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Recent Results on the

Algebraic Structure of βS

Neil Hindman1

Abstract. We survey recent results on the algebraic structure of the Stone-Čech
compactification of a discrete semigroup. We include a complete proof of the result of
Dona Strauss that βN\N does not contain a topological and algebraic copy of βN.

1. Introduction. The “recent” in the title refers to results established since my
last survey of this area [13] was written in 1989. Because of space limitations we limit
our attention to results which are primarily algebraic in their statements, leaving results
of a topological dynamical nature as well as applications to combinatorics for a later
time.

With one exception we will follow the usual practice in survey articles, citing pub-
lished results without proof and proving only those results which are appearing here
for the first time. The one exception is the remarkable proof by D. Strauss [20] that
N∗ = βN\N does not contain a topological and algebraic copy of βN. This problem had
remained open since it was first posed by van Douwen in 1978. We present this proof in
its entirety in Section 2 because we feel it is sufficiently important to merit such special
treatment and because we believe some people will find it helpful to view the proof from
a different angle.

In Section 3 we present information about certain subsemigroups of βN, both those
known to exist there and those whose existence or nonexistence is conjectured.

In Section 4 we present results about cancellation in (βN,+) as well as results about
βS for arbitrary semigroups S.

Section 5 deals with the effects of the choice of left or right continuity for βS where
S itself is not commutative.
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Until Section 5 we take the operation · on the Stone-Čech compactification βS of
S to be the extension of · on S which makes βS a left topological semigroup (i.e. λp

is continuous for each p ∈ βS, where λp(q) = p · q) with S contained in its topological
center (i.e. ρx is continuous for each x ∈ S, where ρx(p) = p · x). We take the points
of βS to be the ultrafilters on S, the principal ultrafilters being identified with the
points of S. The set {c`A : A ⊆ S} is a basis for the open sets and a basis for the
closed sets of βS. Observe that if p, q ∈ βS and A ⊆ S, then A ∈ p · q if and only if
{x ∈ S : A/x ∈ p} ∈ q where A/x = {y ∈ S : y · x ∈ A}.

We take N = {1, 2, 3, . . .} and ω = {0, 1, 2, . . .}.

2. N∗does not contain an algebraic and topological copy of (βN,+). We
present here the proof from [20] that in fact if ϕ : βN −→ N∗ is a continuous homomor-
phism then ϕ[βN] is a finite group. All of the ideas are due to Strauss. The proofs will
appear different for two reasons. The first, a trivial difference, is that she takes (βN,+)
to be right topological. Secondly, I am deliberately taking a different tack on some of
the proofs in order to provide an additional point of view.

We begin with a fundamental result about the structure of βN which Strauss utilizes
in most of her beautiful results about βN. The proof which I present is based on the
proof of [7, Lemma 8.2].

2.1 Lemma. Let X and Y be countable subsets of βN. If (c`X) ∩ (c`Y ) 6= ∅,
then either X ∩ (c`Y ) 6= ∅ or (c`X) ∩ Y 6= ∅. In fact, if p ∈ (c`X) ∩ (c`Y ), then
p ∈ c`(X ∩ (c`Y )) ∪ c`((c`X) ∩ Y ).

Proof. Let p ∈ (c`X) ∩ (c`Y ). Let C = X\c`Y and let D = Y \c`X, and let
Z = C ∪D. Then Z is a countable subspace of βN which is an F-space, and hence Z is
C∗-embedded in βN [11, Section 14N(5)]. The function f : Z −→ [0, 1] with f(x) = 0
for x ∈ C and f(x) = 1 for x ∈ D is continuous since C is open and closed in Z. Then
f extends continuously to βN so c`C ∩ c`D = ∅. Since c`X = c`C ∪ c`(X ∩ c`Y ) and
c`Y = c`D∪ c`(Y ∩ c`X) one must have p ∈ c`(X ∩ c`Y )∪ c`(Y ∩ c`X) as claimed. []2.2

2.2 Lemma. Let X be a topological space, let f : βN −→ X be continuous, and let
p ∈ βN. If U is a neighborhood of f(p) then N ∩ f−1[U ] ∈ p.

