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Abstract: Each partially ordered set (X,≤) has a Čech order compactification
µX, constructed in the same fashion as Čech’s construction of the Stone-Čech
compactification, but using the order preserving functions from X into the unit
interval [0, 1]. This is already known; our point is that its existence and properties
can be seen using straightforward adaptations of textbook results and proofs.

1. Introduction

We shall be concerned with generalizing the Stone-Čech compactification of a discrete
space to that obtained when (X,≤) is a poset (partially ordered set), for use with discrete
ordered semigroups. This is a natural compactification from the point of view of ordered
sets, but note that this situation is asymmetric in the following sense: Above, we considered
functions from the topological space (X, τ) to ([0, 1], E), E the usual Euclidean topology
on this closed interval; the map x → 1− x is an automorphism of the latter. We will now
be concerned with an ordered topological space (X, τ,≤) and we must replace the closed
interval with ([0, 1], E ,≤); now there is no automorphism taking 1 → 0. This problem is
as easy to overcome as it is to state: Now x → 1 − x is instead an isomorphism from
([0, 1], E ,≤) to its dual, ([0, 1], E ,≥). As we will see, the construction is almost identical,
but the asymmetry (as evidenced by the need for a dual) remains.

The first to handle such asymmetry well was Nachbin (much of his research was
done in the late 1940’s; his most convenient reference is [Na]). Due to the simplicity of
translating the conditions in the Stone-Čech theorem, we prefer to explain this in terms of
bitopological spaces, and then specialize to ordered topological spaces. Bitopological spaces
were developed by J. C. Kelly [Ky]. Prof. Kelly died in October, 2002, and we dedicate
this paper to his memory, since it owes so much to his work. The first to construct a
bitopological Stone-Čech compactification to our knowledge, was Salbany ([Sa]), a detailed
such construction in our notation can be found in [Ko]. Our main point is that the reader
already knows such a proof. Then we apply the result to discrete ordered spaces.

A major tool for us is the specialization order; for any topology τ , it is defined by
x ≤τ y ⇔ x ∈ c` τ (y) (here c` (A) denotes the closure of A ⊆ X, and notation is abused for
singletons by using c` (x) in place of c` ({x})). Certainly, x ≤τ y if and only if c` τ (x) ⊆
c` τ (y), so ≤τ is a pre-order (that is, a reflexive, transitive relation); it is antisymmetric,
thus a partial order, if and only if τ is T0. It is equality if and only if τ is T1, so is rarely
used. In general, a topology is considered asymmetric if ≤τ is not a symmetric relation.

It is useful to notice how the specialization interacts with products and subspaces.
Certainly if x ∈

∏
I Xi then

∏
I c` (xi) is closed, so c` (x) ⊆

∏
I c` (xi). But if y 6∈ c` (x)

then for some open U in the product, y ∈ U but x 6∈ U . By definition of the product
topology, there is a finite F ⊆ I and for each i ∈ F an open Ui such that y ∈

⋂
i∈F π−1

i [Ui] ⊆
U , where as usual, πi denotes the i’th projection. Since x 6∈ U there must be some i ∈ F
such that xi 6∈ Ui; this shows some yi 6∈ c` (xi), so y 6∈

∏
I c` (xi). Thus c` (x) =

∏
I c` (xi),

or in other words, y ≤ΠIτi
x ⇔ (∀i ∈ I)(yi ≤τi

xi). Similarly, if x, y ∈ Z, Z a subspace of
(X, τ), then y ≤τ x ⇔ y ≤τ |Z x, where τ |Z denotes the relative topology on Z.

Below, in sections 2 – 4, we note that many textbook topological proofs extend without
much effort to bitopological spaces and in particular, to the Stone-Čech compactification.
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In section 5, we develop some useful techniques of bitopological spaces and spaces with
topology and order.

