
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 00, Number 0, Pages 000–000
S 0002-9947(XX)0000-0

This article was published in the Transactions of the American Mathematical
Society 355 (2003), 2795-2812. To the best of my knowledge this is the final
version as it was submitted to the publisher. – NH

LARGE RECTANGULAR SEMIGROUPS IN STONE-ČECH
COMPACTIFICATIONS

NEIL HINDMAN, DONA STRAUSS, AND YEVHEN ZELENYUK

Abstract. We show that large rectangular semigroups can be found in certain
Stone-Čech compactifications. In particular, there are copies of the 2c × 2c

rectangular semigroup in the smallest ideal of (βN, +), and so, a semigroup

consisting of idempotents can be embedded in the smallest ideal of (βN, +)
if and only if it is a subsemigroup of the 2c × 2c rectangular semigroup. In
fact we show that for any ordinal λ with cardinality at most c, βN contains a
semigroup of idempotents whose rectangular components are all copies of the
2c × 2c rectangular semigroup and form a decreasing chain indexed by λ + 1,
with the minimum component contained in the smallest ideal of βN.

As a fortuitous corollary we obtain the fact that there are ≤L-chains of
idempotents of length c in βN. We show also that there are copies of the

direct product of the 2c × 2c rectangular semigroup with the free group on 2c

generators contained in the smallest ideal of βN.

1. Introduction

The Stone-Čech compactification of the integers βN has a semigroup structure
which extends addition on N and has significant applications in Ramsey Theory
and topological dynamics. Some questions about the algebra of βN, which sound
deceptively simple, have been found to be extremely difficult. For example, it
is not known whether βN contains any finite semigroups whose members are not
all idempotent. Whether there were two idempotents in βN whose sum was an
idempotent different from either remained an open question for several years. It
was answered in the affirmative in [10], in which it was shown that a certain finite
rectangular semigroup could be embedded in βN. (A semigroup is rectangular if
and only if it is isomorphic to the direct product of a left zero semigroup and a
right zero semigroup. A rectangular component of a semigroup of idempotents is a
maximal rectangular subsemigroup. As suggested by the name, distinct components
are disjoint. The components are partially ordered by the relation P ≤ Q if and
only if PQ ⊆ P , equivalently QP ⊆ P [7, Theorem 1].) In this paper, we show
that the rectangular semigroup 2c × 2c, with the first factor being left zero and
the second right zero, can be embedded in βN. Indeed, βN contains semigroups
of idempotents which are the union of c rectangular components each isomorphic
to 2c × 2c. We shall show also that if S is an infinite cancellative semigroup with
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cardinality κ, then βS \ S contains a semigroup of idempotents which is the union
of at least κ rectangular components, each isomorphic to 22κ × 22κ

, with the first
factor being left zero and the second right zero.

We first review terminology used in the topological theory of semigroups. Let S
be a semigroup and a topological space. For each s ∈ S, we define mappings λs and
ρs from S to itself by λs(t) = st and ρs(t) = ts. S is said to be a right topological
semigroup if ρs is continuous for every s ∈ S. In this case, the topological center
Λ(S) of S is defined by Λ(S) = {s ∈ S : λs is continuous}. S is said to be a
semitopological semigroup if ρs and λs are both continuous for every s ∈ S. It
is said to be a topological semigroup if the semigroup operation is a continuous
mapping from S × S to S.

If S is a discrete semigroup, we regard its Stone-Čech compactification βS as the
space of ultrafilters defined on S, with the topology defined by choosing the sets of
the form A = {p ∈ βS : A ∈ p} as a base for the open sets. βS is then a compact
Hausdorff space and A = c` βS(A). We regard S as a subset of βS, by identifying
each element of S with the principal ultrafilter that it defines. βS can be given a
semigroup structure which extends the semigroup structure of S in such a way that
βS is a compact right topological semigroup, with S contained in its topological
center. If A ⊆ S, A∗ will denote A \A.

We shall use basic algebraic properties which hold in all compact Hausdorff right
topological semigroups. (We shall be assuming that all hypothesized topological
spaces are Hausdorff.) A simple and important property is that every compact
right topological semigroup T contains an idempotent. T has a smallest ideal
K(T ), which is both the union of all the minimal left ideals and the union of all
the minimal right ideals of T . Every right ideal of T contains a minimal right ideal,
and every left ideal of T contains a minimal left ideal. If L is a minimal left ideal
and R a minimal right ideal in T , then RL = R∩L is a group. So R∩L contains a
unique idempotent. If f : T → T ′ is a homomorphism from T onto a compact right
topological group T ′, then f [K(T )] = K(T ′). For each minimal right ideal R′ of
T ′, there is a minimal right ideal R of T for which f [R] = R′. The corresponding
statement holds for left ideals as well. There are three natural orderings of the
idempotents of T defined by

e≤Lf ⇔ e = ef ,
e≤Rf ⇔ e = fe, and
e ≤ f ⇔ ef = fe = e .

An idempotent e is minimal with respect to any or all of these orderings if and only
if e ∈ K(T ). The reader is referred to [1], [6], or [9] for proofs of these statements.

When S is a discrete semigroup, the smallest ideal K(βS) is of special importance
for combinatorial applications, and in particular, the members of idempotents in
K(βS) have strong combinatorial properties. (See [6, Chapter 14].) Thus we are
especially interested in those semigroups of idempotents which can be embedded in
the smallest ideal of βS.

As we have already mentioned, a semigroup S is rectangular provided it is iso-
morphic to the direct product of a left zero semigroup with a right zero semigroup.
This is equivalent to saying that it satisfies the identities x2 = x and xyz = xz.
(The necessity is trivial. For the sufficiency, pick x ∈ S, note that Sx is a left
zero semigroup, xS is a right zero semigroup, and the function (a, b) 7→ ab from
Sx × xS to S is an isomorphism.) We observe that a rectangular semigroup S
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satisfies S = K(S) = LR ∼ L × R, where L denotes any minimal left ideal and R
any minimal right ideal in S.

If S is a semigroup, E(S) will denote the set of idempotents in S.
If A is any set, Pf (A) will denote the set of finite non-empty subsets of A.

2. The semigroups Hκ

The subsemigroup H =
⋂∞

n=1 c` βN(N2n) of (βN,+) holds all of the idempotents
of βN and much of the known algebraic structure. (See [6, Section 6.1].) It occurs
widely in the study of semigroups of the form βS. If S is an infinite discrete can-
cellative semigroup, every Gδ subset of S∗ which contains an idempotent, contains
copies of H [6, Theorem 6.32]. H also has the property that any compact right
topological semigroup with countable dense topological center is the image of H
under a continuous homomorphism [6, Theorem 6.4]. In this section we introduce a
semigroup Hκ which satisfies a similar conclusion for an arbitrary infinite cardinal
κ. As a consequence of the results of the next section we shall conclude that each
Hκ contains large rectangular subsemigroups.

Definition 2.1. Let κ be an infinite cardinal. Then Wκ =
⊕

α<κ Z2. For x ∈ Wκ,
supp(x) = {α < κ : xα 6= 0}. For α < κ, eα is that member of Wκ such that
supp(eα) = {α}. And

Hκ =
⋂

α<κ c` βWκ
{x ∈ Wκ\{0} : min supp(x) ≥ α} .

The structure of Hω is that induced by an “oid” as introduced by John Pym [8].
When we say that two structures are “topologically and algebraically isomorphic”,
we mean that there is one function between them which is both an isomorphism
and a homeomorphism.

Theorem 2.2. The compact right topological semigroups H and Hω are topologi-
cally and algebraically isomorphic.

Proof. [6, Theorem 6.15]. �

It is a fact [6, Lemma 6.8] that all of the idempotents of βN are in H. Thus, by
[6, Theorem 1.65], K(H) = K(βN) ∩H.

Theorem 2.3. Let S be a countably infinite discrete group. Then βS \ S contains
a topological and algebraic copy T of H such that K(T ) = K(βS) ∩ T .

Proof. Take any idempotent p ∈ K(βS). By [6, Theorem 9.13], there is a left invari-
ant zero-dimensional Hausdorff topology on S in which the ultrafilter p converges
to 1. Then by [6, Theorem 7.24], with X = G = V (a) = S for every a ∈ G, there
is a topological and algebraic embedding f : H → βS \ S such that p ∈ f [H]. It
remains to apply [6, Theorem 1.65]. �

A similar result applies to the semigroup (N, ·). Given n ∈ ω we define the
binary support of n by n =

∑
t∈supp2(n) 2t and supp2(0) = ∅.