Proof. Pick B ∈ p with f [c`B] ⊆ U . Then B ⊆ N ∩ f−1[U ]. []

2.3 Lemma. Let k ∈ N and let p be an additive idempotent in βN. For each q ∈ N∗

there exists r ∈ c`(Nk) such that p + q + r 6= p + r + q.
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Proof. We may presume k > 1 since N2k ⊆ Nk. Define the function f : N −→
{0, 1, . . . , k − 1}ω so that f(m)i is the ith term of the base k expansion of m. That is
m =

∑∞
i=0 f(m)i · ki. Let µ(m) = min{i ∈ ω : f(m)i 6= 0}. Define functions g and

c from N to N by g(m) = f(m)µ(m) · kµ(m) and c(m) = |{i ∈ ω : f(m)i 6= 0}|. Let
fβ : βN −→ {0, 1, . . . , k − 1}ω , gβ : βN −→ βN, and cβ : βN −→ βN be the continuous
extensions of f, g, and c, respectively. We first show that for any q ∈ βN and any ` ∈ N,
if m =

∑`
i=0 fβ(q)i · ki, then Nk`+1 + m ∈ q. Indeed pick n ∈ {0, 1, 2, . . . , k`+1 − 1}

such that Nk`+1 + n ∈ q. Then for i ∈ {0, 1, . . . , `} one has πi ◦ f is constantly equal to
f(n)i on Nk`+1 + n and hence fβ(q)i = f(n)i. That is m = n.

We now claim that given any r ∈ βN and any s ∈
⋂∞

n=1 c`(Nkn) one has gβ(s+r) =
gβ(r) and cβ(s + r) = cβ(s) + cβ(r). For the first equality it suffices to show that
gβ ◦ λs and gβ agree on the dense subspace N of βN, so let m ∈ N be given. Now
for x ∈ Nkµ(m)+1, g(x + m) = g(m). That is g ◦ ρm is constantly equal to g(m) on
Nkµ(m)+1. Since s ∈ c`(Nkµ(m)+1) this says g(s + m) = g(m) as required. To see that
cβ(s + r) = cβ(s) + cβ(r) we show that cβ ◦ λs and λcβ(s) ◦ cβ agree on N. So let m ∈ N
be given and pick ` such that m < k` (so that f(m)i = 0 for i ≥ `). We want to show
that cβ(s+m) = cβ(s)+c(m). Now cβ ◦ρm and ρc(m) ◦cβ agree on Nk` and s ∈ c`(Nk`)
so cβ(s + m) = cβ(s) + c(m) as required.

Now let q ∈ N∗ be given and suppose that for each r ∈ c`(Nk) one has p + q + r =
p + r + q. We claim first that fβ(q) is not eventually 0. Suppose instead that it is
and pick ` ∈ N such that fβ(q) = 0 for i ≥ `. Let m =

∑`
i=0 fβ(q)ik

i. Then as
we have seen, for n > `, Nkn + m ∈ q. Thus if s = q − m(= {A − m : A ∈ q})
we have s ∈

⋂∞
n=`+1 c`(Nkn) =

⋂∞
n=1 c`(Nkn). Now given any r ∈ c`(Nk) we have

p + s + m + r = p + q + r = p + r + q = p + r + s + m. Since the center of (βN,+)
is N [8, Theorem 7.5] one has p + s + r + m = p + r + s + m each r ∈ c`(Nk). Since
cancellation holds at each point of N, we have p + s + r = p + r + s for each r ∈ c`(Nk).
Now p is an idempotent so for each n ∈ N, Nn ∈ p. (The homomorphism sending each
element of N to its congruence class in Zn extends to a homomorphism on βN which
thus takes p to 0.) Then p ∈

⋂∞
n=1 c`(Nkn) and hence also p + s ∈

⋂∞
n=1 c`(Nkn). Now

pick r ∈ (c`{kn : n ∈ N})\(N ∪ {gβ(s)}). Now observe that g is equal to the identity
on {kn : n ∈ N} and hence we have gβ(r) = r. Thus r = gβ(r) = gβ(p + s + r) =
gβ(p + r + s) = gβ(s), a contradiction.

We have thus established that fβ(q) is not eventually equal to 0. We next show
that it is not eventually k− 1. Suppose instead we have ` ∈ N such that fβ(q)i = k− 1
for all i > `. Let m = k`+1 −

∑`
i=0 fβ(q)i · ki and let s = q + m. Now given any
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n ≥ ` we have already seen that Nkn+1 +
∑n

i=0 fβ(q)i · ki ∈ q, and hence Nkn+1 +∑n
i=0 fβ(q)i · ki + m ∈ q + m = s. Since

∑n
i=0 fβ(q)i · ki + m =

∑`
i=0 fβ(q)i · ki +∑n

i=`+1(k − 1) · ki + k`+1 −
∑`

i=0 fβ(q)i · ki = kn+1 we have Nkn+1 + kn+1 ∈ s so that
Nkn+1 ∈ s. Thus s ∈

⋂∞
n=`+1 c`(Nkn) =

⋂∞
n=1 c`(Nkn). Now given any r ∈ c`(Nk) one

has p + s + r = p + q + m + r = p + q + r + m = p + r + q + m = p + r + s and hence
we get the same contradiction as before.