2. The category of bitopological spaces

A bitopological space, is a space with two topologies, X = (X, τX , τ∗X). For such
spaces, a pairwise continuous map (or simply map), f : X → Y is a function from X to
Y that is continuous from τX to τY and from τ∗X to τ∗Y ; such a function is pairwise open
if open from τX to τY and from τ∗X to τ∗Y . When we write f : X → Y , and X, Y are
bitopological spaces, we mean that f is a pairwise continuous map. As a result of these
definitions, many topological ideas can be extended to bitopological spaces “topologywise”.
For example, given a space (Y, τY , τ∗Y ) and X ⊆ Y , the bitopological subspace is found
by individually restricting the two topologies: (X, τY |X, τ∗Y |X) – then we already know,
topology by topology, that the inclusion map, iX , is pairwise continuous, and any pairwise
continuous map into Y whose image is contained in X, factors uniquely through iX ; the
product of an indexed set of bitopological space is the product set with the product topolo-
gies, (

∏
i∈I Xi,

∏
i∈I τi,

∏
i∈I τ∗i ); this is similarly seen to be the categorical product if the

reader cares to do so. If we have a collection F of functions from a set X to a bitopological
space (Y, τY , τ∗Y ), then the weak bitopological space is (X, ωF , ω∗F ), where ωF is the weak
topology for F and τY , and ω∗F that for F and τ∗Y , giving us the weakest bitopological
space such that each f ∈ F becomes a pairwise continuous map (here Z = (Z, τZ , τ∗Z) is
weaker than Z ′ = (Z, θZ , θ∗Z) if the “identity” I : Z ′ → Z is pairwise continuous).

In his construction of the Stone-Čech compactification [Če], E. Čech embedded a
completely regular Hausdorff space X into the product [0, 1]F where F = C(X, [0, 1]),
the set of all continuous functions from X into [0, 1]. We now sketch a bitopological
construction along lines suggested by Kelley’s version of the Čech proof (4.5, p. 116 and
5.23-4, p. 153 of [Ke]): Kelley points out in 4.5 that for any family F of continuous
functions such that for each f ∈ F, f : (X, τ) → (Yf , τf ), the evaluation map e : X →∏

f∈F Yf , defined by e(x)(f) = f(x), is continuous. Further, it is open to the subspace
determined by its image, if and only if, for each x ∈ X and closed C ⊆ X, if x 6∈ C then
there is an f ∈ F such that f(x) 6∈ c` (f [C]). This is already a bitopological lemma: e is
pairwise continuous, because Kelley’s result can be used topology by topology; similarly,
pairwise openness is checked one topology at a time. Finally, Kelley points out that e is
one-one if and only if, for each pair of distinct points x, y ∈ X, there is an f ∈ F such that
f(x) 6= f(y); this does not refer to any topology, and surely holds in our situation.

To continue our proof, we must discuss bitopological separation and compactness.

3. Separation

1 Definitions. The bitopological unit interval is II = ([0, 1],U ,L), where U = {(a, 1] | a ∈
[0, 1]} ∪ {[0, 1]} and L = {[0, a) | a ∈ [0, 1]} ∪ {[0, 1]}.

Given a bitopological space, X = (X, τ, τ∗), its symmetrization topology is τS = τ∨τ∗;
also XS = (X, τS). A bitopological space is:

normal if whenever C,D are disjoint, C τ -closed and D τ∗-closed, then there are
disjoint T ∈ τ , U ∈ τ∗ such that C ⊆ U and D ⊆ T ,

completely regular if whenever x ∈ T ∈ τ then there is a map f : X → II such that
f(x) = 1 and f [X \ T ] = {0}, Tychonoff (T3.5) if completely regular and τS is T0;
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pseudoHausdorff (pH) if whenever x 6∈ c` τ (y) then there are T ∈ τ and U ∈ τ∗ which
are disjoint and such that x ∈ T and y ∈ U , Hausdorff (T2) if pH and τS is T0;

weakly symmetric (ws) if y ∈ c` τ∗(x) ⇒ x ∈ clτ (y), T1 if ws and τS is T0.
The dual of X is X∗ = (X, τ∗, τ) (obtained by reversing the order in which the

topologies are considered). Given a property Q of bitopological spaces, X is pairwise Q if
both X and its dual X∗ satisfy Q.