Theorem 2.4. Let S = (N, ·). There is a topological and algebraic copy T of H
contained in βS\S which contains all of the idempotents of βS\S. In particular,
K(T ) = T ∩K(βS).
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Proof. Let 〈pi〉∞i=1 be the sequence of primes. Then (
⊕∞

i=1 ω, +) is isomorphic to
(N, ·) via the map x 7→

∏∞
i=1 pi

xi , so we shall take S to be
⊕∞

i=1 ω. For each i ∈ N,
let πi : S → ω be the projection to the ith factor and let π̃i : βS → βω be its
continuous extension.

Let {Xi : i ∈ N} be a partition of ω into infinite sets and for each i ∈ N, let
φi : Xi → ω be a bijection. We define θ : ω → S by agreeing that for each i ∈ N
and each n ∈ ω,

πi

(
θ(n)

)
=

∑
j∈supp2(n)∩Xi

2φi(j) ,

where
∑

j∈∅ 2φi(j) = 0. We note that θ is a bijection. (If j ∈ supp2(n)\supp2(m),
then for some i, j ∈ Xi and so φi(j) ∈ supp2

(
πi(n)

)
\supp2

(
πi(m)

)
. Also, given

x ∈ S, for each i ∈ N let Yi = φi
−1

[
supp2

(
πi(x)

)]
, let Z =

⋃
i∈N Yi, and let

n =
∑

t∈Z 2t. Then θ(n) = x.) Consequently by [6, Exercise 3.4.1] the continuous
extension θ̃ : βω → βS of θ is a bijection. Since θ(n + m) = θ(n) + θ(m) if
supp2(n) ∩ supp2(m) = ∅, θ̃ is a homomorphism on H by [6, Lemma 6.3].

To complete the proof, let p be an idempotent in βS\S. Since

θ̃[ H ] = θ̃[
⋂∞

n=1 ω2n ]\{0} = (
⋂∞

n=1 θ[ω2n \{0} ,

it suffices to show that for all n ∈ N, θ[ω2n ] ∈ p. So let n ∈ N and suppose
that θ[ω2n ] /∈ p. Pick t ∈ {1, 2, . . . , 2n − 1} such that θ[ω2n + t ] ∈ p, pick
j ∈ supp2(t), and pick i such that j ∈ Xi. Now π̃i(p) is an idempotent, so either
π̃i(p) = 0 or π̃i(p) ∈ βN\N. Thus by [6, Lemma 6.6] ω2φi(j)+1 ∈ p. Pick x ∈
ω2φi(j)+1 ∩ πi

[
θ[ω2n + t ]

]
and pick k ∈ ω2n + t such that x = πi

(
θ(k)

)
. Then

j ∈ supp2(k)∩Xi so φi(j) ∈ supp2(x), contradicting the fact that x ∈ ω2φi(j)+1. �

Observe that if κ > ω, then Hκ ∩K(βWκ) = ∅. To see this, one lets p ∈ Hκ and

q ∈
⋂

k<ω c` {x ∈ Wκ\{0} : min supp(x) ≥ k and max supp(x) < ω} .

Then p /∈ βWκ + q + p so [6, Theorem 4.39] applies.

Theorem 2.5. Let κ be an infinite cardinal and let T be a compact right topological
semigroup. Assume that there is a set A ⊆ Λ(T ) such that |A| ≤ κ and A is dense
in T . Then there is a continuous surjective homomorphism f : Hκ → T .

Proof. Enumerate A as {tα : α < κ}, with repetition if |A| < κ. Let {Iγ : γ < κ}
be a partition of κ into subsets of size κ. Define h : Wκ → T by first agreeing
that for each α < κ, h(eα) = tγ , where α ∈ Iγ . Then for F ∈ Pf (κ), define
h(

∑
α∈F eα) =

∏
α∈F h(eα), where the product is taken in increasing order of

indices. Define h(0) arbitrarily. Let h̃ : βWκ → T be the continuous extension of h

and let f be the restriction of h̃ to Hκ.
To see that h[Hκ] = T , it suffices to show that A ⊆ h[Hκ]. Given γ < κ, we have

that |Iγ | = κ. Pick a κ-uniform ultrafilter p on {eα : α ∈ Iγ}. Then p ∈ Hκ and
h(p) = tγ because f is constantly equal to tγ on {eα : α ∈ Iγ}.

To see that f is a homomorphism it suffices by [6, Theorem 4.21] to observe that
whenever x ∈ Wκ\{0} and y ∈ Wκ\{0} with min supp(y) > max supp(x), then
h(x + y) = h(x) · h(y). �

Definition 2.6. Let S be a semigroup, let κ be a cardinal, and let 〈tλ〉λ<κ be a
κ-sequence in S.

(a) Given F ∈ Pf (κ),
∏

λ∈F tλ is the product in increasing order of indices.
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(b) If D ⊆ κ, then FP (〈tλ〉λ∈D) = {
∏

λ∈F tλ : F ∈ Pf (D)}.
(c) The sequence 〈tλ〉λ<κ has distinct finite products if and only if whenever

F,G ∈ Pf (λ) and
∏

λ∈F tλ =
∏

λ∈G tλ, one must have F = G.

Theorem 2.7. Let S be an infinite cancellative discrete semigroup with cardinality
κ. Then βS \ S contains a topological and algebraic copy of Hκ.

Proof. By [6, Lemma 6.31], we may choose a κ-sequence 〈tλ〉λ<κ in S with distinct
finite products. Let T = FP (〈tλ〉λ<κ). For each γ < κ, let Tγ = FP (〈tλ〉γ<λ<κ).
We put T̃ =

⋂
γ<κ c` βS(Tγ). By [6, Theorem 4.20], T̃ is a subsemigroup of βS.

We define θ : T → Wκ by θ(
∏

λ∈F tλ) =
∑

λ∈F eλ. (Since the sequence 〈tλ〉λ<κ

has distinct finite products, the function θ is well defined.) Let θ̃ : c` βS(T ) → βWκ

denote the continuous extension of θ. By [6, Theorem 4.21], the restriction of θ̃ to
T̃ is a homomorphism. Now θ̃ is injective, by [6, Exercise 3.4.1]. Since for each
γ < κ, θ̃[Tγ ] = c` βWκ

{x ∈ Wκ : min supp(x) > γ}, θ̃ maps T̃ onto Hκ. Thus θ̃

determines an isomorphism from T̃ onto Hκ. �

3. Chains of rectangular semigroups in Hκ

Let κ be an infinite cardinal and let Vκ denote the rectangular semigroup κ× κ,
with the first factor being left zero and the second right zero. We show in this
section (in Corollary 3.10) that for any infinite cardinal κ, algebraic copies of V22κ

can be found in K(Hκ). Indeed, if λ is any ordinal for which |λ| ≤ κ, there is
a decreasing chain 〈Dp〉p≤λ of disjoint copies of V22κ contained in Hκ, with Dλ

embedded in K(Hκ).
Notice that Vκ contains a copy of every rectangular semigroup of cardinality at

most κ.

Definition 3.1. Let λ be any ordinal and let A be any nonempty set. Let 0 denote
a selected element of A. For p < λ, let Cp = A×A× {p} and let

C = CA,λ = A ∪
⋃

p<λ Cp = A ∪ (A×A× λ) .

The operation · on C is defined as follows. Let a, b, c, d ∈ A and let p, q < λ. Then

a · b = b
a · (b, c, p) = (b, c, p)
(b, c, p) · a = (b, a, p)

(a, b, p) · (c, d, q) = (a, d, p ∨ q)

where p ∨ q is the maximum of p and q.

We leave to the reader the routine verification that the operation on CA,λ is
associative. Notice that for any p < λ, Cp is a copy of V|A|.

Definition 3.2. Let λ be an ordinal and let p < λ. We let up = (0, 0, p) and
for every x = (a, b, p) ∈ Cp we let x` = (a, 0, 0) and xr = b. For x ∈ A, we let
x` = xr = x.

The following is simple, and its proof is like that of [6, Theorem 1.46].