Now let L = {n ∈ N : 0 < fβ(q)n < k − 1}. We claim that L is finite. Suppose
instead that L is infinite and pick r ∈ (c`{kn : n ∈ L})\N. Then r ∈

⋂∞
n=1 c`(Nkn) so

cβ(p + r + q) = cβ(p) + cβ(r + q) = cβ(p) + cβ(r) + cβ(q) = cβ(p) + 1 + cβ(q) (since
c is constantly equal to 1 on {kn : n ∈ L}). On the other hand we will show that
cβ(q + r) = cβ(q) from which it follows that cβ(p + q + r) = cβ(p) + cβ(q + r) = cβ(p) +
cβ(q) 6= cβ(p)+ cβ(q)+ 1 = cβ(p+ r + q), a contradiction. To see that cβ(q + r) = cβ(q)
suppose instead they are distinct and pick disjoint neighborhoods U and V of cβ(q + r)
and cβ(q) respectively. Pick A ∈ q + r and B ∈ q such that cβ [A] ⊆ U and cβ [B] ⊆ V .
Let C = {x ∈ N : A − x ∈ q} so that C ∈ r. Since {kn : n ∈ L} ∈ r, pick n ∈ L

with kn ∈ C. Then A − kn ∈ q, B ∈ q, and Nkn+2 +
∑n+1

i=0 fβ(q)i · ki ∈ q so pick
y ∈ (A − kn) ∩ B ∩ (Nkn+2 +

∑n+1
i=0 fβ(q)i · ki). (The exponents are chosen in order

to be able to repeat the argument below.) Then f(y)n = fβ(q)n ∈ {1, 2, . . . , k − 2} so
f(y + kn)n = fβ(q)n + 1 ∈ {2, 3, . . . , k − 1}, and for all i 6= n f(y + kn)i = f(y)i. Thus
c(y + kn) = c(y) while c(y + kn) ∈ c[A] ⊆ U and c(y) ∈ c[B] ⊆ V , a contradiction.

We have thus established that M = {n ∈ N : fβ(q)n = k − 1 and fβ(q)n+1 = 0}
is infinite so let r ∈ (c`{kn : n ∈ M})\N. Then as above we have cβ(p + r + q) =
cβ(p) + 1 + cβ(q) and it will suffice as above to show that cβ(q + r) = cβ(q). Suppose
otherwise and proceed verbatim as in the paragraph above obtaining n ∈ M and y ∈
(A − kn) ∩ B ∩ (Nkn+2 +

∑n+1
i=0 fβ(q)i · ki). Now one has f(y)n = fβ(q)n = k − 1

and f(y)n+1 = fβ(q)n+1 = 0 so that f(y + kn)n = 0 and f(y + kn)n+1 = 1 while for
all i /∈ {n, n + 1}f(y + kn)i = f(n)i. Consequently c(y + kn) = c(y), completing the
contradiction and the proof. []

2.4 Lemma. Let ϕ : βN −→ N∗ be a continuous homomorphism and let p be an
idempotent in βN. There exists m ∈ N such that for all x ≥ m in N, ϕ(x) = ϕ(p)+ϕ(x).

Proof. Observe first that ϕ(1)+ϕ(p) = ϕ(1+p) = ϕ(p+1) = ϕ(p)+ϕ(1) (recalling
that the center of βN is N ). Since ϕ(p) + ϕ(1) ∈ ϕ(p) + βN = c`{ϕ(p) + k : k ∈ N} and
ϕ(1)+ϕ(p) = ϕ(1+p) ∈ ϕ[βN] = c`ϕ[N] we have that c`{ϕ(p)+k : k ∈ N}∩c`ϕ[N] 6= ∅.
Thus by Lemma 2.1 we have either {ϕ(p)+k : k ∈ N}∩c`ϕ[N] 6= ∅ or ϕ[N]∩c`{ϕ(p)+k :
k ∈ N} 6= ∅.
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Assume first we have some k ∈ N with ϕ(p) + k ∈ c`ϕ[N] = ϕ[βN]. We show
by induction on m that for all m ∈ N, ϕ(p) + mk ∈ ϕ[βN]. Indeed, let m be given
and assume ϕ(p) + mk ∈ ϕ[βN]. Then ϕ(p) + (m + 1)k = ϕ(p + p) + mk + k =
ϕ(p) + ϕ(p) + mk + k = ϕ(p) + mk + ϕ(p) + k ∈ ϕ[βN] + ϕ[βN] ⊆ ϕ[βN]. Thus one has
ϕ(p)+ Nk ⊆ ϕ[βN] so ϕ(p)+ c`(Nk) ⊆ ϕ[βN]. By Lemma 2.3 pick r ∈ c`(Nk) such that
ϕ(p) + ϕ(1) + r 6= ϕ(p) + r + ϕ(1). We have ϕ(p) + r = ϕ(t) for some t ∈ βN. Thus
ϕ(p) + r + ϕ(1) = ϕ(t) + ϕ(1) = ϕ(t + 1) = ϕ(1 + t) = ϕ(1) + ϕ(t) = ϕ(1) + ϕ(p) + r =
ϕ(1 + p) + r = ϕ(p + 1) + r = ϕ(p) + ϕ(1) + r, a contradiction.