A major purpose of bitopology is to view separation as a relationship between two
topologies, rather than a property of a single one. Though neither U nor L is completely
regular, II is pairwise completely regular (if x ∈ T = (z, 1] ∈ U , consider f = (0∨ y−z

x−z )∧1).
So techniques used with separation can help to study topologies which lack it.

A separation axiom implies lower ones. For example, if X is completely regular, and
x 6∈ c` τ (y) then x ∈ X \ c` τ (y), so there is a pairwise continuous f : X → II such that
f(x) = 1 and f [c` τ (y)] = {0}. But as a result, x ∈ f−1[(.5, 1]] ∈ τ and y ∈ f−1[[0, .5)] ∈ τ∗,
and these inverse images are disjoint, so X is pH. Also, products and subspaces of pH (resp.,
T1, T2, T3.5, ws, completely regular) spaces are pH (resp., T1, T2, T3.5, ws, completely
regular). Although an interaction between two topologies is now involved, these results
have essentially the usual proofs.

The symmetrization topology inherits by itself the symmetric (separation) properties
shared by the two topologies. For example, we show that if X is pairwise completely
regular, then (X, τS) is completely regular; in the proof we use the general observation
that if f : X → Y is pairwise continuous, then f is continuous as a map from τS

X to τS
Y :

Therefore, if X is pairwise completely regular and x ∈ T ∈ τS
X , then for some U ∈ τX , V ∈

τ∗X , x ∈ U ∩ V ⊆ T . Thus there are f : X → II, g : X∗ → II such that f(x) = g(x) = 1
and f [X \U ] = g[X \ V ] = {0}. But then f, g are both continuous from τS

X to U ∨ L = E ,
thus so is f ∧ g, and this map is 1 at x and 0 off U ∩ V ⊆ T . Thus if τS

X is T0 then τS
X is

Tychonoff. A proof of similar difficulty shows that if X is pairwise pH and τS
X is T0 then

τS
X is Hausdorff. Further definitions and proofs of similar results for separation axioms

between T1 and T3.5 are in [Ko], section 2, as is a counterexample for normality.
Given bitopological spaces X, Y , let P (X, Y ) and Y X (depending on convenience)

denote the set of pairwise continuous maps from X to Y . If X is completely regular and
P = P (X, II), then e is open from (X, τX) to the subspace determined by its image in
([0, 1],U)P (as in [Ke, 5.13]), because if x 6∈ C, C closed, then there is an f ∈ F such that
f(x) = 1 and f [C] = {0}; thus if X is pairwise completely regular, then e is also open from
τ∗X to its image in ([0, 1],L)P , so e is pairwise open. Finally, if X is pairwise Tychonoff,
then e is one-one, since if x 6= y then there is an open set in one of the topologies containing
exactly one of these points, without loss of generality, let x ∈ T ∈ τX , y 6∈ T . There is
then by our definition, f ∈ P such that f(x) = 1 and since y 6∈ T, f(y) = 0. Thus if X is
pairwise Tychonoff, then e is a bitopological imbedding.

4. Compactness

A bitopological space, X, is joincompact if it is pairwise T2, and τS is compact.
Whenever X is joincompact, then clearly so is its dual, X∗, and we use this be-

low. A straightforward adaptation of the usual proofs shows that joincompact spaces are
(pairwise) normal; since they are pairwise T1, they are pairwise Tychonoff (the proof
of the bitopological Urysohn lemma is like that of the topological version, and can
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be found in [Ko]). The product of the symmetrization topologies is the symmetriza-
tion of the product: certainly

∏
I τi ∨

∏
I τ∗i ⊆

∏
I τS

i , and if x ∈ U ∈
∏

I τS
i , then

there is a finite F ⊆ I and for each i ∈ F there are Vi ∈ τi, Wi ∈ τ∗i , such that
y ∈

⋂
i∈F π−1

i [Vi ∩ Wi] = (
⋂

i∈F π−1
i [Vi]) ∩ (

⋂
i∈F π−1

i [Wi]) ⊆ U , showing by the arbi-
trary nature of x, that U ∈

∏
I τi ∨

∏
I τ∗i .

