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Recurrence in the dynamical system (X, 〈Ts〉s∈S)
and ideals of βS

Neil Hindman ∗† Dona Strauss ‡ Luca Q. Zamboni §

Abstract

A dynamical system is a pair (X, 〈Ts〉s∈S), where X is a compact
Hausdorff space, S is a semigroup, for each s ∈ S, Ts is a continuous
function from X to X, and for all s, t ∈ S, Ts ◦ Tt = Tst. Given a
point p ∈ βS, the Stone-Čech compactification of the discrete space S,
Tp : X → X is defined by, for x ∈ X, Tp(x) = p−lim

s∈S
Ts(x). We let

βS have the operation extending the operation of S such that βS is a
right topological semigroup and multiplication on the left by any point
of S is continuous. Given p, q ∈ βS, Tp ◦ Tq = Tpq, but Tp is usually
not continuous. Given a dynamical system (X, 〈Ts〉s∈S), and a point
x ∈ X, we let U(x) = {p ∈ βS : Tp(x) is uniformly recurrent}. We
show that each U(x) is a left ideal of βS and for any semigroup we can
get a dynamical system with respect to which K(βS) =

⋂
x∈X U(x) and

c`K(βS) =
⋂
{U(x) : x ∈ X and U(x) is closed}. And we show that weak

cancellation assumptions guarantee that each such U(x) properly contains
K(βS) and has U(x) \ c`K(βS) 6= ∅.
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§Université de Lyon, Université Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 43

boulevard du 11 novembre 1918, F69622 Villeurbanne Cedex, France
zamboni@math.univ-lyon1.fr

1



1 Introduction

We take the Stone-Čech compactification of a discrete semigroup (S, ·) to be the
set of ultrafilters on S, identifying the points of S with the principal ultrafilters.
Given A ⊆ S, we set A = {p ∈ βS : A ∈ p}. The set {A : A ⊆ S} is a
basis for the open sets and a basis for the closed sets of βS. The operation on
S extends uniquely to βS so that (βS, ·) is a right topological semigroup with
S contained in its topological center, meaning that ρp is continuous for each
p ∈ βS and λx is continuous for each x ∈ S, where for q ∈ βS, ρp(q) = q · p
and λx(q) = x · q. So, for every p, q ∈ βS, pq = lim

s→p
lim
t→q

st, where s and t denote

elements of S. If A ⊆ S, A ∈ p · q if and only if {x ∈ S : x−1A ∈ q} ∈ p, where
x−1A = {y ∈ S : xy ∈ A}. (We are following the custom of frequently writing
xy for x · y.)

The algebraic structure of βS is interesting in its own right, and has had
substantial applications, especially to that part of combinatorics known as Ram-
sey Theory . See the book [4] for an elementary introduction to the structure of
βS and its applications.

We are concerned in this paper with the relationship between the algebraic
structure of βS and recurrence in dynamical systems.

Definition 1.1. A dynamical system is a pair (X, 〈Ts〉s∈S) such that

(1) X is a compact Hausdorff topological space (called the phase space of the
system);

(2) S is a semigroup;

(3) for each s ∈ S, Ts is a continuous function from X to X; and

(4) for all s, t ∈ S, Ts ◦ Tt = Tst.

Associated with any semigroup S are at least two interesting dynamical

systems, namely (βS, 〈λs〉s∈S , and (S{0, 1}, 〈Ts〉s∈S) where S{0, 1} is the set of
all functions from S to {0, 1} with the product topology and Ts(x) = x ◦ ρs.
(We shall verify that this latter example is a dynamical system shortly.)

It is common to assume that the phase space of a dynamical system is a
metric space, but we make no such assumption. If S is infinite, then βS is not
a metric space. Everything we do here is boring if S is finite so whenever we
write “let S be a semigroup” we shall assume that S is infinite. The interested
reader can amuse herself by determining which of our results remain valid if
that assumption is dropped.

The system (βS, 〈λs〉s∈S has significant general properties as can be seen in
[4, Section 19.1], but will not be used much in this paper.

2



Given a product space S{0, 1}, recall that the product topology has a sub-
basis consisting of sets of the form π−1

t [{a}] for t ∈ S and a ∈ {0, 1}, where, for

x ∈ S{0, 1}, πt(x) = x(t).

Lemma 1.2. Let R be a semigroup and let S be a subsemigroup of R. Let

Z = R{0, 1}, the set of all functions from R to {0, 1} with the product topology.
For x ∈ Z and s ∈ S, define Ts(x) = x ◦ ρs. Then (Z, 〈Ts〉s∈S) is a dynamical
system.

Proof. It is routine to verify that for s, t ∈ S, Ts ◦ Tt = Tst. To see that Ts
is continuous for each s ∈ S, let s ∈ S be given. It suffices to show that the
inverse image of each subbasic open set is open, so let t ∈ R and a ∈ {0, 1} be
given. Then T−1

s

[
π−1
t [{a}]

]
= π−1

ts [{a}].

Recall that, if T is any discrete space, p ∈ βT , 〈xt〉t∈T is any indexed family
in a Hausdorff topological space X, and y ∈ X, then p−lim

t∈T
xt = y if and only if

for every neighborhood U of y, {t ∈ T : xt ∈ U} ∈ p. In compact spaces p-limits
always exist.

Definition 1.3. Let (X, 〈Ts〉s∈S) be a dynamical system and let p ∈ βS. Then
Tp : X → X is defined by, for x ∈ X, Tp(x) = p− lim

s∈S
Ts(x). So Tp(x) =

lim
s→p

Ts(x) where s denotes an element of S.

Using [4, Theorem 4.5] one easily sees that for p, q ∈ βS, Tp ◦ Tq = Tpq.
However, (X, 〈Ts〉s∈βS) is not in general a dynamical system, since Tp is not
likely to be continuous when p ∈ βS \ S. However, for each x ∈ X, the map
p 7→ Tp(x) : βS → X is continuous. To see this, define fx(p) = Tp(x). If U
is a neighborhood of fx(p) and A = {s ∈ S : Ts(x) ∈ U}, then U ∈ p and
fx[A ] ⊆ U . Alternatively, one may note that p 7→ Tp(x) is the continuous
extension to βS of the function s 7→ Ts(x) : S → X.

As a compact Hausdorff right topological semigroup, βS has a number of
important algebraic properties, and we list some of those that we shall use.
(Proofs can be found in [4, Chapters 1 and 2]. Assume that T is a compact
Hausdorff right topological semigroup. A non-empty subset V of T is a left ideal
if tV ⊆ V for every t ∈ T , a right ideal if V t ⊆ V for every t ∈ T , and an ideal
if it is both a left and a right ideal.

(1) T contains an idempotent.

(2) T has a smallest ideal K(T ), which is the union of the minimal left ideals
of T and the union of the minimal right ideals of T .

(3) For every t ∈ K(T ), Tt is a minimal left ideal of T and tT is a minimal
right ideal of T .
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(4) The intersection of any minimal left ideal and any minimal right ideal of
T is a group.

(5) Every left ideal of T contains a minimal left ideal, and every right ideal of
T contains a minimal right ideal.

(5) Every minimal left ideal of T is compact.

(6) If {t ∈ T : λt is continuous} is dense in T , then the closure of every ideal
in T is also an ideal.

We introduce the main objects of study in this paper now. Given a set X,
we let Pf (X) be the set of finite nonempty subsets of X.

Definition 1.4. Let S be a semigroup and let A ⊆ S. We say the set A is
syndetic if and only if there exists F ∈ Pf (S) such that S =

⋃
t∈F t

−1A.

In the semigroup (N,+) a set is syndetic if and only if it has bounded gaps.

Definition 1.5. Let (X, 〈Ts〉s ∈ S) be a dynamical system and let x ∈ X.

(a) The point x is uniformly recurrent if and only if for every neighborhood
V of x, {s ∈ S : Ts(x) ∈ V } is syndetic.

(b) U(x) = UX(x) = {p ∈ βS : Tp(x) is uniformly recurrent}.