Lemma 3.3. Let S be a semigroup, let H be an ideal of S, let L be a minimal
left ideal of H, let R be a minimal right ideal of H, and let x ∈ S. Then Lx is a
minimal left ideal of H, xR is a minimal right ideal of H, xL ⊆ L, and Rx ⊆ R.
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Proof. It suffices to establish the assertions about Lx and xL. Now Lx ⊆ Hx ⊆ H
and HLx ⊆ Lx so Lx is a left ideal of H. Let M be a left ideal of H with M ⊆ Lx.
Let J = {y ∈ L : yx ∈ M}. Given y ∈ J and z ∈ H, we have zy ∈ L and zyx ∈ M
so zy ∈ J . Thus J = L so M = Lx.

Next, given y ∈ L, y ∈ L = Hy so pick z ∈ H such that y = zy. Then
xy = xzy ∈ Hy = L. �

Lemma 3.4. Let A be a nonempty set with distinguished element 0, and let C =
CA,1. Let T be a right topological semigroup and let f : T → C be a surjective
homomorphism for which f−1[A] and f−1[C0] are compact. Then there is a homo-
morphism g : C → T such that f ◦ g is the identity on C and g[C0] ⊆ K(f−1[C0]).
If T is compact, then g[C0] ⊆ K(T ).

Proof. We first define g on A. We have that f−1[A] is a compact semigroup. Choose
a minimal right ideal N of f−1[A]. For each a ∈ A, f−1[{a}] is a left ideal of f−1[A],
so choose a minimal left ideal Sa of f−1[A] with Sa ⊆ f−1[{a}] and let g(a) be the
identity of the group N ∩ Sa. Then immediately f

(
g(a)

)
= a. Also, given a, b ∈ A

we have that g(a) and g(b) are idempotents in N so g(a)g(b) = g(b) = g(ab).
Let B = {(a, 0, 0) : a ∈ A}. Then B is a left ideal of C0 so f−1[B] is a left ideal of

f−1[C0] which therefore contains a minimal left ideal L of f−1[C0]. For each a ∈ A
let Fa = {(a, b, 0) : b ∈ A}. Then Fa is a right ideal of C0 so pick a minimal right
ideal Ra of f−1[C0] with Ra ⊆ f−1[Fa]. By Lemma 3.3, since f−1[C0] is an ideal of
f−1[A∪C0], we have that g(0) ·Ra is a minimal right ideal of f−1[C0] and L · g(a)
is a minimal left ideal of f−1[C0]. For a, b ∈ A, let g(a, b, 0) be the identity of the
group g(0) ·Ra ·L · g(b). Notice that if T is compact, then K(T ) ⊆ f−1[C0] so that
K(f−1[C0]) ⊆ K(T ) and thus g(a, b, 0) ∈ K(T ). Also g(a, b, 0) = g(0) · x · y · g(b)
for some x ∈ Ra and some y ∈ L so f

(
g(a, b, 0)

)
= 0 · f(x) · f(y) · b = (a, b, 0).

To conclude the proof we need to show that g is a homomorphism. First we let
a, b, c ∈ A and show that g(a) ·g(b, c, 0) = g(b, c, 0) and g(b, c, 0) ·a = g(b, a, 0). Pick
x ∈ Rb · L such that g(b, c, 0) = g(0) · x · g(c). Then

g(a) · g(b, c, 0) = g(a) · g(0) · x · g(c)
= g(0) · x · g(c)
= g(b, c, 0)

so the first claim holds directly. Multiplying on the left by g(b, c, 0) and on the
right by g(a) one sees that g(b, c, 0) · g(a) is idempotent. Since g(b, c, 0) · g(a) ∈
g(0) ·Rb ·L · g(c) · g(a) = g(0) ·Rb ·L · g(a) we must have that g(b, c, 0) · g(a) is the
identity of g(0) ·Rb · L · g(a), namely g(b, a, 0).

Finally, let a, b, c, d ∈ A. Then g(a, b, 0) ·g(c, d, 0) ∈ g(0) ·Ra ·L ·g(b) ·g(0) ·Rc ·L ·
g(d) ⊆ g(0) ·Ra ·L ·g(d) so it suffices to show that g(a, b, 0) ·g(c, d, 0) is idempotent.
These elements satisfy g(a, 0, 0) ∈ L·g(0) and g(c, 0, 0) ∈ L·g(0) so as idempotents in
the same minimal left ideal of f−1[C0], we have that g(a, 0, 0) ·g(c, 0, 0) = g(a, 0, 0).
Recall that we have shown that for any x, y ∈ A, g(0) · g(x, y, 0) = g(x, y, 0) and
g(x, y, 0) · g(0) = g(x, 0, 0). Thus we have

g(a, b, 0) · g(c, d, 0) · g(a, b, 0) = g(a, b, 0) · g(0) · g(c, d, 0) · g(0) · g(a, b, 0)
= g(a, 0, 0) · g(c, 0, 0) · g(a, b, 0)
= g(a, 0, 0) · g(a, b, 0)
= g(a, b, 0) · g(0) · g(a, b, 0)
= g(a, b, 0) · g(a, b, 0) = g(a, b, 0) .
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Multiplying on the right by g(c, d, 0) we have that g(a, b, 0) ·g(c, d, 0) is idempotent.
�

We now consider the situation in which λ > 1. For λ > ω we do not necessarily
get that g is a homomorphism, but we come close.

Theorem 3.5. Let A be a nonempty set with distinguished element 0, let λ be an
ordinal, and let C = CA,λ. Let T be a right topological semigroup, and f : T → C
be a surjective homomorphism such that f−1[A] is compact and f−1[Cp] is compact
for every p < λ. Then there is a function g : C → T such that f ◦ g is the identity
and g has the following properties:

(i) If q ≤ p < λ, x ∈ Cp, and y ∈ A∪Cq, then g(xy) = g(x)·g(y) and g(y)·g(x)
is an idempotent in the same minimal left ideal of f−1[Cp] as g(yx).

(ii) If p < λ, x ∈ Cp, and y ∈ A ∪ C0, then g(y) · g(x) = g(yx).
(iii) If q ≤ p < λ, n ∈ ω, p = q+n, y ∈ Cq, and x ∈ Cp, then g(y)·g(x) = g(yx).
(iv) If p < λ, then g[Cp] ⊆ K(f−1[Cp]).
(v) If T is compact and λ is a successor, then g[Cλ−1] ⊆ K(T ).

The semigroup T contains a semigroup D =
⋃

p<λ Dp of idempotents where each Dp

is a rectangular component of D with g[Cp] ⊆ Dp and the sequence 〈Dp〉p<λ is de-
creasing in the ordering of components, so that for each p < λ, Dp = K(

⋃
q≤p Dq).

If |A| ≥ |λ| ≥ ω, then for each p < λ, |Dp| is isomorphic to V|A|.

Proof. For p < λ we define g on A ∪
⋃

q≤p Cq by induction on p so that g satisfies
conclusions (i), (ii), (iii), and (iv). By Lemma 3.4 we may define g on A ∪ C0 so
that g satisfies (iv) and is a homomorphism and therefore satisfies (i), (ii), and (iii).
Now let 0 < p < λ and assume that g has been defined on A ∪

⋃
q<p Cq.

We show first that we may choose a minimal left ideal L of f−1[Cp] such that
L ⊆

⋂
q<p f−1[Cp] ·g(uq) and f [L] = Cp ·up. A simple computation establishes that

for each q < p, f−1[Cp] · g(uq) is a compact left ideal of f−1[Cp]. Also, if r < q < p,
then f−1[Cp] · g(uq) ⊆ f−1[Cp] · g(ur). To see this, let x ∈ f−1[Cp]. Then

x · g(uq) = x · g(uq · ur)
= x · g(uq) · g(ur) by (i)
∈ f−1[Cp] · g(ur) .

Consequently
⋂

q<p f−1[Cp] · g(uq) is a left ideal of f−1[Cp] and thus contains a
minimal left ideal L of f−1[Cp]. Then f [L] is a minimal left ideal of Cp.

Now given x ∈ L, one has x ∈ f−1[Cp]·g(u0) so for some a ∈ A, f(x) = (a, 0, p) ∈
Cp · up. Thus f [L] ⊆ Cp · up. Since Cp · up is a minimal left ideal of Cp, we have
f [L] = Cp · up as claimed.

If p is a successor ordinal, observe that g(up−1)·f−1[Cp] is a right ideal of f−1[Cp]
and pick a minimal right ideal R of f−1[Cp] with R ⊆ g(up−1) ·f−1[Cp]. Then f [R]
is a minimal right ideal of Cp and f [R] ⊆ up−1 · Cp so f [R] = up−1 · Cp.