Since we already know that a product of pH bitopological space is pH, and have
long known that a product of T0 topological spaces is T0, and that a product of compact
topological spaces is compact, the above shows that each product of joincompact spaces
is joincompact. It is also clear that subspaces of pH bitopological spaces are pH, and
therefore that symmetrically closed (that is, τS-closed) subspaces of joincompact spaces
are joincompact. Notice that II is joincompact: Surely, IIS = U ∨L = E , which is compact
and T0. To see that II is pH, first note that, as the complement of the largest U-open
set not containing y, c` U (y) = [0, y]. This shows that ≤U=≤; similarly ≤L=≥. Thus
x 6∈ c` U (y) if and only if x > y, so for z between the two, x ∈ (z, 1] ∈ U , y ∈ [0, z) ∈ L,
and (z, 1] ∩ [0, z) = ∅.

By the above discussion, given a pairwise Tychonoff bitopological space X, the sym-
metric closure of its image in IIP (X,II) which we call (ν(X), τν , τ∗ν ) below, is a joincom-
pact space in which X is symmetrically densely imbedded; further, if f ∈ P (X, II)
then the map f̃ = πf |ν(X) is pairwise continuous from ν(X) to II, and for each
x ∈ X, f̃(e(x)) = e(x)(f) = f(x), showing that f̃ e = f . This results in (a) of the
following theorem:

2 Theorem. (a) Let X be a pairwise Tychonoff bitopological space. Then there is a
joincompact space ν(X) and an imbedding e such that e[X] is symmetrically dense in

ν(X) and for every pairwise continuous f : X → II, there is a unique f̃ : ν(X) → II such

that f = f̃ e.
(b) If f : X → Y is a pairwise continuous map and Y is joincompact, then there is a

unique f̃ : ν(X) → Y such that f = f̃ e.

Part (b) is simply the bitopological version of the usual extension property of con-
tinuous functions to the Stone-Čech compactification, and again was essentially shown by
Kelley, although in his (5.23, 152), we can’t quite use the statement of the result, since it
refers to the set of all continuous functions. But his proof holds without change for each
topology, and the class of pairwise continuous functions. Finally, the extension property
(5.24, 153) is shown by changing “β(Y ) because Y is compact Hausdorff” to “ν(Y ) because
Y is joincompact”, and observing that this is true.

5. Stone-Čech order compactifications of discrete ordered spaces

Now, given a pre-ordered set (P,≤), and an S ⊆ P , we let ↑ S = {x | s ≤ x for some
s ∈ S} (↑ x abbreviates ↑ {x}), and say that S is an upper set if S =↑ S; ↓ S and lower
set are defined similarly. Its Alexandroff topology α(≤) is that in which a set is open if and
only if it is an upper set, and a topology is Alexandroff if it is of the form α(≤) for some
pre-order. The weak topology of this pre-ordered set, W (≤), is that whose closed sets have
as a subbase, {↓ x : x ∈ X} (this clashes with the usual use of weak topology generated
by a set of functions; in fact, W (≤) is the weak topology generated by the characteristic
functions χX\↓x for x ∈ X). Clearly, arbitrary intersections and unions of upper sets are
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upper sets (so α(≤) is a topology and also W (≤) ⊆ α(≤)); also a set is upper if and only if
its complement is a lower set, thus is closed in α(≤) if and only if it is a lower set. Also, let
O(X,≤) denote the set of order-preserving functions from (X,≤) to [0, 1], with its usual
order. On [0, 1], W (≤) = U and W (≥) = L. Here are some other useful properties of
these notations:

3 Theorem. (a) For any topology, W (≤τ ) ⊆ τ ⊆ α(≤τ ); the latter says that each open
set is a specialization-upper set. Conversely, if W (≤) ⊆ τ ⊆ α(≤), then ≤ equals ≤τ .

(b) Each continuous map preserves the specialization, and the converse holds if the
topology on the domain is Alexandroff. If (X, τ, τ∗) is completely regular, then x ≤τ y if
and only if f(x) ≤ f(y) for each f ∈ P (X, II).