Thus we must have some m ∈ N such that ϕ(m) ∈ c`{ϕ(p)+k : k ∈ N} = ϕ(p)+βN.
Then given x > m, ϕ(x) = ϕ(m+(x−m)) = ϕ(m)+ϕ(x−m) ∈ ϕ(p)+βN+ϕ(x−m) ⊆
ϕ(p) + βN. So given x ≥ m we have some t ∈ βN such that ϕ(x) = ϕ(p) + t. So
ϕ(p) + ϕ(x) = ϕ(p) + ϕ(p) + t = ϕ(p + p) + t = ϕ(p) + t = ϕ(x) as required. []

In the proof of Theorem 2.6 we will make use of the minimal ideal structure of
compact left topological semigroups. We state next the portions of that structure theory
which we will utilize.

2.5 Theorem. Let (S, ·) be a compact left topological semigroup. Then S has
idempotents. Further S has a smallest two sided ideal which is the union of all minimal
left ideals of S and is also the union of all minimal right ideals of S. Each minimal
right ideal is compact. Given a minimal left ideal L of S and a minimal right ideal R

of S, L ∩R is a group.

Proof. See [4, Theorem 3.11]. []

2.6 Theorem (Strauss). Let ϕ : βN −→ N∗ be a continuous homomorphism. Then
ϕ[N∗] is a finite group and {x ∈ N : ϕ(x) /∈ ϕ[N∗]} is finite. (In particular ϕ is not
one-to-one so N∗ does not contain a topological and algebraic copy of βN.)

Proof. Let S = ϕ[N∗]. We show first that S is right simple, that is, S is a
minimal right ideal of itself. Now S is a compact left topological semigroup so it has
a minimal right ideal R. As R is itself a compact left topological semigroup it has
an idempotent t. Now ϕ−1[{t}] is a compact left topological semigroup so we may
pick an idempotent p ∈ ϕ−1[{t]}. Pick by Lemma 2.4 some m ∈ N such that for all
x ≥ m in N, ϕ(x) = ϕ(p) + ϕ(x). Then for all q ∈ N∗, ϕ(q) = ϕ(p) + ϕ(q). Thus
S = ϕ[N∗] = ϕ(p) + ϕ[N∗] ⊆ R + S ⊆ R ⊆ S. That is S = R as claimed.

Next we claim that S is also left simple. Since S is right simple, it is its own smallest
ideal so the only alternative is that there are two distinct minimal left ideals L1 and L2

of S, which are then disjoint. Let t1 be the identity of L1 = L1 ∩ R and let t2 be the
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identity of L2 = L2 ∩R. Choose as above idempotents p1 and p2 in βN with ϕ(p1) = t1

and ϕ(p2) = t2. Pick by Lemma 2.4 some m1 and m2 in N such that ϕ(x) = ϕ(p1)+ϕ(x)
for all x ≥ m1 and ϕ(x) = ϕ(p2) + ϕ(x) for all x ≥ m2. Let x = max{m1,m2}. Then
ϕ(x) = ϕ(p1) + ϕ(x) = ϕ(p1 + x) = ϕ(x + p1) = ϕ(x) + ϕ(p1) ∈ L1 and similarly
ϕ(x) ∈ L2 so L1 ∩ L2 6= ∅, a contradiction.

Thus S is both a minimal left ideal of S and a minimal right ideal of S so S is a
group. Next observe that S is homogeneous. (Given q and r in S, if s is the inverse
of r then λq+s(r) = q and λq+s : S −→ S, being continuous, one-to-one, and onto, is
a homeomorphism of S.) As no infinite compact F-space is homogeneous [7, Corollary
8.7], one must then have that ϕ[N∗] is finite.

Finally, pick any idempotent p of N and pick by Lemma 2.4 some m ∈ N such
that ϕ(x) = ϕ(p) + ϕ(x) for all x ≥ m. Then given x ≥ m, ϕ(x) = ϕ(p + x) ∈ ϕ[N∗].
Therefore ϕ[βN] = ϕ[N∗] ∪ {ϕ(x) : x ∈ N and x < m}. []

We conclude this section by stating a generalization of the fact from Theorem 2.6
that ϕ[βN] must be finite. Recall that the topological center Λ(S) of a left topological
semigroup S is {x ∈ S : ρx is continuous}.