In Section 2 of this paper we present well known results about U(x) that are
valid in arbitrary dynamical systems as well as the few simple results that we
have in the dynamical system (βS, 〈λs〉s∈S).

In Section 3 we present results about the dynamical systems described in
Lemma 1.2.

In Section 4 we consider the effect of slightly modifying the phase space in
the dynamical systems described in Lemma 1.2.

In Section 5 we consider surjectivity of Tp and the set NS = NSX = {p ∈
βS : Tp : X → X is not surjective} which is a right ideal of βS whenever it is
nonempty.

2 General results

We begin with some well known basic facts.

Lemma 2.1. Let (X, 〈Ts〉s∈S) be a dynamical system, let L be a minimal left
ideal of βS, and let x ∈ X. The following are equivalent:

(a) x is uniformly recurrent.
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(b) There exists q ∈ L such that Tq(x) = x.

(c) There exists an idempotent q ∈ L such that Tq(x) = x.

(d) There exists y ∈ X and q ∈ L such that Tq(y) = x.

(e) There exists q ∈ K(βS) such that Tq(x) = x.

(f) There exists y ∈ X and q ∈ K(βS) such that Tq(y) = x.

Proof. The equivalence of (a)-(d) is shown in [4, Theorem 19.23]. Since (c)
implies (e), and (e) implies (f), we shall show (f) implies (c) and this will
establish the equivalence of all six statements. So assume that (f) holds. Let
u denote the identity of the group L ∩ qβS. Since uq = q, it follows that
Tu(x) = TuTq(y) = Tq(y) = x.

Corollary 2.2. Let (X, 〈Ts〉s∈S) be a dynamical system and let x ∈ X.

(1) If x is uniformly recurrent, U(x) = βS.

(2) For each x ∈ X, U(x) is a left ideal of βS.

(3) For every x ∈ X, K(βS) ⊆ U(x).

(4)
⋂
x∈X U(x) is a two sided ideal of βS.

Proof. (1) Suppose that x is uniformly recurrent. Then Tu(x) = x for some u ∈
K(βS). Thus for every v ∈ βS, Tv(x) = TvTu(x) = Tvu(x); since vu ∈ K(βS),
by Lemma 2.1(f), Tv(x) is uniformly recurrent.

(2) Let x ∈ X, let p ∈ U(x), and let r ∈ βS. By Lemma 2.1(e), pick q ∈
K(βS) such that Tq

(
Tp(x)

)
= Tp(x). Then Trp(x) = Tr

(
Tq
(
Tp(x)

))
= Trqp(x).

Now rqp ∈ K(βS), so by Lemma 2.1(f), Trp(x) is uniformly recurrent.

(3) This is immediate from Lemma 2.1(f).

(4) By (3),
⋂
x∈X U(x) is nonempty, so by (2)

⋂
x∈X U(x) is a left ideal of βS,

so it is enough to show that
⋂
x∈X U(x) is a right ideal of βS. So suppose that

x ∈ X, p ∈
⋂
x∈X U(x) and q ∈ βS. Since p ∈ U(Tq(x)), Tpq(x) is uniformly

recurrent and so pq ∈ U(x).

The statements of Lemma 2.3 below are modifications of basic well known
facts that are proved in [2]. (Furstenberg assumes that the phase space is metric,
but the proofs given do not use this assumption.) We shall say that a subspace
Z of X is invariant if Ts[Z] ⊆ Z for every s ∈ S. Of course, if Z is closed and
invariant, then Tp[Z] ⊆ Z for every p ∈ βS. (Let x ∈ Z. Then Ts(x) ∈ Z for
each s ∈ S so p− lim

s∈S
Ts(x) ∈ Z.)

Lemma 2.3. Let (X, 〈Ts〉s∈S) be a dynamical system. Let L be a minimal left
ideal of βS.
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(1) A subspace Y of X is minimal among all closed and invariant subsets of
X if and only if there is some x ∈ X such that Y = {Tp(x) : p ∈ L}.

(2) Let Y be a subspace of X which is minimal among all closed and invariant
subsets of X. Then every element of Y is uniformly recurrent.

(3) If x ∈ X is uniformly recurrent and Y = {Tp(x) : p ∈ βS}, then Y is
minimal among all closed and invariant subsets of X.

(4) If x ∈ X is uniformly recurrent, then Tp(x) is uniformly recurrent for
every p ∈ βS.

Proof. (1) Suppose that Y is a subspace of X which is minimal among all closed
and invariant subsets of X. Pick x ∈ Y and let Z = {Tp(x) : p ∈ L}. We claim
that Z is a closed and invariant subspace of Y and is therefore equal to Y . If
p ∈ L and s ∈ S, then Ts

(
Tp(x)

)
= Tsp(x) and sp ∈ L, so Z is invariant and

obviously Z ⊆ Y . To see that Z is closed, it suffices to show that any net in
Z has a cluster point in Z. To this end, let 〈pα〉α∈D be a net in L and pick a
cluster point p in L of 〈pα〉α∈D. Then Tp(x) is a cluster point of 〈Tpα(x)〉α∈D.

Conversely, let x ∈ X and let Y = {Tp(x) : p ∈ L}. Then Y is invariant and
one sees as above that Y is closed. We shall show that Y is minimal among all
closed and invariant subsets of X. To see this, suppose that Z is a subset of
Y which is closed and invariant. We shall show that Y ⊆ Z, so let y ∈ Y be
given. Pick z ∈ Z. Then y = Tp(x) and z = Tq(x) for some p and q in L. Since
Lq = L, there exists r ∈ L such that rq = p. It follows that Tr(z) = y and
hence that y ∈ Z as required.

(2) Let Y be a subspace of X which is minimal among all closed and invariant
subsets of X and let x ∈ Y . Pick y ∈ X such that Y = {Tp(y) : p ∈ L}. Pick
p ∈ L such that x = Tp(y). By Lemma 2.1(f), x is uniformly recurrent.

(3) Let x be a uniformly recurrent point of X and let Y = {Tp(x) : p ∈ βS}.
By Lemma 2.1(b), pick q ∈ L such that Tq(x) = x. By (1) it suffices that
Y = {Tp(x) : p ∈ L}. To see this, let y ∈ Y and pick p ∈ βS such that
y = Tp(x). Then y = Tp

(
Tq(x)

)
= Tpq(x) and pq ∈ L.

(4) Let x be a uniformly recurrent point of X and let Y = {Tp(x) : p ∈
βS}. By (3) Y is minimal among all closed and invariant subsets of X so (2)
applies.

We conclude this section with a few results about the dynamical system
(βS, 〈λs〉s∈S). We observe that, if we define λp : βS → βS in this system by
λp(q) = lim

s→p
λs(q), where s denotes an element of S, then λp(q) = pq for every

p and q in βS. So this does not conflict with the previous definition of λp given
in the introduction.

Theorem 2.4. Let S be a semigroup and let x ∈ βS. Statements (a) and (b)
are equivalent and imply (c). If βS has a left cancelable element, all three are
equivalent.
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(a) x ∈ K(βS).

(b) x is uniformly recurrent in the dynamical system (βS, 〈λs〉s∈S).

(c) βSx is a minimal left ideal of βS.

Proof. To see that (a) implies (b), let x ∈ K(βS) and let u be the identity
of the group in K(βS) to which x belongs. Then x = λu(x) so by Lemma
uniformrecurrence(e), x is uniformly recurrent.

To see that (b) implies (a), assume that x is uniformly recurrent. By Lemma
2.1(f) pick y ∈ βS and q ∈ K(βS) such that λq(y) = x. Then x = qy ∈ K(βS).

To see that (a) implies (c), assume that x ∈ K(βS) and pick the minimal
left ideal L of βS such that x ∈ L. Then βSx is a left ideal of βS contained in
L and so βSx = L.

Now assume that βS has a left cancelable element z and that βSx is a
minimal left ideal of βS. Pick an idempotent u ∈ βSx. Then zx ∈ βSx so by
[4, Lemma 1.30], zx = zxu and therefore x = xu ∈ βSx ⊆ K(βS).