If p is a limit ordinal note that f−1[up · Cp] is a right ideal of f−1[Cp] so pick a
minimal right ideal R of f−1[Cp] with R ⊆ f−1[up · Cp]. Then f [R] = up · Cp.

Now f−1[Cp] is an ideal of f−1[A ∪ C0 ∪ Cp] so by Lemma 3.3, for any x ∈ Cp,
g(x`) ·R is a minimal right ideal of f−1[Cp] and L · g(xr) is a minimal left ideal of
f−1[Cp]. Therefore

(
g(x`) · R

)
∩

(
L · g(xr)

)
= g(x`) · R · L · g(xr) is a group. Let

g(x) be the identity of g(x`) ·R · L · g(xr). Notice that (iv) is satisfied.



8 NEIL HINDMAN, DONA STRAUSS, AND YEVHEN ZELENYUK

To verify (i), let q ≤ p, let x ∈ Cp, and let y ∈ A ∪ Cq. To see that g(xy) =
g(x) · g(y), we show that g(x) · g(y) is an idempotent in the same group as g(xy).
Since (xy)` = x` and by Lemma 3.3 R·g(y) ⊆ R, we have that g(xy) ∈ g

(
(xy`)

)
·R =

g(x`) ·R and g(x) · g(y) ∈ g(x`) ·R · g(y) ⊆ g(x`) ·R.
Also, (xy)r = yr so g(xy) ∈ L · g

(
(xy)r

)
= L · g(yr). To see that g(x) · g(y) ∈

L · g(yr), we consider two cases. If y ∈ Cp, then g(x) · g(y) ∈ g(x) · L · g(yr) ⊆
L · g(yr). Now assume that q < p (and y ∈ A ∪ Cq). Note that L ⊆ f−1[Cp] ·
g(uq) so g(uq) is a right identity for L and thus L = L · g(uq). Also a simple
computation establishes that uqxry = uqyr. Therefore, using the fact that (i) holds
at q, g(uq) · g(xr) · g(y) = g(uqxr) · g(y) = g(uqxry) = g(uqyr) = g(uq) · g(yr) and
thus g(x) ·g(y) ∈ L ·g(xr) ·g(y) = L ·g(uq) ·g(xr) ·g(y) = L ·g(uq) ·g(yr) = L ·g(yr).

Consequently we have in any event that g(xy) and g(x) ·g(y) are members of the
group g(xl) ·R ·L · g(yr). We show that they are equal by showing that g(x) · g(y)
is idempotent.

Since g(xr) · g(0) = g(xr0) = g(0) = g(yr0) = g(yr) · g(0) we have that g(x) ·
g(0) ∈ L · g(xr) · g(0) = L · g(0) and because g(x) · g(y) ∈ L · g(yr) we have that
g(x) · g(y) · g(0) ∈ L · g(yr) · g(0) = L · g(0).

Now g(x) = g(x`)·z·g(xr) for some z ∈ L·R. Also g(0)·g(x`) = g(0x`) = g(x`) so
g(0)·g(x) = g(x`)·z·g(xr) = g(x). If y ∈ Cp we have similarly that g(0)·g(y) = g(y),
while otherwise g(0) · g(y) = g(0y) = g(y) by (ii) of the induction hypothesis. We
have that g(x) · g(0) · g(x) · g(0) = g(x) · g(x) · g(0) = g(x) · g(0) so g(x) · g(0) is
an idempotent in L · g(0), which is a minimal left ideal of f−1[Cp] by Lemma 3.3.
Therefore g(x)·g(0) is a right identity for L·g(0) and thus g(x)·g(y)·g(0)·g(x)·g(0) =
g(x) · g(y) · g(0). So

g(x) · g(y) · g(x) · g(y) = g(x) · g(y) · g(0) · g(x) · g(0) · g(y)
= g(x) · g(y) · g(0) · g(y)
= g(x) · g(y) · g(y) = g(x) · g(y)

as required.
By Lemma 3.3 g(y) · g(x`) · R ⊆ f−1[Cp] so g(y) · g(x) ∈ g(y) · g(x`) · R · L ·

g(xr) ⊆ L · g(xr). Also g(yx) ∈ L · g
(
(yx)r

)
= L · g(xr) and by Lemma 3.3

L · g(xr) is a minimal left ideal of f−1[Cp]. To see that g(y) · g(x) is idempotent,
note that xyx = x so g(x) · g(y) · g(x) = g(xy) · g(x) = g(xyx) = g(x) and thus
g(y) · g(x) · g(y) · g(x) = g(y) · g(x) as required. This completes the verification of
(i).

To verify (ii), let x ∈ Cp and let y ∈ A ∪ C0. Pick z ∈ L · R such that g(x) =
g(x`) · z · g(xr). Then g(y) · g(x`) = g(yx`). If y ∈ A, then yx` = x` so that
g(y) · g(x) = g(y) · g(x`) · z · g(xr) = g(x`) · z · g(xr) = g(x) = g(yx). So assume that
y ∈ C0. Then yx` = (yx)` and (yx)r = xr. So g(y) · g(x) = g(y) · g(x`) · z · g(xr) =
g(yx`) ·z ·g(xr) = g

(
(yx)`

)
·z ·g

(
(yx)r

)
. So to see that g(y) ·g(x) = g(yx) it suffices

to recall from (i) that g(y) · g(x) is idempotent.
To verify (iii), let n ∈ ω and let q ≤ p such that p = q + n. Let x ∈ Cp and let

y ∈ Cq. If n = 0, the conclusion follows from (i), so assume that n > 0 so that p is a
successor ordinal and p−1 ≥ q. Now (yx)` = y` so g(yx) ∈ g

(
(yx)`

)
·R = g(y`) ·R.
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Recall that R ⊆ g(up−1) · f−1[Cp] and consequently R = g(up−1) ·R. Thus

g(y) · g(x) ∈ g(y) · g(x`) ·R
= g(y) · g(x`) · g(up−1) ·R
= g(yx`) · g(up−1) ·R by (i) at q
= g(yx`up−1) ·R by (iii) at p− 1
= g(y`up−1) ·R
= g(y`) · g(up−1) ·R by (ii) at p− 1
= g(y`) ·R .

Now g(y) · g(x) is an idempotent in the same minimal left ideal of f−1[Cp] by (i).
Since g(yx) and g(y) · g(x) are also in the same minimal right ideal g(y`) ·R, they
must be equal. This completes the induction step.

Next, we establish (v). So assume that T is compact and λ is a successor. Then
K(T ) ⊆ f−1[Cλ−1] so K(f−1[Cλ−1]) ⊆ K(T ). Since g(x) ∈ K(f−1[Cλ−1]) for
every x ∈ Cλ−1, (v) holds.

For each p < λ, let

Dp = {
∏

q∈F g(xq) : F ∈ Pf (λ) , p = maxF , and for each q ∈ F , xq ∈ Cq} ,

where for each F , the product
∏

q∈F g(xq) is taken in increasing order of indices.
We show now by induction on |F | that

(∗) if p < λ , y ∈ Cp , F ∈ Pf (λ) , xq ∈ Cq for each q ∈ F ,
and max F ≤ p, then g(y) ·

∏
q∈F g(xq) = g(y ·

∏
q∈F xq) .

Let r = maxF . If F = {r}, then g(y) · g(xr) = g(yxr) by (i). So assume that
|F | > 1 and let G = F \ {r}. Then

g(y) ·
∏

q∈F g(xq) = g(y) ·
∏

q∈G g(xq) · g(xr)
= g(y ·

∏
q∈G xq) · g(xr) by the induction hypothesis

= g(y ·
∏

q∈G xq · xr) by (i).

Now we show that each member of D is idempotent. So let F ∈ Pf (λ), let
p = max F , and for each q ∈ F , let xq ∈ Cq. If F = {p}, then g(xp) is idempotent
so assume that |F | > 1 and let G = F \ {p}. Then∏

q∈F g(xq) ·
∏

q∈F g(xq) =
∏

q∈G g(xq) · g(xp) ·
∏

q∈F g(xq)
=

∏
q∈G g(xq) · g(xp ·

∏
q∈F xq)

=
∏

q∈G g(xq) · g(xp ·
∏

q∈G xq · xp)
=

∏
q∈G g(xq) · g(xp)

=
∏

q∈F g(xq) .