2.7 Theorem (Budak, Isik, and Pym). Let S be a discrete countable semigroup
which is isomorphic with a subsemigroup of a countable direct sum of copies of Q, Z(p∞)
(for various primes p), and finite groups. Let T be a compact subsemigroup of βS such
that some countable subsemigroup T0 of Λ(T ) is dense in T and assume Λ(T )\S 6= ∅.
Then

(i) T0 contains an idempotent which lies in the smallest ideal of T.

(ii) Each minimal left ideal of T is finite.
(iii) If T0 is a group, then T is a finite group.
(iv) If T0 is commutative, the smallest ideal of T is a finite commutative group.
(v) If T0 is singly generated, T is finite.

Proof. [6, Theorem 8.3]. []

3. Subsemigroups of βN. One of the most significant and stubborn problems
about the algebraic structure of (βN,+) is determining whether it contains any nontriv-
ial finite groups. The only remaining problem about continuous homomorphisms from
βN to N∗ is to determine whether there are any nontrivial ones. (By a trivial continuous
homomorphism we mean a map which sends all of βN to a given idempotent.) We began
this section by recording the easy observation that these problems are in fact almost
the same problem.
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3.1 Theorem. There is a nontrivial continuous homomorphism from βN to N∗ if
and only if either there is a nontrivial finite group in N∗ or there exist p 6= q in N∗ with
p + p = q = q + q = q + p = p + q.

Proof. Necessity. Let ϕ be a nontrivial homomorphism from βN to N∗. By
Theorem 2.6 ϕ[N∗] is a finite group and there is some m ∈ N with ϕ(x) ∈ ϕ[N∗] for all
x ≥ m. If |ϕ[N∗]| > 1 we are done, so assume ϕ[N∗] = {q}. Since ϕ is nontrivial, there
is a largest x in N such that ϕ(x) 6= q. Let p = ϕ(x). Then p + p = ϕ(x + x) = q and
q + p = p + q = ϕ(x + x + 1) = q.

Sufficiency. If there is a nontrivial finite group in N∗, then for some n ∈ N\{1} there
is a one-to-one homomorphism τ : Zn −→ N∗. Define ϕ : N −→ N∗ by ϕ(k) = τ(i) where
i ∈ Zn and k ≡ i mod n. Then the continuous extension ϕβ : βN −→ N∗ is a nontrivial
continuous homomorphism. If one has p 6= q with p + p = q = q + q = q + p = p + q

define ϕ : βN −→ N∗ by ϕ(1) = p and ϕ(r) = q for all r ∈ βN\{1}. []

One way to distinguish between points of βN is to produce a homomorphism which
takes on different values. For example if one were trying to find a copy of Z2 in βN one
could take a homomorphism from N to the circle group T and look for a generator of
Z2 in the inverse image of eiπ, the element of order 2 in T. This approach cannot work.

3.2 Theorem (Baker, Hindman, Pym). Let G be a compact topological group and
let f : N −→ G be a homomorphism. If H is a finite subgroup of N∗ then fβ [H] consists
only of the identity of G.

Proof. [2, Corollary 2.3]. []

A particular semigroup of βN which has arisen in several contexts is the semigroup
H =

⋂∞
n=1 c`(N2n). See for example [18]. It should be emphasized that by contrast

with the entirety of βN, topological and algebraic copies of H are plentiful in N∗. In
fact we have the following theorem which is well known among aficianados but I believe
is unpublished. (See however [17, Theorem 2.3].) Given a sequence 〈xn〉∞n=1 in N
write as usual FS(〈xn〉∞n=m) = {

∑
n∈F xn : F is a finite nonempty subset of N and

minF ≥ m}. We say 〈xn〉∞n=1 “satisfies uniqueness of finite sums” provided
∑

n∈F xn =∑
n∈G xn implies F = G. (For instance, any sequence with each xn+1 >

∑n
t=1 xt

satisfies uniqueness of finite sums.)

3.3 Theorem. Let 〈xn〉∞n=1 be a sequence in N which satisfies uniqueness of finite
sums. Then

⋂∞
m=1 c`FS(〈xn〉∞n=m) is homeomorphic and isomorphic to H via the same

function.
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Proof. Define f : N −→ FS(〈xn〉∞n=1) by f(
∑

n∈F 2n−1) =
∑

n∈F xn. Let fβ :
βN −→ βN be the continuous extension of f and let ϕ = fβ |H . Since f is one-to-one
so is ϕ. For each n, f [N2n−1] = FS(〈xm〉∞m=n) so fβ [c`N2n−1] = c`FS(〈xm〉∞m=n) and
hence ϕ[H] =

⋂∞
n=1 c`FS(〈xm〉∞m=n). To see that ϕ is a homomorphism, let p, q ∈ H.