Corollary 2.5. Let S be an infinite semigroup and let x ∈ K(βS). Then
U(x) = βS with respect to the dynamical system (βS, 〈λs〉s∈S).

Proof. By Theorem 2.4, x is uniformly recurrent, so by Lemma 2.3(4), U(x) =
βS.

Corollary 2.6. Let S be a semigroup and let p, q ∈ βS. Statements (a) and
(b) are equivalent and imply statement (c). If βS has a left cancelable element,
then all three statements are equivalent.

(a) qp ∈ K(βS).

(b) q ∈ U(p) with respect to the dynamical system (βS, 〈λs〉s∈S).

(c) βSqp is a minimal left ideal of βS.

Proof. We have that q ∈ U(p) if and only if λq(p) is uniformly recurrent and
λq(p) = qp so Theorem 2.4 applies.

It is an old and difficult problem to characterize when K(βS) is prime or
when c`K(βS) is prime. There are trivial situations where the answer is known.
For example if S is left zero or right zero, then so is βS and thus K(βS) =
βS, and is necessarily prime. It is not known whether K(βN,+) is prime or
c`K(βN,+) is prime. (Some partial results were obtained in [3].)

Corollary 2.7. Let S be a semigroup. The following statements are equivalent.

(a) There exists p ∈ βS \ K(βS) such that, with respect to the dynamical
system (βS, 〈λs〉s∈S), K(βS) ( U(p).
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(b) K(βS) is not prime.

Proof. This is an immediate consequence of Corollary 2.6.

3 Dynamical systems with phase space R{0, 1}

Throughout this section we assume that R is a semigroup, S a subsemigroup of
R, and (Z, 〈Ts〉s∈S) is the dynamical system of Lemma 1.2. While our results
are valid in this generality, in practice we are interested in just two situations,
one in which R = S and the other in which R = S ∪ {e} where e is a two sided
identity adjoined to S.

Our first results in this section are aimed at showing that for any semi-
group S, there is a dynamical system such that both K(βS) and c`K(βS) are
intersections of sets of the form U(x).

Definition 3.1. Given x ∈ Z we denote the continuous extension of x from βR
to {0, 1} by x̃.

Of course, for each x ∈ Z, each p ∈ βS and each t ∈ R, Tp(x)(t) =
p− lim

s∈S
Ts(x)(t) = p− lim

s∈S
x(ts) and so Tp(x)(t) = x̃(tp).

Lemma 3.2. Let x ∈ Z, let p ∈ βS, and let L be a minimal left ideal of βS.
The following statements are equivalent:

(a) p ∈ U(x).

(b) There exists q ∈ L such that x̃(tp) = x̃(tqp) for all t ∈ R.

(c) There exists an idempotent q ∈ L such that x̃(tp) = x̃(tqp) for all t ∈ R.

Proof. To see that (a) implies (c), assume that Tp(x) is uniformly recurrent. By
Lemma 2.1(c), pick an idempotent q ∈ L such that Tq

(
Tp(x)

)
= T (p)(x). Then

Tqp(x) = Tp(x) so as noted above, for all t ∈ R, x̃(tqp) = x̃(tp).

Trivially (c) implies (b). To see that (b) implies (a), pick q ∈ L such that
x̃(tp) = x̃(tqp) for all t ∈ R. Then Tp(x) = Tqp(x) = Tq

(
Tp(x)

)
, so by Lemma

2.1(b), Tp(x) is uniformly recurrent.

Lemma 3.3. Let x ∈ Z and let p ∈ βS. Then p ∈ U(x) if and only if for every
minimal left ideal L of βS and every F ∈ Pf (R), there exists qF ∈ L such that
for all t ∈ F , x̃(tp) = x̃(tqF p).

Proof. The necessity is an immediate consequence of Lemma 3.2(b).

For the sufficiency, let L be a minimal left ideal of βS. For each F ∈ Pf (R),
pick qF ∈ L as guaranteed. Direct Pf (R) by agreeing that F < G if and only if
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F ⊆ G. Pick a cluster point q ∈ L of the net 〈qF 〉F∈Pf (R). It is then routine to
show that for all t ∈ R, x̃(tqp) = x̃(tp) so that by Lemma 3.2(b), p ∈ U(x).

Theorem 3.4. (1) K(βS) ⊆
⋂
x∈Z U(x).

(2) If p ∈
⋂
x∈Z U(x), then, for every minimal left ideal L of βS, βSp = Lp

and so βSp is a minimal left ideal of βS.

(3) If R contains a left cancelable element, then K(βS) =
⋂
x∈Z U(x). In

particular, if R has a left identity, then K(βS) =
⋂
x∈Z U(x).

Proof. (1) K(βS) ⊆
⋂
x∈Z U(x) by Corollary 2.2(3).

(2) Assume that p ∈
⋂
x∈Z U(x). Let L be a minimal left ideal of βS. We

shall show that, for every t ∈ R, tp ∈ tLp. To see this, assume the contrary.
Then for some t ∈ R, there exists A ⊆ R such that A ∈ tp and A ∩ tLp = ∅.
Let x = χ

A. So x̃ is the characteristic function of A. Since p ∈ U(x), it follows
from Lemma 3.2 that x̃(tp) = x̃(tqp) for some q ∈ L. However, x̃(tp) = 1 and
x̃(tqp) = 0. This contradiction establishes that tp ∈ tLp for every t ∈ R. In
particular, βSp = c`βSSp ⊆ Lp. So βSp ⊆ Lp. By [4, Theorem 1.46], Lp is a
minimal left ideal of βS, and so βSp = Lp.

(3) Now suppose that R contains a left cancelable element t and let p ∈⋂
x∈Z U(x) Since t is left cancelable in βR by [4, Lemma 8.1] and tp = tqp for

some q ∈ L, it follows that p = qp ∈ K(βS).

Recall that a subset A of a semigroup S is piecewise syndetic if and only if
there is some G ∈ Pf (S) such that for every F ∈ Pf (S), there is some x ∈ S
with Fx ⊆

⋃
t∈G t

−1A. The important fact about piecewise syndetic sets is that
they are the subsets of S whose closure meets K(βS), [4, Theorem 4.40].

Definition 3.5. Ω = ΩZ = {x ∈ Z : x−1[{1}] ∩ S ∩K(βS) = ∅}.

Thus Ω = {x ∈ Z : x−1[{1}] ∩ S is not piecewise syndetic in S}. Note that,
since K(βS) is usually not topologically closed, we have by Theorem 3.4 that
not all sets of the form U(x) are closed.

Definition 3.6. Let x ∈ Z. N(x) = {p ∈ βS : (∀t ∈ R)(Tp(x)(t) = 0)}.

Lemma 3.7. Let x ∈ Z. Then N(x) is closed and N(x) ⊆ U(x). If N(x) =
U(x), then x ∈ Ω. If S is a left ideal of R, then N(x) = U(x) if and only if
x ∈ Ω.

Proof. To see that N(x) is closed, let p ∈ βS \ N(x), pick t ∈ R such that
Tp(x)(t) = 1, and let A = {s ∈ S : Ts(x)(t) = 1}. Then A ∈ p and A∩N(x) = ∅.

If Tp(x) is constantly equal to 0 on R, then Tp(x) is uniformly recurrent and
thus p ∈ U(x).

Let A = x−1[{1}] ∩ S.
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First assume that N(x) = U(x) and suppose that x /∈ Ω. Since A∩K(βS) 6=
∅, pick p ∈ A ∩ K(βS). By Corollary 2.2(3), p ∈ U(x) and so for all t ∈ R,
Tp(x)(t) = 0. Since K(βS) is a union of groups, there exists q ∈ K(βS) such
that qp = p. Pick t ∈ S such that t−1A ∈ p. Also Tp(x)(t) = 0 so {s ∈ S :
x(ts) = 0} ∈ p. Pick s ∈ t−1A such that x(ts) = 0, a contradiction.