(c) O(X,≤) = P ((X, α(≤), α(≥)), II). Also for any poset, α(≤) ∨ α(≥) = α(=), the
discrete topology.

(d) For a poset (X,≤), (X, α(≤), α(≥)) is pairwise Tychonoff. If ≤ is a linear order
of X, then W (≤) ∨ W (≥) is the order topology on X (that is, the one generated by
{(a,∞) : a ∈ X} ∪ {(−∞, a) : a ∈ X}, where for any poset, we use the notations (a,∞)
for {x ∈ X : x > a} and (−∞, a) for {x ∈ X : x < a}).
Proof: (a) By definition we have that for each x ∈ X, ↓≤τ

(x) = c` τ (x) so each such set
is closed in τ , and our first inclusion results. For the second, if T ∈ τ then X \T is closed,
so for each x ∈ X \ T, ↓≤τ

(x) ⊆ X \ T . As a result, if w ∈ T and w≤τx then x ∈ T ,
showing that the arbitrary τ -open T is in α(≤τ ).

For the converse, if τ ⊆ υ then for each x ∈ X, c` τ (x) is υ-closed, so c` υ(x) ⊆ c` τ (x);
as a result, we have that in this situation, ≤υ⊆≤τ , so in particular, ≤α(≤)⊆≤W (≤). Further,
↓ x is closed by definition in W (≤), showing that ≤W (≤)⊆≤. Also, any set closed in α(≤)
is a lower set, so ↓ x ⊆ c` α(≤)(x), and ≤⊆≤α(≤); thus these orders are equal.

(b) To see that continuous maps preserve the specialization: if x ≤τ y and f : (X, τ) →
(Y, τ ′) then f(x) ∈ f(c` τ (y)) ⊆ c` τ ′(f(y)), so f(x) ≤τ ′ f(y). For the converse, suppose
f is specialization preserving, and consider a typical open set T ; by (a), T is a ≤τ ′ -upper
set. Since f is specialization preserving, f−1[T ] is a ≤τ -upper set, so open in α(≤τ ) = τ .

In particular, if x ≤τ y then for each f ∈ P (X, II), f(x) ≤ f(y); but if not and our
space is completely regular, then there is an f ∈ P (X, II) such that f(x) = 1 and f is 0 off
X \ c` (y), so in particular, f(y) = 0 6≥ f(x).

(c) Then O(X,≤) = P ((X, α(≤), α(≥)), II) by (a) since on [0, 1], W (≤) = U . The last
assertion results from the fact that for each ∈ X, {x} =↑ x∩ ↓ x, so is open in the join
α(≤) ∨ α(≥) and in α(=).

(d) Suppose x ∈ T ∈ α(≤), and define f : X → [0, 1] by f(y) = 1 if y ≥ x, f(y) = 0
otherwise. Then f is order preserving, for if y ≤ z then f(y) = 0 ≤ f(z), or f(y) = 1 thus
x ≤ y ≤ z, whence z ≥ x so f(z) = 1 ≥ f(y). Thus f is pairwise continuous to II and
f(x) = 1. Also, if y 6∈ T then y 6≥ x (since T is an upper set and x ∈ T ), so f(y) = 0.
This shows that (X, α(≤), α(≥)) is completely regular and similarly, (X, α(≥), α(≤)) is
completely regular, so (X, α(≤), α(≥)) is pairwise completely regular. By (b), XS is
discrete (thus T0).

If ≤ is a linear order then each X\ ↓ x = (x,∞), so the latter is a subbasic open set;
dually this holds for ≥ as well. Thus the sets of the forms (x,∞), (−∞, x), are a subbase
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for W (≤) ∨W (≥), as required. ut

The following corollary to Theorems 2 and 3, allows us to define (µX, µ(≤), µ(≥)) =
ν(X, α(≤), α(≥)) and call it the Stone-Čech order compactification of (X,≤).

4 Corollary. Let (X,≤) be a poset and f : X → µX be an order preserving function.

Then there is a unique pairwise continuous f̃ : µX → µX such that f̃ ◦ e = f .