Now let r, p < λ, let a ∈ Dr, and let b ∈ Dp. We claim that ab ∈ Dr∨p. We
have that a =

∏
q∈F g(xq) and b =

∏
q∈G g(yq) where maxF = r, maxG = p, each

xq ∈ Cq and each yq ∈ Cq. If r < minG, then ab =
∏

q∈F g(xq) ·
∏

q∈G g(yq) ∈ Dp.
If r ≥ p, then ab =

∏
q∈F\{r} g(xq)·g(xr·

∏
q∈G yq) ∈ Dr (where the

∏
q∈F\{r} g(xq)

term is simply omitted if F = {r}). So assume that minG ≤ r < p, let H = {q ∈
G : q ≤ r}, and let L = {q ∈ G : g > r}. Then ab =

∏
q∈F\{r} g(xq) · g(xr ·∏

q∈H yq) ·
∏

q∈L g(yq) ∈ Dp.
Thus D is a semigroup of idempotents and for each p < λ, K(

⋃
q≤p Dq) ⊆ Dp.

Let r ≤ p, let a =
∏

q∈F g(xq) ∈ Dp, let b =
∏

q∈G g(yq) ∈ Dr, and let c =
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q∈H g(zq) ∈ Dp. Then

abc =
∏

q∈F\{p} g(xq) · g(xp ·
∏

q∈G yq) ·
∏

q∈H g(zq)
=

∏
q∈F\{p} g(xq) · g(xp ·

∏
q∈G yq ·

∏
q∈H zq)

=
∏

q∈F\{p} g(xq) · g(xpzp) and
ac =

∏
q∈F\{p} g(xq) · g(xp ·

∏
q∈H zq)

=
∏

q∈F\{p} g(xq) · g(xpzp)

so abc = ac and so each Dp is a rectangular subsemigroup of D. To see that Dp

is a rectangular component of D, suppose that a ∈ Dp and b ∈ Dq, where q < p.
Then f(bab) ∈ Cp and f(b) ∈ Cq, and so bab 6= b. To show that Dp ≈ V|A| if
|A| ≥ |λ| ≥ ω, we observe that Cp contains a left ideal L and a right ideal R, each
with |A| elements. If a, b ∈ L, then ab = a and so g(a)g(b) = g(a). Thus g[L]
is contained in the left ideal Dpg(b) of Dp. Similarly, g[R] is contained in a right
ideal of Dp. So Dp contains a left ideal and a right ideal each with at least |A|
elements. They cannot have more than |A| elements because for each F ∈ Pf (λ)
with p = maxF , there are |A||F | = |A| choices for

∏
q∈F g(xq). So |Dp| = |A|.

Thus Dp ≈ L×R ≈ V|A|. �

Two obvious questions are raised by Lemma 3.4 and Theorem 3.5. First, can
the function g constructed there be required to be continuous? Second, can the
function g in Theorem 3.5 be required to be a homomorphism? We shall answer
both of these questions in the negative, even when the stronger requirements that T
and C be compact and C be a topological semigroup are added. We shall have need
of the following lemma, whose routine proof we omit. (Recall that any successor
ordinal is a compact Hausdorff space under its order topology.)

Lemma 3.6. Let A be a compact space, let λ be an ordinal, let A×A×(λ+1) have
the product topology, and let A and A×A× (λ + 1) be clopen subsets of C = CA,λ.
Then C is a compact topological semigroup and Cλ = K(C).

We now show that, even for λ = 0, one cannot require that g be continuous.
We remind the reader that an F -space is a completely regular space X in which
{x ∈ X : f(x) > 0} and {x ∈ X : f(x) < 0} are completely separated for all
continuous f : X → R.

Theorem 3.7. There exist a nonempty set A, a topology on C = CA,1 such that
C is a compact topological semigroup and A and C0 are compact subsets of C, a
compact right topological semigroup T , and a continuous surjective homomorphism
f : T → C such that there is no continuous homomorphism g : C → T for which
f ◦ g is the identity on C. (In fact there is no continuous injective function from
C to T .)

Proof. Let A = βN, let C = βN ∪ (βN × βN × {0}) with the topology given in
Lemma 3.6, and let T = Hω. Then N∪ (N×N×{0}) is dense in C = Λ(C) so there
is a continuous surjective homomorphism f : T → C by Theorem 2.5.

Now suppose there is a continuous injective function g : C → T . Then by
Theorem 2.2 there is a continuous injective function from C to H ⊆ βN. But this is
impossible because βN is an F -space [3, Theorem 14.25]. So every compact subset
X of βN is an F -space, because every continuous function from X to [0,1] has a
continuous extension to βN, by the Tietze extension theorem. But βN× βN is not
an F -space by [3, 14Q]. �
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Theorem 3.8. There exist a nonempty set A with distinguished element 0, a topol-
ogy on C = CA,ω+1 such that C is a compact topological semigroup and A and Cp

are compact subsets of C for each p ≤ ω, a compact right topological semigroup
T , and a continuous surjective homomorphism f : T → C such that there is no
homomorphism g : C → T for which f ◦ g is the identity on C.

Proof. Let A = {0} and let C = CA,ω+1 with the topology given in Lemma 3.6. Let
u0 = 0, for p < ω, let up+1 = (0, 0, p), and let uω = (0, 0, ω). Then C = {up : p ≤ ω}
and upuq = up∨q for all p, q ≤ ω. Topologically, uω is the only non-isolated point
in C. Let 〈vp〉p<ω be a sequence of distinct points none of which are in C. Let
T = {up : p < ω}∪{vp : p < ω} and define an operation on T as follows for p, q < ω:

upuq = up∨q

upvq = vp∨q

vpuq = vpvq = vp .

We leave it to the reader to verify that the operation is associative.
Let T \ {v0} be discrete and let T be the one point compactification of T \ {v0}

(with v0 as the point at infinity). We claim that T is a right topological semigroup.
Let p < ω. To see that ρup

is continuous at v0, let W be a neighborhood of
v0 = ρup(v0) and let U = W ∩ ({uq : p ≤ q < ω}∪{vq : q < ω}). Then ρup [U ] ⊆ W .
To see that ρvp is continuous at v0, let W be a neighborhood of v0 = ρvp(v0) and
let U = {uq : p ≤ q < ω and vq ∈ W} ∪ {vq : vq ∈ W}. Then ρvp

[U ] ⊆ W .
Define f : T → C by f(up) = up and f(vp) = uω for each p < ω. Then f is a

continuous surjective homomorphism. Suppose that g : C → T is a homomorphism
for which f ◦g is the identity. Then for p < ω, g(up) = up. And there is some q < ω
such that g(uω) = vq. But then, vq+1 = uq+1vq = g(uq+1) · g(uω) = g(uq+1uω) =
g(uω) = vq, a contradiction. �

We shall see next that we can get the function g to be a homomorphism by
requiring that T be semitopological. This corollary can then be viewed as saying
that C is something like an absolute coretract in the category of semitopological
semigroups. C becomes an absolute coretract in the category of compact semitopo-
logical semigroups if it is given a topology for which it is in this category with A
and each Cp being compact.

Corollary 3.9. Let A be a nonempty set with distinguished element 0, let λ be an
ordinal, and let C = CA,λ. Let T be a semitopological semigroup, and f : T → C be
a continuous homomorphism such that f−1[A] is compact and f−1[Cp] is compact
for every p < λ. Then there is a homomorphism g : C → T such that f ◦ g is the
identity.

Proof. At stage p of the induction in the proof of Theorem 3.5 one has that for
each q < p, g(uq) · f−1[Cp] is a compact right ideal of f−1[Cp] so one may choose a
minimal right ideal R of f−1[Cp] with R ⊆

⋂
q<p g(uq) ·f−1[Cp] and f [R] = up ·Cp.

Then, if y ∈ Cq for some q ≤ p and x ∈ Cp, just as one showed in the verification of
hypothesis (i) that g(x) · g(y) ∈ L · g(yr), one can show that g(y) · g(x) ∈ g(yl) ·R,
so that g(y) · g(x) and g(yx) are idempotents in the same group. If y ∈ A and
x ∈ Cp, then g(y) · g(x) = g(yx) by (ii). (We did not need to consider the case
y ∈ A separately at that point in the proof of Theorem 3.5 because the equation
uqxry = uqyr was valid in any event. The corresponding equation yx`uq = y`uq is
not valid if y ∈ A.) �
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We now present some immediate consequences of Theorem 3.5, though with a
bit more effort, we shall get a stronger result, namely Theorem 3.16.