Now assume that S is a left ideal in R. Let x ∈ Ω and let p ∈ U(x). We claim
that p ∈ N(x). To see this, suppose we have some t ∈ R such that Tp(x)(t) = 1.
By Lemma 3.2, there exists an idempotent q ∈ K(βS) such that x̃(tqp) = 1. By
[4, Theorem 2.17], βS is a left ideal of βR so tqp ∈ βS and so A ∈ tqp = tqqp.
Thus there is some s ∈ S such that tsqp ∈ A. Since ts ∈ S, tsqp ∈ K(βS), a
contradiction.

Lemma 3.8. Let p ∈
⋂
x∈Ω U(x) and let t ∈ R. If tp ∈ βS, then tp ∈ c`K(βS).

In particular, βSp ⊆ c`K(βS).

Proof. Assume that tp ∈ βS \ c`(KβS). We can choose A ∈ tp such that A ⊆ S
and A∩K(βS) = ∅. Let x be the characteristic function of A in R, so that x ∈ Ω
and hence p ∈ U(x). Observe that x̃ is the characteristic funcion of c`βR(A) in
βR and that c`βR(A) ⊆ βS, because βS is clopen in βR. Since x̃(tp) = 1, it
follows from Lemma 3.2(b) that there exists q ∈ K(βS) such that x̃(tqp) = 1,
and so A ∈ tqp. Now {r ∈ βS : tqr ∈ βS} is non-empty and is a right ideal
of βS. There exists an idempotent u in the intersection of this right ideal with
the left ideal βSq of βS. Since q ∈ βSu, qu = q. So tqp = tquup ∈ K(βS),
because tqu ∈ βS and u ∈ βSq ⊆ K(βS). This contradicts the assumption that
A ∩K(βS) = ∅.

Corollary 3.9. Each of the following statements implies that
⋂
x∈Ω U(x) ⊆

c`K(βS).

(a) There exists e ∈ R such that es = s for every s ∈ S.

(b) S contains a left cancelable element.

Proof. It follows from Lemma 3.8 that (a) implies that
⋂
x∈Ω U(x) ⊆ c`K(βS).

So assume that s is a left cancelable element in S and let p ∈
⋂
x∈Ω U(x). By

[4, Lemma 8.1], s is left cancelable in βS. By Lemma 3.8, sp ∈ c`K(βS).
Now sβS = sS is clopen in βS. So sp ∈ c`(K(βS) ∩ sβS). We claim that, if
q ∈ K(βS) ∩ sβS, then q ∈ sK(βS). To see this, suppose that q ∈ K(βS) and
that q = sv for some v ∈ βS. There is an idempotent u ∈ K(βS) for which
qu = q. This implies that sv = svu and hence that v = vu ∈ K(βS). So
sp ∈ c`

(
sK(βS)

)
= sc`K(βS) and hence p ∈ c`K(βS).

Corollary 3.10. Assume that S is a left ideal of R. Then each of the hypotheses
(a) and (b) of Corollary 3.9 implies that

⋂
x∈Ω U(x) = c`K(βS).
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Proof. Assume that one of the hypotheses of Corollary 3.9 holds. Then⋂
x∈Ω U(x) ⊆ c`K(βS) .

To see that c`K(βS) ⊆
⋂
x∈Ω U(x), let x ∈ Ω be given. By Lemma 3.7, U(x) =

N(x) and so U(x) is closed. By Corollary 2.2(3), K(βS) ⊆ U(x) and hence
c`K(βS) ⊆ U(x).

For the statement of the following corollary we depart from our standing
assumptions about R, S, and (Z, 〈Ts〉s∈S).

Corollary 3.11. Let S be a semigroup. There exist a dynamical system
(X, 〈Ts〉s∈S) and a subset M of X such that K(βS) =

⋂
x∈X U(x) and c`K(βS)

=
⋂
x∈M U(x).

Proof. If S has a left identity, let R = S. Otherwise, let R = S ∪ {e} where e is
an identity adjoined to S. The conclusion then follows from Theorem 3.4 and
Corollary3.10.

In the proof of the above corollary, we could have simply let R = S ∪ {e}
where e is an identity adjoined to S, regardless of whether S has a left identity, as
was done in [4, Theorem 19.27] to produce a dynamical system for any semigroup
S establishing the equivalence of the notions of central and dynamically central .
We shall investigate the relationship between the systems with phase space

X = R{0, 1} and Y = S{0, 1} in the next section.

We note that it is possible that
⋂
x∈Z U(x) 6= K(βS) and there is no subset

M of Z such that
⋂
x∈M U(x) = c`K(βS). To see this, let S be an infinite zero

semigroup. That is, there is an element 0 ∈ S such that st = 0 for all s and t
in S. Then pq = 0 for all p and q in βS and so c`K(βS) = K(βS) = {0}. Let
R = S. Given x ∈ T , if a = x(0), then for all p ∈ βS, Tp(x) is constantly equal
to a and so Tp(x) is uniformly recurrent. That is, for any x ∈ Z, U(x) = βS.

In [1] it was shown that c`K(βN) is the intersection of all of the closed two
sided ideals that strictly contain it. In a similar vein, we would like to show
that each U(x) properly contains K(βS). One cannot hope for this to hold
in general. For example, as we have already noted, if S is either left zero or
right zero then so is βS and then K(βS) = βS. Results establishing that U(x)
properly contains K(βS) require some weak cancellation assumptions.

Definition 3.12. Let S be a semigroup and let A ⊆ S.

(a) A is a left solution set if and only if there exist u and v in S such that
A = {x ∈ S : ux = v}.

(b) A is a right solution set if and only if there exist u and v in S such that
A = {x ∈ S : xu = v}.

11



As is standard, we denote by ω the first infinite ordinal, which is also the
first infinite cardinal. That is, ω = ℵ0.

Definition 3.13. Let S be a semigroup with |S| = κ ≥ ω.

(a) S is weakly left cancellative if and only if every left solution set in S is
finite.

(b) S is weakly right cancellative if and only if every right solution set in S is
finite.

(c) S is weakly cancellative if and only if S is both weakly left cancellative
and weakly right cancellative.

(d) S is very weakly left cancellative if and only if the union of any set of fewer
than κ left solution sets has cardinality less than κ.

(e) S is very weakly right cancellative if and only if the union of any set of
fewer than κ right solution sets has cardinality less than κ.

(f) S is very weakly cancellative if and only if S is both very weakly left
cancellative and very weakly right cancellative.

Given a set X and a cardinal κ, we let Uκ(X) be the set of κ-uniform
ultrafilters on X. That is, Uκ(X) = {p ∈ βX : (∀A ∈ p)(|A| ≥ κ)}.

Theorem 3.14. Assume that |R| = |S| = κ ≥ ω, S is very weakly cancellative,
and has the property that |{e ∈ S : (∃s ∈ S)(es = s)}| < κ. Then for all x ∈ Z,
U(x) ∩ Uκ(S) \ c`K(βS) 6= ∅.

Proof. Let E = {e ∈ S : (∃s ∈ S)(es = s)}. Let x ∈ Z and pick q ∈ K(βS). Let
y = Tq(x). By Corollary 2.2(3), y is uniformly recurrent. For each F ∈ Pf (R),
let BF =

{
s ∈ S : (∀t ∈ F )

(
x(ts) = y(t)

)}
. Since

BF = {s ∈ S : Ts(x) ∈
⋂
t∈F π

−1
t [{y(t)}]} ,

we have BF ∈ q. By [4, Lemma 6.34.3], K(βS) ⊆ Uκ(S) and so |BF | = κ. Note
that if F ⊆ H, then BH ⊆ BF .

Enumerate Pf (R) as 〈Fα〉α<κ. Choose t0 ∈ BF0
\E. Let 0 < α < κ and as-

sume that we have chosen 〈tδ〉δ<α satisfying the following inductive hypotheses.

(1) For each δ < α, tδ ∈ BFδ .

(2) For each δ < α, FP (〈tβ〉β≤δ) ∩ E = ∅.

(3) For each δ < α, if δ > 0, then tδ /∈ FP (〈tβ〉β<δ).