We show that ϕ(p + q) = ϕ(p) + ϕ(q) by showing that ϕ ◦ λp and λϕ(p) ◦ ϕ agree on
N. Let z ∈ N be given, write z =

∑
m∈H 2m−1, and let n = max H. To see that

ϕ(p + z) = ϕ(p) + ϕ(z) we show that ϕ ◦ ρz and ρϕ(z) ◦ ϕ agree on N2n. Indeed let
y ∈ N2n and write y =

∑
m∈G 2m−1 where minG > n. Then z + y =

∑
m∈H∪G 2m−1 so

ϕ(z + y) =
∑

m∈H∪G xm =
∑

m∈H xm +
∑

m∈G xm = ϕ(z) + ϕ(y). []

It is an old result [15] that H contains copies of the free group on 2c generators.
Additional light is shed by the following. By the free product of a set of pairwise
disjoint semigroups is meant the set of all words a1a2 . . . an with letters from the semi-
groups in question and with no ai, ai+1 coming from the same semigroup. The product
of a1a2 . . . an and b1b2 . . . bm is a1a2 . . . anb1b2 . . . bm if an and b1 come from different
semigroups and is a1a2 . . . an−1cb2 . . . bm if an and b1 are from the same semigroup and
anb1 = c.

3.4. Theorem (El-Mabhouh, Pym, and Strauss). The semigroup H contains the
free product of 2c copies of the semigroup (N,max).

Proof. [10, Theorem 4]. []

As we noted earlier all minimal right ideals in a compact left topological semigroup
S are compact. In fact given p ∈ S, p · S = λp[S] is compact. Compact left ideals are
not so easy to come by. In fact it is a consequence of Corollary 5.6 below that (βN,+)
does not have two disjoint compact left ideals. We see however that compact left ideals
are plentiful in H. (But note we are not claiming that the left ideals produced below
are minimal.)

3.5 Theorem. The semigroup H is the union of c pairwise disjoint compact left
ideals of H.

Proof. Pick by [22, Theorem 10] a collection {Eσ : 0 < σ < c} of almost disjoint
subsets of ω and for each σ with 0 < σ < c, let Bσ = {

∑
n∈F 2n : F is a finite nonempty

subset of ω and min F ∈ Eσ} and let Lσ = H ∩ c`Bσ. Let L0 = H\
⋃
{Lσ : 0 < σ < c}.

Then each Lσ is clopen in H for 0〈σ < c so L0 is compact. Also {N\Bσ : 0 < σ <

c} ∪ {N2n : n ∈ N} has the finite intersection property so L0 6= ∅. Given 0 < σ < τ < c

and n ∈ N such that Eσ ∩ Eτ ⊆ {0, 1, . . . , n− 1}, Bσ ∩Bτ ∩ N2n = ∅ so Lσ ∩ Lτ = ∅.

8



Now let σ < c be given, let p ∈ H, and let q ∈ Lα. We show p+q ∈ Lσ. Assume first
σ > 0. We need to show that Bσ ∈ p+q so we show that Bσ ⊆ {x ∈ N : Bσ−x ∈ p}. So
let x ∈ Bσ and write x =

∑
n∈F 2n where min F ∈ Eσ. Let m = max F + 1. (Actually

m = minF + 1 would be large enough.) Then N2m ∈ p and N2m ⊆ Bσ − x.

Next assume σ = 0 and suppose p + q /∈ L0. Pick τ < c such that p + q ∈ Lτ . Now
Bτ ∈ p+q and Bτ /∈ q so that N\Bτ ∈ q. Choose x ∈ N\Bτ such that Bτ −x ∈ p. Write
x =

∑
n∈F 2n so that minF /∈ Eτ . Let m = minF + 1 and pick y ∈ N2m ∩ (Bτ − x).

Then y + x =
∑

n∈H 2n where minH = minF so y + x /∈ Bτ , a contradiction. []

By contrast with the highly structured semigroups known to exist in portions of
βN, we have the following result showing that the elements of N∗ which are not sums
of other elements of N∗ almost generate a free semigroup.

3.6 Theorem (Strauss). Define an equivalence relation ≡ on N∗ by agreeing that
p ≡ q if and only if p = q or p ∈ q +N or q ∈ p+N. Let p1, p2, . . . , pn and q1, q2, . . . , qm

be elements of N∗\(N∗ + N∗). If p1 + p2 + . . . + pn = q1 + q2 + . . . + qm, then n = m

and for each i, pi ≡ qi.

Proof [21, Theorem 3]. []

Of course, N∗ + N∗ is an ideal of βN so the smallest ideal of βN is contained in
N∗ + N∗. On the other hand, not only is the closure of the smallest ideal not contained
in N∗ + N∗, we in fact have the following.

