (b) follows from (a) by Theorem 2.7.

Notice that the proof of Theorem 4.6 is essentially the same as the proof of Theorem
3.1. Both proofs rely on the fact that if m(B) > 0 for some left invariant mean m then
one cannot have pairwise disjointness of infinitely many shifts of B. Things are not
so nice in the non-amenable situation, where one may have pairwise disjointness of
infinitely many shifts of a right syndetic set. (Let G be the free group on letters a and
b and let B be the set of words beginning with b or b−1. Then G = bB ∪ b−1B, so B is
right syndetic, but the shifts {anB : n ∈ N} are pairwise disjoint.)

As was the case for the IP* property, strong right piecewise syndeticity, in particular
left syndeticity, of A is enough to guarantee that AA−1 is both left and right ∆* .

4.7 Theorem. Let G be a group. If B is a strongly right piecewise syndetic subset of
G then BB−1 is both a left ∆* set and a right ∆* set.

Proof. Pick H = {h1, · · · , hl} ∈ Pf (S) such that
⋃

t∈H Bt−1 is left thick. Let a
sequence A = 〈xn〉∞n=1 in G be given. Choose a ∈ G such that {xn : 1 ≤ n ≤ l + 1}a ⊆⋃

t∈H Bt−1. Pick t ∈ H and m,n with 1 ≤ m < n ≤ l + 1 such that xna ∈ Bt−1 and
xma ∈ Bt−1. Then xmx−1

n ∈ BB−1. Since xmx−1
n ∈ ∆IA, this shows that BB−1 is a

right ∆* set, hence also a left ∆* set.

The following interesting finite intersection property is now readily obtained.

4.8 Corollary. Suppose that G is a group and B1, · · · , Bk are subsets of G such that
either:
(a) Bi is strongly right piecewise syndetic for i ∈ {1, 2, . . . , k}, or
(b) G is amenable and m∗

l (Bi) > 0 for i ∈ {1, 2, . . . , k}.
Then

⋂k
i=1 BiB

−1
i is both left and right ∆* .

Proof. This follows from Theorem 4.6 and 4.7, using the fact that the ∆* property is
preserved by finite intersections.
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Although Theorem 3.5 shows that AA−1 need not be IP* (much less ∆* ) for
right piecewise syndetic sets A in non-amenable, groups, one still might wonder from
Corollary 4.8 whether such difference sets AA−1 might nevertheless have some non-
trivial finite intersection property. We now show by example that this is not the case
for intersections of three such difference sets. (We do not know about intersections of
two such sets. See Question 1 at the end.)

4.9 Theorem. There exists a group G of infinite cardinality and a partition of G into
right syndetic sets A,B, and C such that AA−1 ∩BB−1 ∩ CC−1 = {e}.

Proof. Let G be the free group on the letters a, b, and c. Let A consist of e and all
words starting with a or a−1. Let B consist of all words starting with b or b−1, and let
C consist of all words starting with c or c−1. It is easily seen that A,B, and C are each
right syndetic. Moreover, AA−1 consists of e and those words either starting or ending
in a or a−1, BB−1 consists of e and those words either starting or ending in b or b−1,
and CC−1 consists of e and those words either starting or ending in c or c−1. Clearly
AA−1 ∩BB−1 ∩ CC−1 = {e}.

Questions.

1. In a group, if A and B are both right syndetic, does it follow that AA−1∩BB−1

necessarily contains more than the identity?
2. If ml(B) > 0 for B in a left amenable semigroup, and A is infinite, does

BB−1 ∩AA−1 necessarily contain elements different from the identity?
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