(4) For each δ < α, if δ > 0, s ∈ FP (〈tβ〉β<δ), and γ < δ, then stδ 6= tγ .
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The hypotheses are satisfied for δ = 0. Let

M0 = {t ∈ S :
(
∃H ∈ Pf (α)

)(
(
∏
β∈H tβ)t ∈ E

)}
and let

M1 = {t ∈ S :
(
∃s ∈ FP (〈tβ〉β<α)

)
(∃γ < α)(st = tγ)} .

Note that |FP (〈tβ〉β<α)| ≤ |Pf (α)| < κ. Also, given H ∈ Pf (α) and s ∈ E,
{t ∈ S : (

∏
β∈H tβ)t = s} is a left solution set so |M0| < κ. Note also that, given

s ∈ FP (〈tβ〉β<α) and γ < α, {t ∈ S : st = tγ} is a left solution set so |M1| < κ.
Thus we may choose tα ∈ BFα \ (E ∪ FP (〈tβ〉β<α) ∪M0 ∪M1). The induction
hypotheses are satisfied for α.

Let B = {tα : α < κ} and let C =
⋂
α<κ c`FP (〈tβ〉α<β<κ). By [4, Theorem

4.20], C is a compact subsemigroup of βS. We claim that B ∩ K(C) = ∅.
Suppose instead that we have p ∈ B ∩K(C). Pick r ∈ K(C) such that p = pr.
(By [4, Lemma 1.30], an idempotent in the minimal left ideal L of C in which
p lies will do.) Let D = {s ∈ S : s−1B ∈ r}. Then D ∈ p so D ∩ B 6= ∅
so pick α < κ such that t−1

α B ∈ r. Then t−1
α B ∩ FP (〈tβ〉α<β<κ) 6= ∅ so pick

finite H ⊆ {β : α < β < κ} such that
∏
β∈H tβ ∈ t−1

α B. Pick γ < κ such
that tα

∏
β∈H tβ = tγ . Let maxH = µ and let K = H \ {µ}. If K = ∅,

then tαtµ = tγ . If K 6= ∅, then tα(
∏
β∈K tβ)tµ = tγ . If γ > µ we get a

contradiction to hypothesis (3). If µ = γ we either get tα ∈ E or tα
∏
β∈K tβ ∈

E, contradicting hypothesis (2). If γ < µ we get a contradiction to hypothesis
(4). Thus B ∩K(C) = ∅ as claimed.

Now we claim that B∩K(βS) = ∅. Suppose instead we have p ∈ B∩K(βS).
By [4, Lemma 6.34.3] we have that p ∈ Uκ(S) and consequently, p ∈ C. Thus
K(βS)∩C 6= ∅ and so, by [4, Theorem 1.65], K(C) = K(βS)∩C, contradicting
the fact that B ∩K(C) = ∅. Since B is clopen, we thus have B ∩ c`K(βS) = ∅.

Now let C = {BF : F ∈ Pf (S)} ∪ {B}. We claim that C has the κ-uniform
finite intersection property. To see this, let F ∈ Pf

(
Pf (S)

)
and let H =

⋃
F .

If δ < κ and H ⊆ Fδ, then tδ ∈ B ∩
⋂
F∈F BF . Since |{δ < κ : H ⊆ Fδ}| =

|{F ∈ Pf (S) : H ⊆ F}| = κ, we have that |
⋂
C| = κ as required. Pick by [4,

Corollary 3.14] p ∈ Uκ(S) such that C ⊆ p.
Since BF ∈ p for each F ∈ Pf (R), we have Tp(x) = y so p ∈ U(x). Since

B ∈ p, p /∈ c`K(βS).

Corollary 3.15. Assume that |R| = |S| = κ ≥ ω and that S is right cancellative
and very weakly left cancellative. Then for all x ∈ Z, U(x)∩Uκ(S)\c`K(βS) 6=
∅.

Proof. Let E = {e ∈ S : (∃s ∈ S)(es = s)}. It suffices to show that |E| < κ.
Pick x ∈ S. Given e ∈ E and s ∈ S such that es = s, we have that xes = xs so
xe = x. Thus E is contained in the left solution set {t ∈ S : xt = x}.

Corollary 3.16. Assume that |R| = |S| = κ ≥ ω, that S is very weakly
cancellative, that S has a member e such that es = s for all s ∈ S, and
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|{e ∈ S : (∃s ∈ S)(es = s)}| < κ. Then K(βS) =
⋂
x∈Z U(x) and for each

x ∈ Z, U(x) properly contains K(βS).

Proof. This is an immediate consequence of Theorems 3.4 and 3.14.

Corollary 3.17. Assume that S is a left ideal of R, |R| = |S| = κ ≥ ω, S is
very weakly cancellative, S has a member e such that es = s for all s ∈ S, and
|{e ∈ S : (∃s ∈ S)(es = s)}| < κ. Then c`K(βS) =

⋂
x∈Ω U(x) and for each

x ∈ Ω, U(x) properly contains c`K(βS).

Proof. By Corollary 3.10 c`K(βS) =
⋂
x∈Ω U(x). By Theorem 3.14, for each

x ∈ Ω, U(x) properly contains c`K(βS).

4 Relations between systems with phase spaces
X and Y

Throughout this section we will let S be an arbitrary semigroup and let Q =
S ∪ {e}, where e is an identity adjoined to S, even if S already has an identity.
We will let (X, 〈TX,s〉s∈S) be the dynamical system of Lemma 1.2 determined
by R = Q let (Y, 〈TY,s〉s∈S) be the dynamical system of Lemma 1.2 determined
by R = S. For x ∈ X we will let UX(x) = {p ∈ βS : TX,p(x) is uniformly
recurrent} and let UY (x) = {p ∈ βS : TY,p(x) is uniformly recurrent}.

We have from the results of the previous section that for any semigroup
S, K(βS) =

⋂
x∈X UX(x) and c`K(βS) =

⋂
x∈ΩX

UX(x). We are interested
in determining when the corresponding assertions hold with respect to Y . Of
course, the simplest situation in which they do is when for each x ∈ X, UX(x) =
UY (x|S) so we address this problem first, beginning with the following simple
observation.

Lemma 4.1. Let x ∈ X. Then UX(x) ⊆ UY (x|S).

Proof. Let y = x|S and note that ỹ is the restriction of x̃ to βS. Let L be a
minimal left ideal of βS. By Lemma 3.2, p ∈ UX(x) if and only if there exists
q ∈ L, such that x̃(tp) = x̃(tqp) for all t ∈ Q. And p ∈ UY (x|S) if and only if
there exists q ∈ L such that ỹ(tp) = ỹ(tqp) for all t ∈ S.

Theorem 4.2. The following statements are equivalent.

(a) For all x ∈ X, UX(x) = UY (x|S).

(b) There do not exist p ∈ βS and x ∈ X such that TX,p(x) is the character-
istic function of {e} in X.

(c) For every p ∈ βS, p ∈ βSp.
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Proof. Assume that (a) holds and suppose we have p ∈ βS and x ∈ X such that
TX,p(x) is the characteristic function of {e} in X. Then TY,p(x|S) is constantly 0
so p ∈ UY (x|S). But V = {u ∈ X : w(e) = 1} is a neighborhood of w = TX,p(x)
in X, while {s ∈ S : TX,s(w) ∈ V } = ∅, so p /∈ UX(x).

To see that (b) implies (c), assume that (b) holds and suppose that we have
some p ∈ βS such that p /∈ βSp. Since βSp = ρp[βS], βSp is closed. Pick A ∈ p
such that A∩βSp = ∅. Let x be the characteristic function of A in X. First let
s ∈ S. Then sp /∈ A so s−1(S \ A) ∈ p so to see that TX,p(s) = 0, it suffices to
observe that s−1(S \ A) ⊆ {t ∈ S : TX,t(x)(s) = 0}. Since A ∈ p and for t ∈ A,
TX,t(x)(e) = x(t) = 1, we have that TX,p(x)(e) = 1.