3.7 Theorem. Let M = {p ∈ βN : p is in the smallest ideal of βN and p = p + p}.
Then (c`M)\(N∗ + N∗) 6= ∅.

Proof. By [3, Theorem 5.4], c`M is a right ideal of (βN, ·). Using Theorem 2.5
pick q ∈ c`M such that q = q · q. Since M ⊆

⋂∞
n=1 c`(Nn) one has c`M ⊆

⋂∞
n=1 c`(Nn).

Thus for each n, Nn ∈ q. Then by [12, Theorem 5.3] q = q · q /∈ N∗ + N∗. []

4. Cancellation. Numerous characterizations are known of points at which left
cancellation holds in (βN,+).

4.1 Theorem (Blass, Hindman, Strauss). Let p ∈ N∗. The following statements
are equivalent.

(a) λp is one-to-one on βN (i.e. left cancellation holds at p);
(b) λp is one-to-one on N∗;
(c) λp is one-to-one on

⋂∞
n=1 c`(Nn);

(d) there exist a first countable topological group (G, +) and a continuous homo-
morphism h : βN −→ G such that λp is one-to-one on ker(h);
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(e) for each A ⊆ N, there exists B ⊆ N such that A = {x ∈ N : B − x ∈ p};
(f) for each A ⊆ N, there exists B ⊆ N such that A∆{x ∈ N : B − x ∈ p} is finite;

(g) {p + n : n ∈ N} is discrete.

(h) for each q ∈ N∗, p strictly precedes p + q in the Rudin-Keisler order;

(i) for each q ∈ N∗, p is not type equivalent to p + q;

(j) p /∈ p + βN;

(k) p /∈ p + N∗;
(l) there exists A ∈ p such that for all t ∈ N, A− t /∈ p;

(m) p + N∗ is not separable;

(n) there is an increasing sequence 〈xn〉∞n=1 in N such that for each k ∈ N, {xn :
xn+1 > xn + k} ∈ p;

(o) there is a one-to-one function f : N −→ βN such that {f(n) : n ∈ N} is discrete
and for all q ∈ βN, fβ(q) = p + q;

(p) there is a function g : N −→ N such that for all q ∈ βN, gβ(p + q) = q;

(q) there is a function h : N −→ N such that for all q ∈ βN, hβ(p + q) = p.

Proof. [5, Theorem 2.1], [20, Theorem 2], and [16, Theorem 5.5]. []

Some of these characterizations hold in a more general setting.

4.2 Theorem (Hindman and Strauss). Let (S, ·) be a discrete semigroup and let
p ∈ βS. Statement (a) implies statements (b), (c), and (d) which are equivalent. These
statements imply statements (e) and (f) which are equivalent. If S is countable, all of
these statements are equivalent.

(a) λp is one-to-one on S and {p · x : x ∈ S} is strongly discrete;

(b) for each subset A of S there exists B ⊆ S such that A = {x ∈ S : B/x ∈ p};
(c) λp is one-to-one on βS (i.e. left cancellation holds at p);

(d) λp is one-to-one on βS and {p · x : x ∈ S is discrete};
(e) λp is one-to-one on S and {p · x : x ∈ S is discrete};
(f) for each x ∈ S and each q ∈ βS\{x}, p · x 6= p · q.

Proof. [16, Theorem 2.22]. []

No similar characterizations of right cancellation are known, but see [16, Section 4]
for several sufficient conditions for right cancellation to hold at points of (βN,+).

In [14] it was shown by Pym and this writer that if 〈xn〉∞n=1 satisfies uniqueness of
finite sums in N and p ∈ (c`{xn : n ∈ N})\N, then c`{p, p + p, p + p + p, . . .} is not a
semigroup. This result was generalized by Strauss.
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4.3 Theorem (Strauss). Let p ∈ N∗ such that left cancellation holds at p. Then
c`{p, p + p, p + p + p, . . .} is not a semigroup.

Proof. [20, Theorem 3]. []

Musing about this I wondered if c`{p, p+p, p+p+p, . . .} could ever be a semigroup
when p ∈ N∗ and {p, p+p, p+p+p, . . .} is infinite. Amir Maleki answered this question
in a private communication.

4.4 Theorem (Maleki). Let q = q + q in βN, let k ∈ N, and let p = q + k. Then
c`{p, p + p, p + p + p, . . .} is a semigroup.

Proof. {p, p+p, p+p+p, . . .} = q+Nk so c`{p, p+p, p+p+p, . . .} = c`(q+Nk) =
q + c`(Nk). Since q ∈ c`(Nk), one has q + c`(Nk) is a semigroup. []

5. Commutativity. The observant reader will have noted that commutativity
played an important role in Strauss’ proof that N∗ does not contain a topological and
algebraic copy of βN. That is the center of βN is N while points p and q of N∗ which
commute with each other are rare.