Corollary 3.10. Let κ be an infinite cardinal and let λ be an ordinal with |λ| ≤ κ.
Then Hκ contains a subsemigroup D =

⋃
p≤λ Dp of idempotents where each Dp is

a rectangular component of D isomorphic to V22κ and the sequence 〈Dp〉p≤λ is de-
creasing in the ordering of components, so that for each p ≤ λ, Dp = K(

⋃
q≤p Dq).

Proof. Let κ have the discrete topology and let A = βκ. Let C = CA,λ+1 and let C
have the topology described in Lemma 3.6. Let T = Hκ. Since κ∪

(
κ×κ× (λ+1)

)
is a dense subset of C = Λ(C), by Theorem 2.5 there is a continuous surjective
homomorphism f : T → C, so Theorem 3.5 applies. �

Corollary 3.11. Let S be an infinite cancellative discrete semigroup with cardi-
nality κ and let λ be an ordinal with |λ| ≤ κ. Then βS \S contains a subsemigroup
D =

⋃
p≤λ Dp of idempotents where each Dp is a rectangular component of D

isomorphic to V22κ and the sequence 〈Dp〉p≤λ is decreasing in the ordering of com-
ponents, so that for each p ≤ λ, Dp = K(

⋃
q≤p Dq). If S = (N,+), S = (N, ·), or

S is a countably infinite discrete group, then Dλ ⊆ K(βS).

Proof. By Theorem 2.7 βS \ S contains a topological and algebraic copy T of Hκ.
(If S = (N,+) choose T = H. If S = (N, ·) or S is a countably infinite discrete
group, choose T as in Theorem 2.4 or Theorem 2.3 respectively.) Then Corollary
3.10 applies.

If S = (N,+), S = (N, ·), or S is a countably infinite discrete group, then
K(T ) = K(βS) ∩ T . So by Theorem 3.5, with λ + 1 in place of λ, we have
g[Cλ] ⊆ K(T ) ⊆ K(βS) and so Dλ ⊆ K(βS). �

Corollary 3.12. Let S be a countably infinite discrete group. Then there is a copy
of V2c contained in K(βS).

We can completely characterise the semigroups of idempotents which can be
embedded in K(βN).

Corollary 3.13. Let S be an infinite cancellative discrete semigroup with cardi-
nality κ and let D be a semigroup of idempotents.

(i) There is a copy of D in βS \ S if D is rectangular and |D| ≤ 22κ

.
(ii) There is a copy of D in K(βN) if and only if D is rectangular and |D| ≤ 2c.

Proof. Conclusion (i) and the sufficiency of (ii) follow immediately from Corollary
3.11. Assume now that D is a semigroup of idempotents contained in K(βN). Then
|D| ≤ |βN| = 2c. Next observe that any subsemigroup of idempotents in K(βS)
must be rectangular. To see this, suppose that x, y, z ∈ K(βS). Then xz and xyz
belong to the same minimal left ideal and to the same minimal right ideal. Hence,
if they are idempotent, they must be equal. �

Recall that any two maximal groups in the smallest ideal of a compact right
topological semigroup are isomorphic. We see that we can get the direct product of
such groups with an embedded rectangular semigroup in the smallest ideal as well.

Theorem 3.14. Let T be a compact right topological semigroup, let D be a rect-
angular subsemigroup of K(T ), and let G be a maximal subgroup of K(T ). There
is an algebraic copy of D ×G contained in K(T ).



LARGE RECTANGULAR SEMIGROUPS IN STONE-ČECH COMPACTIFICATIONS 13

Proof. Let L be a minimal left ideal of D and let R be a minimal right ideal of
D. Since D is rectangular, D is the internal direct product of L and R, meaning
that each element x of D can be written uniquely as x = xLxR where xL ∈ L and
xR ∈ R. Also, RL = R ∩L is a subgroup of D so, since D consists of idempotents,
RL = {e} for some e. Then for any x, y ∈ D, xRyL = e. Note also that (xy)L = xL

and (xy)R = yR.
We may assume that G = eTe. Define ϕ : D ×G → K(T ) by ϕ(x, g) = xLgxR.

We claim that ϕ is an injective homomorphism. Let (x, g), (y, h) ∈ D × G. Then
ϕ
(
(x, g)(y, h)

)
= xLgxRyLhyR = xLgehyR = (xy)Lgh(xy)R = ϕ(xy, gh).

Now assume that ϕ(x, g) = ϕ(y, h). Then g = ege = xRxLgxRxL = xRyLhyRxL

= ehe = h. Also xLT ∩ yLT 6= ∅ and xLT and yLT are minimal right ideals of
T so xLT = yLT . Similarly TxR = TyR. Now x = xLxR ∈ xLT ∩ TxR and
y ∈ yLT ∩ TyR so x and y are idempotents in the same group so x = y. �

Corollary 3.15. K(βN) contains an algebraic copy of V2c × F , where V2c is the
2c × 2c rectangular semigroup and F is the free group on 2c generators.

Proof. By Corollary 3.13 K(βN) contains a copy of the 2c×2c rectangular semigroup
and by [4] each maximal group in K(βN) contains a copy of the free group on 2c

generators. Therefore the result follows from Theorem 3.14. �

We now present a strengthening of Corollary 3.10, producing a longer chain of
rectangular components. Recall that the Souslin number S(X) of a topological
space X (also known as the cellularity of X) is the least cardinal γ such that X
does not have a collection of γ pairwise disjoint nonempty open subsets. See [2,
Chapter 12] for considerable information about the Souslin number of the space
U(κ) of uniform ultrafilters on κ. Recall in particular that the Souslin number of
N∗ = βN\N = U(N) is c+.

Theorem 3.16. Let κ be an infinite cardinal and let λ be an infinite ordinal for
which |λ| < S

(
U(κ)

)
. There exist a set A with |A| = 22κ

and an injection g :
CA,λ → Hκ such that if q < p < λ, y ∈ Cq, and x ∈ Cp, then g(x)·g(y) = g(xy), and
if p = q+n for some n < ω, then g(y) ·g(x) = g(yx). Also Hκ contains a semigroup
D =

⋃
p<λ Dp of idempotents where for each p < λ, Dp is a rectangular component

of D isomorphic to V22κ , g[Cp] ⊆ Dp, and the sequence 〈Dp〉p<λ is decreasing in
the ordering of components, so that for each p < λ, Dp = K(

⋃
q≤p Dq). If λ is a

successor, then Dλ−1 ⊆ K(Hκ).

Proof. Since |λ| < S
(
U(κ)

)
, choose a family 〈Ep〉p<λ of subsets of κ such that each

|Ep| = κ and |Ep ∩ Eq| < κ when p 6= q. For each p < λ we define φp : Wκ → Wκ

by φp(w) =
∑

α∈Ep∩supp(w) eα (where
∑

α∈∅ eα = 0) and let φ̃p : βWκ → βWκ

be the continuous extension of φp. If v, w ∈ Wκ and supp(v) ∩ supp(w) = ∅, then
φp(v + w) = φp(v) + φp(w) so by [6, Theorem 4.21] the restriction of φ̃p to Hκ is a
homomorphism.

Next observe that for x ∈ Hκ, φ̃p(x) ∈ {0} ∪ Hκ. If there exist B ∈ x and
α < κ such that supp(w) ∩ Ep = ∅ whenever w ∈ B and min supp(w) ≥ α,
then φ̃p(x) = 0 because φp is constantly 0 on {w ∈ B : min supp(w) ≥ α} ∈ x.
Otherwise

{
φp[{w ∈ B : min supp(w) ≥ α}] : B ∈ x and α < κ

}
has the finite

intersection property and so is contained in an ultrafilter y. This y ∈ Hκ and
y = φ̃p(x).
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Let T0 = Hκ ∩ c` {w ∈ Wκ : supp(w) ⊆ E0}. Notice that T0 is a compact
subsemigroup of Hκ. For each p with 0 < p < λ let

Tp = {x ∈ Hκ : φ̃p(x) ∈ Hκ and for all q with p < q ≤ λ , φ̃q(x) = 0} .