By Lemma 4.1, we have UX(x) ⊆ UY (x|S) for all x ∈ X, so to show that (c)
implies (a), it suffices to let x ∈ X, let p ∈ UY (x|S), assume that p ∈ βSp, and
show that p ∈ UX(x). By Lemma 3.3, it suffices to let L be a minimal left ideal
of βS and let F ∈ Pf (Q) and show that there is some q ∈ L such that x̃(tp) =
x̃(tqp) for every t ∈ F . For t ∈ F , let Bt = {s ∈ S : x(ts) = x̃(tp)}. Then⋂
t∈F Bt ∈ p and p ∈ βSp = c`(Sp) so pick v ∈ S such that

⋂
t∈F Bt ∈ vp. Let

y = x|S . Now Fv ∈ Pf (S) so pick by Lemma 3.3 q ∈ L such that for all t ∈ F ,
ỹ(tvp) = ỹ(tvqp). Let q′ = vq and note that q′ ∈ L. Let t ∈ F be given. Then
Bt ∈ vp so x̃(tvp) = x̃(tp) and thus x̃(tp) = ỹ(tvp) = ỹ(tvqp) = x̃(tq′p).

Corollary 4.3. If for all p ∈ βS, p ∈ βSp, then K(βS) =
⋂
x∈Y UY (x) and

c`K(βS) =
⋂
x∈ΩY

UY (x).

Proof. The first assertion is an immediate consequence of Theorems 3.4 and 4.2.
The second assertion follows from Corollary 3.10 and Theorem 4.2.

We have already mentioned the problem of determining whether K(βS) or
c`K(βS) is prime. Recall that an ideal I in a semigroup is semiprime if and
only if whenever ss ∈ I, one must have s ∈ I.

Corollary 4.4. (1) If K(βS) 6=
⋂
x∈Y UY (x), then K(βS) is not semiprime.

(2) If c`K(βS) 6=
⋂
x∈ΩY

UY (x), then c`K(βS) is not semiprime.

Proof. (1) If p ∈
⋂
x∈Y UY (x) \ K(βS), then pp ∈ βSp and by Theorem 3.4,

βSp ⊆ K(βS).

(2) If p ∈
⋂
x∈ΩY

UY (x) \ c`K(βS), then pp ∈ βSp and by Lemma 3.8,
βSp ⊆ c`K(βS).

By virtue of Theorem 4.2 we are interested in knowing when there is some
p ∈ βS such that p /∈ βSp.

Lemma 4.5. Let p ∈ βS. Then p /∈ βSp if and only if there exists A ⊆ S such
that for all x ∈ S, x−1A ∈ p and A /∈ p.
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Proof. Let C(p) = {A ⊆ S : (∀x ∈ S)(x−1A ∈ p)}. By [4, Theorem 6.18],
p ∈ βSp if and only if C(p) ⊆ p.

Theorem 4.6. Assume that |S| = κ ≥ ω. There exists p ∈ βS such that
p /∈ βSp if and only if there exists 〈yF 〉F∈Pf (S) in S such that
{yF : F ∈ Pf (S)} ∩

⋃
{FyF : F ∈ Pf (S)} = ∅.

Proof. Necessity. Pick p ∈ βS such that p /∈ βSp. By Lemma 4.5, pick A ⊆ S
such that for all x ∈ S, x−1A ∈ p and A /∈ p. For F ∈ Pf (S) pick yF ∈
(S \A) ∩

⋂
x∈F x

−1A.

Sufficiency. Let A =
⋃
{FyF : F ∈ Pf (S)}. Then {S \A} ∪ {x−1A : x ∈ S}

has the finite intersection property so pick p ∈ βS such that {S \A} ∪ {x−1A :
x ∈ S} ⊆ p. By Lemma 4.5, p /∈ βSp.

One of the assumptions in the following corollary is that S∗ = βS \ S is a
right ideal of βS. A (not very simple) characterization of when S∗ is a right
ideal of βS is given in [4, Theorem 4.32]. By [4, Corollary 4.33 and Theorem
4.36] it is sufficient that S be either right cancellative or weakly cancellative.

Corollary 4.7. Assume that |S| = κ ≥ ω and assume that

|S \ {t ∈ S : (∃s ∈ S)(st = t)}| = κ .

If either S∗ is a right ideal of βS or S is very weakly left cancellative, then there
exists p in βS such that p /∈ βSp.

Proof. Assume first that S∗ is a right ideal of βS, and pick t ∈ S such that
there is no s ∈ S with st = t. Then t /∈ St and t /∈ S∗t.

Now assume that S is very weakly left cancellative. Enumerate Pf (S)
as 〈Fα〉α<κ. By Theorem 4.6, it suffices to produce 〈tα〉α<κ in S such that
{tα : α < κ} ∩

⋃
{Fαtα : α < κ} = ∅.

Let E = {t ∈ S : (∃s ∈ S)(st = t)}. Pick t0 ∈ S \ E. Let 0 < α < κ and
assume we have chosen 〈tδ〉δ<α in S \E such that if δ > 0, then tδ /∈

⋃
µ<δ Fµtµ

and for each x ∈ Fδ, xtδ /∈ {tµ : µ < δ}.
For x ∈ S and µ < α, let Hx,µ = {t ∈ S : xt = tµ}. Then each Hx,µ is a left

solution set so |
⋃
{Hx,µ : x ∈ Fα and µ < α}| < κ. Pick

tα ∈ S \ (E ∪
⋃
{Hx,µ : x ∈ Fα and µ < α} ∪

⋃
µ<α Fµtµ) .

Suppose we have some µ < κ such that tµ ∈
⋃
{Fαtα : α < κ} and pick

α < κ and x ∈ Fα such that tµ = xtα. Then α 6= µ because tα /∈ E. If α < µ,
we would have tµ ∈ Fαtα. So we must have µ < α. But then tα ∈ Hx,µ, a
contradiction.
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We conclude this section by exhibiting a sufficient condition which guaran-
tees K(βS) =

⋂
x∈Y UY (x). We shall see that this does not require equality

between UX(x) and UY (x|S) for all x ∈ X.

Theorem 4.8. Assume that for all p ∈
⋂
x∈Y UY (x) and all A ∈ p the as-

sumption that {t ∈ S : t−1sA ∈ p} is syndetic for every s ∈ S, implies that
{t ∈ S : t−1A ∈ p} 6= ∅. Then K(βS) =

⋂
x∈Y UY (x).

Proof. Assume that p ∈
⋂
x∈Y UY (x) \ K(βS). By Theorem 3.4(2), βSp ⊆

K(βS) so p /∈ βSp. Pick A ∈ p such that A ∩ βSp = ∅. Thus {t ∈ S : t−1A ∈
p} = ∅. We claim that for all s ∈ S, {t ∈ S : t−1sA} is syndetic. So let
s ∈ S. By [4, Theorem 4.48] it suffices to let L be a minimal left ideal of βS
and show that there is some q ∈ L such that {t ∈ S : t−1sA ∈ p} ∈ q. By
Theorem 3.4(2), sp ∈ Lp so pick q ∈ L such that sp = qp. Then sA ∈ qp so
{t ∈ S : t−1sA ∈ p} ∈ q as required.

Note that by Theorem 3.4(3), K(βN,+) =
⋂
x∈Y UY (x) while 1 /∈ βN + 1

so by Theorem 4.2, it is not the case that for all x ∈ X, UX(x) = UY (x|S). On
the other hand, given p ∈ K(βN,+) one has p = q + p for some p ∈ K(βN,+)
so automatically for any A ∈ p, {t ∈ N : −t + A ∈ p} 6= ∅ so the hypotheses of
Theorem 4.8 are valid.

5 Recurrence and surjectivity of Tp

So far in this paper we have been considering the notion of uniform recurrence.
We now introduce a notion which is usually weaker.

Definition 5.1. Let (X, 〈Ts〉s∈S) be a dynamical system. The point x ∈ X is
recurrent if and only if for each neighborhood V of x in X, {s ∈ S : Ts(x) ∈ V }
is infinite.

If all syndetic subsets of a semigroup S are infinite, then any uniformly
recurrent point of X is recurrent. This is not always the case. For example,
if S is a left zero semigroup and x ∈ S, then x is uniformly recurrent in the
dynamical system (βS, 〈λs〉s∈S) but is not recurrent. (We have that {x} is a
neighborhood of x and

{
s ∈ S : λs(x) ∈ {x}

}
= {x}, which is syndetic, but

finite.)