5 Lemma. Let (X,≤) be a poset. Then for each A ⊆ X, c` S(↓ A) is µ(≥)-open and
µ(≤)-closed in µX and c` S(↑ A) is µ(≤)-open and µ(≥)-closed there.

Proof: We define f ∈ P (X, II) by f(y) = 0 if for some x ∈ A, y ≤ x and f(y) = 1 otherwise.
Then ↓ A = f−1[0] ⊆ f̃−1[0], so c` S(↓ A) ⊆ f̃−1[0] and similarly c` S(X\ ↓ A) ⊆ f̃−1[1].
But µX = c` S(X) = c` S(X\ ↓ A) ∪ c` S(↓ A); thus in particular, c` S(↓ A) = f̃−1[0], a
µ(≤)-closed, µ(≥)-open set. The other assertions are the order duals of these. ut

The evaluation map from a bitopological space to its joincompactification is a pairwise
embedding, thus specialization preserving and reversing (by Theorem 3 (b)), so:

6 Lemma. Let (X,≤) be a poset and let x, y ∈ X. Then x ≤ y ⇔ e(x) ≤ e(y) in µ(X)
– by earlier results, the order on the right can be taken to be the specialization ≤µ(≤), or
equivalently the function order, which is the product of the usual order on [0, 1].

7 Lemma. Suppose that X is a pairwise T1 bitopological space and the specialization ≤τ

is a linear order on an S-dense subspace of X. Then it is a linear order on X.

Proof: Let D be an S-dense subspace of X on which ≤τ is a linear order, and let x ∈ X
be arbitrary. Suppose x ∈ T ∩ U, T ∈ τ, U ∈ τ∗. Then there is a d ∈ D ∩ T ∩ U , and
D ⊆↑≤τ

(d)∪ ↓≤τ
(d) = c` τ∗(d) ∪ c` τ (d), an S-closed set as the union of two such. Thus

X ⊆ c` τ∗(d)∪ c` τ (d) ⊆ T ∪U . But this shows X = (
⋂
{T | x ∈ T ∈ τ})∪ (

⋂
{U | x ∈ U ∈

τ∗}) = {y | x ∈ c` τ (y)} ∪ {y | x ∈ c` τ∗(y)} =↑≤τ
(x)∪ ↓≤τ

(x), as required. ut

8 Definition. Let (X, τ) be a topological space. A subset S ⊆ X is saturated if it is a ≤τ -
upper set. The de Groot dual (cocompact dual) of τ is the topology τG, whose closed sets
are generated by the compact saturated subsets of X. The space (X, τ) is skew compact if
there is a second topology on X such that (X, τ, τ∗) is joincompact.

In our new terminology, the assertion in Theorem 3 (a) that for each topology, τ ⊆
α(≤τ ), says that each open set is saturated. Part (a) of the next theorem shows that τG

is the only possible topology τ∗ such that (X, τ, τ∗) can be joincompact. Part (b) applies
this to our order-compactifications.

9 Theorem. (a) ([Ko]) If X is a pH bitopological space, then τG ⊆ τ∗; further, if X is
joincompact, then τG = τ∗.

(b) If τ is skew compact, then τ ⊆ W (≥τ )G. If, further, ≤τ is a linear order on X,
then τ = W (≤τ ), τG = W (≥τ ), and τS is the order topology.

Proof: (a) The first assertion is shown by the asymmetric version of the proof that compact
subsets of Hausdorff spaces are closed ([Ko], 3.1): suppose K is compact and x 6∈↑τ K.
Then for each y ∈ K, we have y 6∈↓τ x = c` τ (x), so there are Ty ∈ τ , Uy ∈ τ∗, such
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that y ∈ Ty, x ∈ Uy, and Ty ∩ Uy = ∅. Thus K ⊆
⋃

y∈K Ty, so for some finite F ⊆
K, K ⊆

⋃
y∈F Ty. But then U =

⋂
y∈F Uy ∈ τ∗, x ∈ U , and U is disjoint from

⋃
y∈F Ty

and therefore from K. This shows that ↑τ K is τ∗-closed.
For the second assertion, let τS be compact and X∗ be ws; that is, ≤τ∗⊆≥τ . Then

τ∗ ⊆ τG: Each τ∗-closed set is τS-closed, thus is τS-compact, and so is τ -compact; it is a
≤τ∗ -lower set, therefore saturated, showing this observation.