We look in this section at a different aspect of commutativity. We have chosen to
take the operation on βS which makes it a left topological semigroup with ρx continuous
for each x ∈ S. Alternately one could choose (and many writers do) the operation on
βS which makes it a right topological semigroup with λx continuous for each x ∈ S.

5.1 Definition. Let (S, ·) be a semigroup. Denote also by · the operation on βS

making βS a left topological semigroup with ρx continuous for x ∈ S and denote by *
the operation on βS making βS a right topological semigroup with λx continuous for
each x ∈ S. Let K` be the smallest ideal of (βS, ·) and let Kr be the smallest ideal of
(βS, ∗).

Until recently it was tacitly assumed that it didn’t make any substantive difference
which operation was chosen. If S is commutative, this is true for then p · q = q ∗ p for
all p, q ∈ βS. Thus in particular a minimal left ideal of (βS, ·) is a minimal right ideal
of (βS, ∗) so that K` = Kr. By contrast we have:

5.2 Theorem (Anthony). Let S be either the free semigroup on two generators
or the group of permutations of N which move only finitely many elements. Then
Kr\c`K` 6= ∅ and K`\c`Kr 6= ∅.

Proof. [1, Corollaries 2.6 and 3.4]. []

On the other hand, the smallest ideals must remain close to each other.
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5.3 Theorem (Anthony). Let S be any semigroup. Then K` ∩ c`Kr 6= ∅ and
Kr ∩ c`K` 6= ∅.

Proof. [1, Theorem 4.1]. []

It remains an open question whether it is possible to have K` ∩Kr = ∅.
In a similar vein we see that the structures of (βS, ·) and (βS, ∗) can differ signifi-

cantly at places far removed from the smallest ideals.

5.4 Theorem (El-Mabhouh, Pym, and Strauss). Let S be the free semigroup on
countably many generators. There is a subsemigroup H of (βS, ∗) such that

(1) H ∩ (βS · βS) = ∅ and
(2) for all p, q ∈ βS, p ∗ q ∈ H if and only if p ∈ H and q ∈ H.

Proof. [9]. []

We close with another simple contrast between commutative and noncommutative
S provided by Theorems 5.5 and 5.7.

5.5 Theorem (Ruppert). Let S be a discrete commutative semigroup, let K be the
smallest ideal of βS, and let L be a minimal left ideal of βS. Then c`L = c`K.

Proof. By the Proposition of [19], c`L is an ideal so K ⊆ c`L so c`K ⊆ c`L ⊆ c`K.
[]

5.6 Corollary. Let S be a commutative discrete semigroup. Then βS does not
have disjoint closed left ideals.

Proof. If Lis a closed left ideal of βS then by Theorem 5.5 c`K ⊆ L. []

5.7 Theorem. Let S be the free semigroup on two generators. Then βS does have
two disjoint compact left ideals. In fact there is a sequence 〈Ln〉∞n=1 of pairwise disjoint
clopen left ideals such that S ∗ \

⋃∞
n=1 Ln is also a left ideal.

Proof. Let the generators of S be the letters a and b. For each n ∈ N let Bn =
{wabn : w ∈ S} and let Ln = c`Bn. To see that Ln is a left ideal of βS, let p ∈ Ln and let
q ∈ βS. Then given any w ∈ S, S ⊆ Bn/(wabn) so Bn ∈ q ·p. To see that S ∗\

⋃∞
n=1 Ln

is a left ideal of βS, let p ∈ S∗\
⋃∞

n=1 Ln and let q ∈ βS. Then immediately q · p ∈ S∗.
Suppose we have q ·p ∈ Ln for some n ∈ N. Also D = S\(Bn∪{bk : k ≤ n}∪{abn}) ∈ p

so pick w ∈ D∩{v ∈ S : Bn/v ∈ q}. Pick u ∈ Bn/w. Then uw ∈ Bn so for some v ∈ S,
uw = vabn. Since w /∈ {bk : k ≤ n} ∪ {abn} one has that w ∈ Bn, a contradiction. []
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of a discrete semigroup, Proc. Edinburgh Math. Soc. 37(1994), 379-397.

17. T. Papazyan, Oids, Finite sums and the structure of the Stone-Čech compacti-
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Soc. 36(1987), 421-428.

19. W. Ruppert, In a left-topological semigroup with dense center the closure of
any left ideal is an ideal, Semigroup Forum 36(1987), 247.

20. D. Strauss, N∗ does not contain an algebraic and topological copy of βN, J.
London Math. Soc. 46(1992), 463-470.

21. D. Strauss, Semigroup Structures on βN, Semigroup Forum 41(1992), 238-244.

22. A. Tarski, Sur la decomposition des ensembles en sous-ensembles presque dis-
joints, Fund. Math. 12(1928), 188-205.

14