The following characterization of recurrence is very similar to the characteri-
zation of uniform recurrence in [4, Theorem 19.23]. Part of the results depend on
the assumption that S∗ is a subsemigroup of βS. There is a characterization of
S∗ as a subsemigroup in [4, Theorem 4.28]. By [4, Corollary 4.29 and Theorem
4.31] it is sufficient that S be right cancellative or weakly left cancellative.

Theorem 5.2. Let (X, 〈Ts〉s∈S) be a dynamical system. Statements (a) and
(b) are equivalent and imply statements (c) and (d), which are equivalent. If S∗

is a subsemigroup of βS, then all four statements are equivalent.
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(a) There exists an idempotent p ∈ S∗ such that Tp(x) = x.

(b) There exist y ∈ X and an idempotent p ∈ S∗ such that Tp(y) = x.

(c) There exists p ∈ S∗ such that Tp(x) = x.

(d) x is recurrent.

Proof. Trivially (a) implies (b) and (a) implies (c). To see that (b) implies (a),
pick y ∈ X and an idempotent p ∈ S∗ such that Tp(y) = x. Then x = Tp(y) =
Tpp(y) = Tp

(
Tp(y)

)
= Tp(x).

To see that (c) implies (d), pick p ∈ S∗ such that Tp(x) = x. Let V be a
neighborhood of x. Then {s ∈ S : Ts(x) ∈ V } ∈ p so {s ∈ S : Ts(x) ∈ V } is
infinite.

To see that (d) implies (c), assume that x is recurrent and for each neigh-
borhood V of x, let DV = {s ∈ S : Ts(x) ∈ V }. Then any finite subfamily of
{DV : V is a neighborhood of x} has infinite intersection so pick by [4, Corol-
lary 3.14] some p ∈ S∗ such that {DV : V is a neighborhood of x} ⊆ p. Then
Tp(x) = x.

Now assume that S∗ is a semigroup. To see that (c) implies (a), pick p ∈
S∗ such that Tp(x) = x and let E = {q ∈ S∗ : Tq(x) = x}. Since S∗ is a
subsemigroup of βS, we have that E is a subsemigroup of βS. We claim that
E is closed. To see this, let q ∈ βS \ E. If q ∈ S, then {q} is a neighborhood
of q missing E, so assume that q ∈ S∗. Pick an open neighborhood U of Tq(x)
such that x /∈ c`U and let A = {s ∈ S : Ts(x) ∈ U}. Then A is a neighborhood
of q which misses E. Since E is a compact right topological semigroup, there is
an idempotent in E.

Recall that in any dynamical system, (X, 〈Ts〉s∈S), K(βS) ⊆
⋂
x∈X UX(x)

and we have obtained sufficient conditions for equality.

Theorem 5.3. Let (X, 〈Ts〉s∈S) be a dynamical system, let p ∈ βS, and assume
that Tp : X → X is surjective and K(βS) =

⋂
x∈X UX(x). Then for any q ∈ βS,

qp ∈ K(βS) if and only if q ∈ K(βS).

Proof. Let q ∈ βS. The sufficiency is trivial, so assume that qp ∈ K(βS). It
suffices to show that q ∈

⋂
x∈X U(x), so let x ∈ X be given. Pick y ∈ X such

that Tp(y) = x. Then Tq(x) = Tq
(
Tp(y)

)
= Tqp(y). Since qp ∈ U(y) we have

Tqp(y) is uniformly recurrent, and so Tq(x) ∈ U(x) as required.

Definition 5.4. Let (X, 〈Ts〉s∈S) be a dynamical system. Then NS = NSX =
{p ∈ βS : Tp is not surjective}.

We have seen that U(x) is always a left ideal of βS.

Lemma 5.5. Let (X, 〈Ts〉s∈S) be a dynamical system. If NS 6= ∅, then NS is
a right ideal of βS.
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Proof. Given p ∈ NS and q ∈ βS, the range of Tpq is contained in the range of
Tp.

Lemma 5.6. Let (X, 〈Ts〉s∈S) be a dynamical system. If there is some x ∈ X
such that x is not recurrent, then {p ∈ S∗ : pp = p} ⊆ NS.

Proof. Pick x ∈ X such that x is not recurrent and let p be an idempotent in
S∗. We claim that x is not in the range of Tp, so suppose instead we have y ∈ X
such that Tp(y) = x. Then by Theorem 5.2, x is recurrent.

We shall establish a strong connection between the surjectivity of Tp and p
being right cancelable in βS. The purely algebraic result in Theorem 5.8 will
be useful.

Lemma 5.7. Let S be a countable right cancellative and weakly left cancellative
semigroup and let B be an infinite subset of S. There is an infinite subset D of
B with the property that whenever s and t are distinct members of S, there is a
finite subset F of D such that sa 6= tb whenever a, b ∈ D \ F .

Proof. Let ∆ = {(s, s) : s ∈ S} and enumerate (S × S) \ ∆ as 〈(sn, tn)〉∞n=1.
Pick a1 ∈ B. Assume n ∈ N and we have chosen 〈ai〉ni=1. Let Wn = {b ∈ S :
there exist i, j ∈ {1, 2, . . . , n} such that siaj = tib or sib = tiaj}. Then Wn is
the union of finitely many left solution sets, so is finite. Pick an+1 ∈ B \ (Wn ∪
{a1, a2, . . . , an}).

Let D = {an : n ∈ N}. Let s and t be distinct members of S and pick n
such that (s, t) = (sn, tn). Let F =

{
ai : i ∈ {1, 2, . . . , n}

}
. To see that F is

as required, let a, b ∈ D \ F and suppose sa = tb. Then by right cancellation,
a 6= b. Pick m > n and r > n such that a = am and b = ar. If m < r, then
ar ∈Wr−1. If r < m, then am ∈Wm−1.

Theorem 5.8. Let S be a countable cancellative semigroup. If p ∈ βS \K(βS),
then there exists an infinite D ⊆ S such that for every r ∈ D∗, rp is right
cancelable in βS.

Proof. Choose q ∈ K(βS). We first claim that for each s ∈ S, sp /∈ K(βS)
and in particular, sp /∈ βSqp. So suppose we have sp ∈ K(βS). Then sp is
in a minimal left ideal L of βS. Pick an idempotent r ∈ L. By [4, Lemma
1.30], sp = spr. By [4, Lemma 8.1] s is left cancelable in βS so p = pr, and
thus p ∈ K(βS). This contradiction establishes the claim. For each s ∈ S, pick
Us ∈ sp such that Us ∩ βSqp = ∅. For each s, t ∈ S, there exists Vs,t ∈ q such
that Us ∩ tVs,tp = ∅ because λt ◦ ρp(q) ∈ βS \ Us.

By [4, Theorem 3.36], there exists an infinite subset B of S such that B∗ ⊆⋂
s,t∈S Vs,t. Then for every r ∈ B∗ and every s, t ∈ S, trp /∈ Us.

By Lemma 5.7 pick an infinite subset D of B such that, whenever s and t
are distinct elements of S, there is a finite subset F of D such that sa 6= tb
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whenever a, b ∈ D \ F . Enumerate D as 〈dn〉∞n=1 and for each distinct s and t
in S, pick ns,t ∈ N such that sdm 6= tdn whenever m,n > ns,t.

We claim that, for every r ∈ D∗, rp is right cancelable in βS. We shall apply
[4, Theorem 3.40] three times.