(b) Our first result comes from (a) and several observations: (i) If x ∈ K ⊆↑ x then K
is compact: for given any cover of K by open sets, x is in one of them, say T . Then ↑ x ⊆ T ,
showing that T covers K. Thus in particular, each ↑ x ∈ τG, showing W (≥τ ) ⊆ τG.

(ii) Since each subbasic closed set of τG is a ≥τ -lower set, so are all its closed sets.
That is, τG ⊆ α(≥τ ), so by (i) and Theorem 3 (a), ≥τ is the specialization of τG.

(iii) If τ ⊆ υ and the two have the same specialization, then υG ⊆ τG, since υ-compact
sets are clearly τ -compact sets, and sets have the same saturation in the two.

Applying (a) to (X, τ∗, τ), we see τ = (τ∗)G ⊆ W (≥τ )G, the first assertion of (b).
For its second assertion, note: (iv) when ≤τ is a total order, then τG ⊆ W (≥τ ). For

this, notice that K ⊆ X is τ -compact if and only if it has a least element: for if x is the least
element of K then by (i), K is compact; if K has no least element, then {↓≤τ

(x) : x ∈ K}
is a chain of τ -closed sets in X, each of which meets K, but whose intersection fails to
meet K, so K is not compact. But if K is also saturated, then K ⊆↑ x ⊆↑ K = K,
so K =↑ x, a W (≥τ )-closed set. This shows that each subbasic τG-closed set is W (≥τ )-
closed and so (iv) holds, and combining this with part (a) of this theorem and assertion
(i) we have τ∗ = W (≥τ ). Applying this to the dual, which is joincompact, we have
τ = W (≥τ∗) = W (≤τ ). This and Theorem 3 (c) show the second assertion. ut

10 Lemma. (a) A bitopological space X is pH if and only if≤τ is closed in (X, τ)×(X, τ∗).
(b) Let D be an S-dense subspace of a pH bitopological space, X. Then ≤τ=

c` τ×τ∗(∆D), where ∆D denotes the diagonal of D = {(x, x) | x ∈ D}.
(c) In the Stone-Čech order-compactification, ≤µ(≤)= c` (µ(≤)∨µ(≥))2(≤).

Proof: (a) Suppose first that ≤τ is closed, and let x, y ∈ X, x 6≤τ y. Then since (x, y) ∈
X2\ ≤τ , an open set in the product, there are open T ∈ τ, U ∈ τ∗ with x ∈ T, y ∈ U so
that [T × U ]∩ ≤τ= ∅. But this implies that if t ∈ T, u ∈ U , then t 6≤τ u, whence t 6= u;
in other words, T ∩ U = ∅, so these are disjoint neighborhoods of the arbitrary x, y. Thus
the space X is pH. For the converse, simply note that if X is pH and x 6≤τ y, then there
are T ∈ τ, U ∈ τ∗, disjoint, with x ∈ T, y ∈ U , and so (x, y) ∈ T × U ; (T × U)∩ ≤τ= ∅
since if t ∈ T, t ≤τ u, then u ∈ T , so u 6∈ U . Thus ≤τ is closed in (X, τ)× (X, τ∗).

(b) By (a), c` τ×τ∗(∆D) ⊆≤τ , since the latter is a τ × τ∗-closed set containing ∆D.
To see the reverse inclusion, let x, y ∈ X, x ≤τ y, and suppose x ∈ T ∈ τ, y ∈ U ∈ τ∗.
Then y ∈ T (since x ∈ c` (y)), so T ∩ U is a nonempty open set in τS . Therefore, there
is some z ∈ T ∩ U ∩D. This says that if (x, y) ∈≤τ ∩(T × U) then, ∅ 6= ∆D ∩ (T × U),
showing the denseness of ∆D in ≤τ , and thus the reverse inclusion.