To see that Tp 6= ∅, let x be a uniform ultrafilter on {eα : α ∈ Ep}. If q 6= p, then
|Eq ∩ Ep| < κ so φ̃q(x) = 0, while φ̃p(x) = x ∈ Hκ (because φp is the identity on
{eα : α ∈ Ep}). Since φ̃q is a homomorphism on Hκ for each q ≤ λ we have that
Tp is a subsemigroup of Hκ. Since Tp = Hκ ∩ φ̃p

−1[Hκ] ∩
⋂

p<q≤λ φ̃q
−1[{0}], Tp is

compact.
If λ is a successor, let Tλ−1 = Hκ ∩

⋂
p<λ φ̃p

−1[Hκ]. Then Tλ−1 is clearly a
compact subsemigroup of Hκ provided Tλ−1 6= ∅. We show in fact that K(Hκ) ⊆
Tλ−1. Let x ∈ K(Hκ), let p < λ, and let y be a uniform ultrafilter on {eα :
α ∈ Ep}. By [6, Theorem 4.39] pick z ∈ Hκ such that x = z + y + x. Then
φ̃p(x) = φ̃p(z) + φ̃p(y) + φ̃p(x) = φ̃p(z) + y + φ̃p(x) 6= 0.

Next observe that for p, q < λ, Tp + Tq = Tp∨q and if p 6= q, then Tp ∩ Tq = ∅.
Let T =

⋃
p<λ Tp. If T has the relative topology induced by H, T is a right

topological semigroup.
Let A = Hκ ∩ c` {eα : α ∈ E0}. Then A is exactly the set of uniform ultrafilters

on {eα : α ∈ E0}, so |A| = 22κ

. Let C = CA,λ.
We shall now construct a surjective homomorphism f : T → C. We first intro-

duce some mappings. Let θ : Wκ → {eα : α ∈ E0} be a function whose restriction
to {eα : α ∈ E0} is the identity, whose restriction to {eα : α ∈ E1} is a bijection,
and whose restriction to Wκ \ {eα : α ∈ E0 ∪ E1} is a bijection. (In particular θ is
at most three-to-one.) Let θ̃ : βWκ → c` {eα : α ∈ E0} be the continuous extension
of θ.

Let ε(0) = δ(0) = 0. For w ∈ Wκ\{0}, let ε(w) = eγ where γ = max supp(w). If
supp(w) ⊆ E0, let δ(w) = 0. Otherwise let δ(w) = eα where α = min(supp(w)\E0).
Let δ̃ : βWκ → {0} ∪ c` {eα : α < κ} and ε̃ : βWκ → {0} ∪ c` {eα : α < κ} be
the continuous extensions of δ and ε respectively. Notice that δ is the identity on
{eα : α ∈ κ\E0} and ε is the identity on {eα : α < κ} so δ̃ is the identity on
Hκ ∩ c` {eα : α ∈ κ\E0} and ε̃ is the identity on Hκ ∩ c` {eα : α < κ}. We claim
that for x, y ∈ Hκ,

(∗)

ε̃(x + y) = ε̃(y) and

δ̃(x + y) =

{
δ̃(x) if x /∈ T0

δ̃(y) if x ∈ T0 .

For w, v ∈ Wκ, if max supp(v) > max supp(w), then ε(w + v) = ε(v) so that
ε̃(w+y) = ε̃(y); if supp(w) ⊆ E0, then δ(w+v) = δ(v) so that δ̃(w+y) = δ̃(y). For
w, v ∈ Wκ, if max supp(w) < min supp(v) and supp(w)\E0 6= ∅, then δ(w + v) =
δ(w) so δ̃(w + y) = δ(w). The equations in (∗) then follow by the continuity of
δ̃ ◦ ρy and ε̃ ◦ ρy.

For x ∈ T0, let f(x) = θ̃
(
ε̃(x)

)
. If 0 < p < λ and x ∈ Tp, let

f(x) =

{ (
θ̃
(
δ̃(x)

)
, θ̃

(
ε̃(x)

)
, p− 1

)
if p < ω(

θ̃
(
δ̃(x)

)
, θ̃

(
ε̃(x)

)
, p

)
if p ≥ ω .
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For any x ∈ Hκ, one has θ̃
(
δ̃(x)

)
∈ A and θ̃

(
ε̃(x)

)
∈ A. (We have that θ̃[Hκ] ⊆ Hκ

because θ is at most three-to-one.) Thus f [T0] ⊆ A, f [Tp] ⊆ Cp−1 if 0 < p < ω,
and f [Tp] ⊆ Cp if ω ≤ p < λ.

Given x ∈ A ⊆ T0, one has f(x) = θ̃
(
ε̃(x)

)
= θ̃(x) = x, so f [T0] = A. Now let

p < λ and let (y, z, p) ∈ Cp. If p < ω, let q = p + 1; otherwise let q = p. Pick
y′ ∈ c` {eα : α ∈ E1} such that θ̃(y′) = y. Pick x ∈ Tq. Then y′ + x + z ∈ Tq and

f(y′ + x + z) =
(
θ̃
(
δ̃(y′ + x + z)

)
, θ̃

(
ε̃(y′ + x + z)

)
, p

)
=

(
θ̃
(
δ̃(y′)

)
, θ̃

(
ε̃(z)

)
, p

)
= (θ̃(y′), θ̃(z), p)
= (y, z, p)

so f [Tq] = Cp.
The verification that f is a homomorphism is routine using the equations (∗).
Choose g : C → T and 〈Dp〉p<λ as guaranteed by Theorem 3.5. Since we

have already observed that |A| = 22κ

, all conclusions follow immediately except
the assertion that Dλ−1 ⊆ K(Hκ) when λ is a successor. To see this recall that
K(Hκ) ⊆ Tλ−1 so that K(Hκ) is an ideal of Tλ−1 and thus K(Tλ−1) ⊆ K(Hκ). By
Theorem 3.5(iv), g[Cλ−1] ⊆ K(f−1[Cλ−1]) = K(Tλ−1) so D ∩ K(Hκ) 6= ∅ and is
thus an ideal of D and therefore Dλ−1 = K(D) ⊆ D ∩K(Hκ). �

Corollary 3.17. Let λ be an ordinal for which |λ| = c. There exist a set A with
|A| = 2c and an injection g : CA,λ → H such that if q < p < λ, y ∈ Cq, and x ∈ Cp,
then g(x) · g(y) = g(xy), and if p = q + n for some n < ω, then g(y) · g(x) = g(yx).
Also H contains a semigroup D =

⋃
p<λ Dp of idempotents where for each p < λ,

Dp is a rectangular component of D, g[Cp] ⊆ Dp, and the sequence 〈Dp〉p<λ is
decreasing in the ordering of components. For each p < λ, |Dp| = 2c and if λ is a
successor, then Dλ−1 ⊆ K(H) ⊆ K(βN).

Proof. By Theorem 2.2 H and Hω are topologically and algebraically isomorphic.
Also S

(
U(ω)

)
= c+. So this is an immediate consequence of Theorem 3.16. �

It was shown in [5, Corollary 3.4] that there is a ≤L-chain 〈uσ〉σ<ω1 of distinct
idempotents in βN with the property that for each σ < ω1, uσ+1 ≤ uσ. We are
now able to establish a considerably stronger statement. (The necessity in the
following corollary was also established in [5], but we include the short proof for
completeness.)

Corollary 3.18. Let λ be an ordinal. There is a ≤L-chain 〈uσ〉σ<λ of distinct
idempotents in βN with the property that for each σ < λ, uσ+1 ≤ uσ if and only
if |λ| ≤ c. If |λ| ≤ c and λ is a successor, one may choose such a sequence with
uλ−1 ∈ K(βN).

Proof. Necessity. For each σ < λ, N∗ + uσ properly contains the compact set
N∗ + uσ+1 so one can choose a clopen subset Uσ of βN with N∗ + uσ+1 ⊆ Uσ and
(N∗ + uσ)\Uσ 6= ∅. The clopen subsets of βN correspond exactly to the subsets of
N and so there are exactly c of them.

Sufficiency. Choose A and g as guaranteed by Corollary 3.17 for λ. For each
p < λ, let up = g(0, 0, p). If λ is a successor, then uλ−1 ∈ g[Cλ−1] ⊆ Dλ−1 ⊆
K(βN). �
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Question 3.19. Is there a decreasing ≤-chain of idempotents in N∗ indexed by
ω + 1?

We close this section by observing that it is consistent with ZFC that there are
idempotents in βN that are not members of any nontrivial rectangular subsemigroup
of βN. Indeed, by [6, Theorems 12.19 and 12.29 and Lemma 12.44] Martin’s Axiom
implies that there is an idempotent p ∈ βN such that, whenever q ∈ βN, r ∈⋂∞

n=1 c` βN(Nn), and p = q + r, one must have p = q = r. In particular, if p =
p + q + p, then p = q.