(c) Again by (a), c` (µ(≤)∨µ(≥))2(≤) ⊆≤µ(≤). For the reverse inclusion, suppose p ≤ q,
and let p ∈ U ∈ µS , q ∈ V ∈ µS (where we have abbreviated µ(≤) ∨ µ(≥) to µS), and let
U ′ = U ∩X. But then p ∈ c` S(U ′) ⊆ c` S(↑ U ′); since p ≤ q and by Lemma 5 c` S(↑ U ′)
is µ(≤)-open, thus µ(≤)-saturated so in particular, a ≤-upper set, q ∈ c` S(↑ U ′). Thus
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c` S(↑ U ′) ∩ V is a µ(≤)-neighborhood of q, so it meets X. But if x ∈ U ′, y ∈ c` S(↑
U ′) ∩ V ∩ X then x ≤µ(≤) y, but in the subspace X this implies x ≤ y. So in arbitrary
µS-neighborhoods of p, q we have found x ≤ y, thus (p, q) ∈ c` (µS)2(≤). ut

As a topological compactification of the discrete space X, necessarily µX is a quotient
of the Stone-Čech compactification βX of X. If there are strictly monotonic sequences in
X, a significant amount of collapsing occurs when this quotient is formed, since:

11 Theorem. Let Y be joincompact and D ⊆ Y be filtered (resp. directed) by ≤τY
.

Then D has a infimum (resp. supremum) in Y , and converges to it in τS
Y .

Proof: In any compact space, a D ⊆ Y directed by ≥τY
is bounded below, since D′ = {↓τY

(y) | y ∈ D} is a collection of closed sets with fip (for any finite number, ↓τY
(y1), . . . , ↓τY

(yn), let y ≤τY
y1, . . . , yn; then y ∈↓τY

(y1) ∩ . . .∩ ↓τY
(yn)), thus

⋂
D′ 6= ∅, but any

z ∈
⋂

D′ is a lower bound for D.
Since c` τY

S D is closed in the compact τS
Y , it is S-compact, it inherits pH and T0 from

Y , so it is a joincompact subspace of Y , so a compact subspace of (Y, τY ). In particular,
D is bounded below by an element z ∈ c` τS

Y
D. If w is any lower bound for D, we must

have D ⊆↑τY
w so z ∈ c` τS

Y
D ⊆↑τY

w, whence z is the greatest lower bound for D.

To see that the net D τS
Y -converges to z, note that whenever z ∈ T ∈ τS

Y , there are
U ∈ τY , V ∈ τ∗Y , such that z ∈ U ∩V ⊆ T , and since z ∈ c` τS

Y
D, there is a d ∈ D∩U ∩V .

Because U is τY -saturated, ↑τY
z ⊆ U and V is τ∗Y -saturated, so ↓τY

d ⊆ V . But then if
d ≥ d′ ∈ D, d′ ∈↑τY

z∩ ↓τY
d ⊆ U ∩ V ⊆ T . This shows that z is a limit for D. We get

the theorem for sets directed by ≤τY
by applying the above to the dual, Y ∗. ut

Nachbin’s spaces are triples, (X, τ,≤) where ≤ is closed in (X, τ) × (X, τ). The
topology τ≤ of τ -open ≤-upper sets can then be defined, and similarly, τ≥, giving a
bitopological space. If τ = τ≤ ∨ τ≥, then the τ -continuous, order-preserving maps to
[0, 1] are precisely the pairwise continuous functions from the bitopological space B(X) =
(X, τ≤, τ≥) to II. Thus B(X) is Tychonoff if and only if, whenever x ∈ T ∈ τ≤ then there
is an order-preserving, continuous f : (X, τ,≤) → ([0, 1], E ,≤) such that f(x) = 1 and f
is 0 off T . Much of the above is more widely true than suggested in our title, and indeed
the majority of our results were stated in wider generality (e.g., Theorems 2, 3, 9, 11, and
Lemmas 7 and 10 (a) and (b)). But this wider theory is not required for our applications
in [HK], and we have not tried to develop it where inconvenient.
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