It can be shown in ZFC that there are idempotents p in βN which are strongly
right maximal; i.e. the equation q + p = p, with q ∈ βN, implies that q = p
[6, Theorem 9.10]. If p is an idempotent of this kind, p does not belong to any
semigroup in βN isomorphic to a semigroup of the form V|A| unless |A| = 1.

4. Chains of rectangular semigroups as coretracts

It was shown in [10] that certain infinite chains of finite rectangular semigroups
are absolute coretracts. We prove in this section a similar theorem in which the
the rectangular semigroups are allowed to be infinite. As a consequence, we obtain
additional semigroups which can be algebraically embedded in Hκ.

Definition 4.1. Let A = 〈An〉n<ω and B = 〈Bn〉n<ω be sequences of sets. Assume
that each An has a designated element αn and each Bn has a designated element δn.
Suppose also that, for each n < ω, either An = {αn} or Bn = {δn}. For each p < ω,
we define Dp to be the set of pairs of words of the form (a0a1 · · · ap, bpbp−1 · · · b0),
where ai ∈ Ai and bi ∈ Bi for each i ∈ {0, 1, . . . , p}. For 0 < λ ≤ ω We let
DA,B,λ =

⋃
p<λ Dp. We define a semigroup operation on DA,B,λ as follows: If

x = (a0a1 · · · ap, bpbp−1 · · · b0) ∈ Dp and y = (c0c1 · · · cq, dqdq−1 · · · d0) ∈ Dq, where
q ≤ p, then

xy = (a0a1 · · · ap, bp · · · bq+1dqdq−1 · · · d0) and
yx = (c0c1 · · · cqaq+1 · · · ap, bpbp−1 · · · b0) .

We leave the verification that the operation is associative to the reader. Observe
that each Dp is a rectangular semigroup.

Notice that if A is a set with designated element 0, A0 = {0}, B0 = A, A1 = A,
B1 = {0}, and An = Bn = {0} for n > 1, Then DA,B,ω is isomorphic to CA,ω. (Send
(0, a) to a and for p > 0 send the element (0a00 · · · 0, 00 · · · 0b) of Dp to (a, b, p−1).)
Thus the structure of DA,B,ω is, in general, considerably more complicated than
that of CA,ω.

Definition 4.2. Let p < ω and let x = (a0a1 · · · ap, bpbp−1 · · · b0) ∈ Dp. We define
elements φ1(x) and φ2(x) in Dp by φ1(x) = (α0α1 · · ·αp−1ap, δpδp−1 · · · δ0) and
φ2(x) = (α0α1 · · ·αp, bpδp−1δp−2 · · · δ0) and if p > 0, we define x` and xr in Dp−1

by x` = (a0a1 · · · ap−1, δp−1δp−2 · · · δ0) and xr = (α0α1 · · ·αp−1, bp−1bp−2 · · · b0).
We put up = (α0α1 · · ·αp, δpδp−1 · · · δ0) ∈ Dp.

We show that D is something like an absolute coretract.

Theorem 4.3. Let A = 〈An〉n<ω and B = 〈Bn〉n<ω be sequences of sets as in
Definition 4.1, let 0 < λ ≤ ω, and let D = DA,B,λ. Let T be a right topological
semigroup, and let f : T → D be a surjective homomorphism such that f−1[Dp] is
compact for each p < λ. Then there is a homomorphism g : D → T for which f ◦ g
is the identity. If T is compact and λ < ω, then g[Dλ−1] ⊆ K(T ).
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Proof. We may assume that A0 = {α0} so that D0 is a right zero semigroup.
Exactly as in the first paragraph of the proof of Lemma 3.4 we can define g : D0 → T
such that g is a homomorphism and f ◦ g is the identity on D0. So we assume that
p > 0 and g has been defined on

⋃
q<p Dq.

For each x ∈ Dp, note that xDp is a minimal right ideal of Dp and Dpx is a
minimal left ideal of Dp so we may choose a minimal right ideal R(x) of f−1[Dp] and
a minimal left ideal L(x) of f−1[Dp] such that f [R(x)] = xDp and f [L(x)] = Dpx.
Given x ∈ Dp, we have by Lemma 3.3 that g(x`)R

(
φ1(x)

)
is a minimal right ideal of

f−1[Dp] and L
(
φ2(x)

)
g(xr) is a minimal left ideal of f−1[Dp] so we may define g(x)

to be the identity of the group g(x`)R
(
φ1(x)

)
L

(
φ2(x)

)
g(xr). Notice that if T has a

smallest ideal (in particular if T is compact) and λ = p + 1, then K(T ) ⊆ f−1[Dp]
so K(f−1[Dp]) ⊆ K(T ) and thus g[Dp] ⊆ K(T ).

Now f
(
g(x)

)
∈ x`φ1(x)Dp = xDp and f

(
g(x)

)
∈ Dpφ2(x)xr = Dpx so f

(
g(x)

)
is an idempotent in xDpx and thus f

(
g(x)

)
= x.

Suppose that x ∈ Dp and y ∈ Dq where q ≤ p. Then φ1(x) = φ1(xy)
and x` = (xy)` so g(xy) ∈ g(x`)R

(
φ1(x)

)
and g(x)g(y) ∈ g(x`)R

(
φ1(x)

)
g(y) ⊆

g(x`)R
(
φ1(x)

)
by Lemma 3.3 so g(xy) and g(x)g(y) are members of the same min-

imal right ideal of f−1[Dp].
If q < p, φ2(xy) = φ2(x) and (xy)r = xry so g(xy) ∈ L

(
φ2(x)

)
g
(
(xy)r

)
and

g(x)g(y) ∈ L
(
φ2(x)

)
g(xr)g(y) = L

(
φ2(x)

)
g(xry) = L

(
φ2(x)

)
g
(
(xy)r

)
.

If q = p, φ2(xy) = φ2(y) and (xy)r = yr so g(xy) ∈ L
(
φ2(y)

)
g(yr) and g(x)g(y) ∈

g(x)L
(
φ2(y)

)
g(yr). Thus in any event g(xy) and g(x)g(y) are in the same minimal

left ideal of f−1[Dp].
By a left-right switch of the above arguments we have that g(yx) and g(y)g(x)

are in the same minimal left ideal and the same minimal right ideal of f−1[Dp].
First assume that q < p. Pick a ∈ R

(
φ1(x)

)
L

(
φ2(x)

)
such that g(x) =

g(x`)ag(xr). Then

g(x)g(y)g(x) = g(x`)ag(xr)g(y)g(x`)ag(xr)
= g(x`)ag(xryx`)ag(xr)
= g(x`)ag(xrx`)ag(xr)
= g(x`)ag(xr)g(x`)ag(xr) = g(x)g(x) = g(x)

so g(x)g(y)g(x)g(y) = g(x)g(y) and g(y)g(x)g(y)g(x) = g(y)g(x) and thus g(x)g(y)
= g(xy) and g(y)g(x) = g(yx).

Now assume that q = p. Assume also that Bp = {δp}. (The case that Ap = {αp}
then proceeds by a left-right switch of the following argument.) Then φ2(x) =
φ2(y) = up. Also xry` = yrx` = up−1. Thus g(x)g(y`) ∈ L

(
φ2(x)

)
g(xr)g(y`) =

L(up)g(up−1) and g(y)g(x`) ∈ L(up)g(up−1), which is a minimal left ideal of
f−1[Dp] by Lemma 3.3. We have already verified that g(x)g(y`) and g(y)g(x`)
are idempotents. So, since they are idempotents in the same minimal left ideal
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g(x)g(y`)g(y)g(x`) = g(x)g(y`). Therefore

g(x)g(y)g(x) = g(x)g(y`y)g(x`x)
= g(x)g(y`)g(y)g(x`)g(x)
= g(x)g(y`)g(x)
= g(xxr)g(y`)g(x`x)
= g(x)g(xry`x`)g(x)
= g(x)g(xrx`)g(x)
= g(xxr)g(x`x) = g(x)g(x) = g(x) .

Consequently g(x)g(y) and g(y)g(x) are idempotents. �

Corollary 4.4. Suppose that κ is an infinite cardinal and that each An or Bn is
either {0} or 22κ

. Then DA,B,ω can be embedded in Hκ.

Proof. For each p < ω, we give Dp the topology defined by regarding Dp as a
subspace of (βκ)2p+2. We define the topology of D by taking each Dp to be clopen
in D. Then D is a topological semigroup with a dense subspace of cardinality κ.
The conclusion then follows from Theorems 4.3 and 2.5. �
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