Assume that q1rp = q2rp, where q1 and q2 are distinct elements of βS. Let
A1 and A2 be disjoint subsets of S which are members of q1 and q2 respectively.
Since q1rp ∈ cl(A1rp) and q2rp ∈ cl(A2rp), an application of [4, Theorem 3.40]
shows that either A1rp∩ cl(A2rp) 6= ∅ or A2rp∩ cl(A1rp) 6= ∅, and without loss
of generality, we may assume that the former holds. Thus we have some s ∈ A1

and q′ ∈ A2 such that srp = q′rp. Now srp ∈ c`(sDp) and q′rp ∈ c`
(
(S\{s})rp

)
,

so either sDp∩ c`
(
(S \ {s})rp

)
6= ∅ or (S \ {s})rp∩ c`(sDp) 6= ∅. We thus have

either

(i) sDp ∩ c`
(
(S \ {s})rp

)
6= ∅, in which case we choose d ∈ D and y ∈ βS

such that sdp = yrp; or

(ii) sDp ∩ c`
(
(S \ {s})rp

)
= ∅, in which case we pick t ∈ S \ {s} and r′ ∈ D

such that sr′p = trp. Since sDp ∩ c`
(
(S \ {s})rp

)
= ∅, we have r′ ∈ D∗.

Suppose that (i) holds. Then Usd ∈ sdp so {v ∈ S : v−1Usd ∈ rp} ∈ y, so
pick v ∈ S such that Usd ∈ vrp. But r ∈ Vsd,v, so this is a contradiction. Thus
(ii) holds.

Now sr′p ∈ c`{sdmp : m > ns,t} and trp ∈ c`{tdmp : m > ns,t} so, es-
sentially without loss of generality, we have {sdmp : m > ns,t} ∩ c`{tdmp :
m > ns,t} 6= ∅. (We have distinguished between s and t at this stage, but the
arguments below with s and t interchanged remain valid.) Thus either

(iii) there exist m,n > ns,t such that sdmp = tdnp; or

(iv) there exist m > ns,t and r′′ ∈ D∗ such that sdmp = tr′′p.

If (iii) holds, then by [4, Lemma 6.28], sdm = tdn, contradicting the choice
of ns,t. So (iv) holds. But r′′ ∈ Vsdm,t so tr′′p /∈ Usdm , a contradiction.

We now present several results about the dynamical systems considered in
Section 3.

Lemma 5.9. Let S be a semigroup and let p be a right cancelable element of
βS. Then for any clopen subset E of βSp, there is some A ⊆ S such that
E = A ∩ βSp.

Proof. Let E be a clopen subset of βSp. Let D = {D ∩ βSp : D ⊆ S and D ∩
βSp ⊆ E}. Since {D∩βSp : D ⊆ S} is a basis for the topology of βSp and E is
open in βSp, we have that E =

⋃
D. Since E is compact, pick finite F ⊆ P(S)

such that E =
⋃
D∈F (D ∩ βSp) and let A =

⋃
F .
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Theorem 5.10. Let S be a semigroup. Let (Y, 〈Ts〉s∈S) be the dynamical system
of Lemma 1.2 determined by R = S. Let p ∈ βS. If p is right cancelable in βS,
then Tp : Y → Y is surjective.

Proof. Note that since ρp : βS → βSp is injective and takes closed sets to closed
sets, it is a homeomorphism.

To see that Tp is surjective, let z ∈ Y , let B = {s ∈ S : z(s) = 1}, and let
E = ρp[B ]. Then E is clopen in βSp so by Lemma 5.9 pick A ⊆ S such that
E = A ∩ βSp. Let x be the characteristic function of A in Y . We claim that
Tp(x) = z. For this, it suffices that for each s ∈ S, {t ∈ S : Tt(x)(s) = z(s)} ∈ p.
So let s ∈ S. Note that {t ∈ S : Tt(x)(s) = 1} = {t ∈ S : x(st) = 1} = s−1A.
Also s−1A ∈ p if and only if s ∈ ρ−1

p [A∩ βSp] so s ∈ B if and only if s−1A ∈ p.
If z(s) = 1, then s ∈ B so s−1A ∈ p so {t ∈ S : Tt(x)(s) = z(s)} ∈ p. If

z(s) = 0, then s /∈ B so s−1A /∈ p so {t ∈ S : Tt(x)(s) = z(s)} ∈ p.

Notice that the hypotheses of the following corollary hold if S has any right
cancelable element.

Corollary 5.11. Let S be a semigroup. Let (Y, 〈Ts〉s∈S) be the dynamical sys-
tem of Lemma 1.2 determined by R = S. Let p ∈ βS. Assume that for whenever
q and r are distinct elements of βS, there exists s ∈ S such that sq 6= sr. Then
Tp : Y → Y is surjective if and only if p is right cancelable in βS.

Proof. The necessity is Theorem 5.10.

So assume that Tp is surjective and suppose that we have distinct q and r in
βS such that qp = rp. We claim that Tq = Tr. To see this, let x ∈ Y be given.
Pick z ∈ Y such that Tp(z) = x. Then Tq(x) = Tq

(
Tp(z)

)
= Tqp(z) = Trp(z) =

Tr
(
Tp(z)

)
= Tr(x).

Pick s ∈ S such that sq 6= sr, pick A ∈ sq\sr, and let x be the characteristic
function of A in Y . Then A ⊆ {t ∈ S : Tt(x)(s) = 1} so Tq(x)(s) = 1 and
S \A ⊆ {t ∈ S : Tt(x)(s) = 0} so Tr(x)(s) = 1.

Theorem 5.12. Let S be a semigroup and let Q = S ∪ {e} where e is an
identity adjoined to S. Let (X, 〈Ts〉s∈S) be the dynamical system of Lemma 1.2
determined by R = Q and let p ∈ βS. Then Tp : X → X is surjective if and
only if p is right cancelable in βQ.

Proof. Sufficiency. Note that ρp : βS → βSp is a homeomorphism. Note also
that p /∈ βSp. (If we had p = qp for some q ∈ βS, then we would have ep = qp.)
Let x ∈ X and let B = {s ∈ S : x(s) = 1}. By Lemma 5.9, pick A ⊆ S such
that ρp[B ] = A ∩ βSp. Pick P ∈ p such that P ∩ βSp = ∅. If x(e) = 1, let
D = A \ P . If x(e) = 0, let D = A ∪ B. Let z be the characteristic function of
D in X.

21



We claim that Tp(z) = x. As in the proof of Theorem 5.10, we see that
for s ∈ S, Tp(z)(s) = x(s). Regardless of the value of x(e), we have that
P ⊆ {s ∈ S : Ts(z)(e) = x(e)}, so Tp(z)(e) = x(e).

Necessity. Suppose that Tp is surjective and we have q 6= r in βQ such that
qp = rp. Assume first that e ∈ {q, r}, so without loss of generality, q = e. Let
x be the characteristic function of S in X and pick z ∈ X such that Tp(z) = x.
Then 0 = x(e) = Tp(z)(e) = Trp(z)(e) = Tr

(
Tp(z)

)
(e) = Tr(x)(e) = 1, a

contradiction.

So we can assume that q and r are in βS. Pick A ∈ q \ r and let A be
the characteristic function of A in X. Pick z ∈ X such that Tp(z) = x. Then
0 = Tr(x)(e) = Trp(z)(e) = Tqp(z)(e) = Tq

(
Tp(z)

)
(e) = Tq(x)(e) = 1, a contra-

diction.

Theorem 5.13. Let S be a countable semigroup which can be embedded in a
group and assume that S can be enumerated as 〈st〉∞t=0 so that if u, v ∈ S,
i, j ∈ ω with i < j, and siu = sjv, then s0s

−1
i sj ∈ S. Let (Y, 〈Ts〉s∈S) be the

dynamical system of Lemma 1.2 determined by R = S and let p ∈ βS. The Tp is
surjective if and only if there exists x ∈ Y such that Tp(x) is the characteristic
function of {s0} in Y .

Proof. The necessity is trivial. Assume that we have x ∈ Y such that Tp(x)
is the characteristic function of {s0} in Y . For m ∈ N, let Dm = {s0s

−1
i sj :

i, j ∈ {0, 1, . . . ,m} , i < j, and s0s
−1
i sj ∈ S} and note that s0 /∈ Dm. For each

m ∈ N, let

Bm = {s ∈ S : Ts(x) ∈ π−1
s0 [{1}] ∩

⋂m
i=1 π

−1
si [{0}] ∩

⋂
r∈Dm π

−1
r [{0}]} ,

and note that Bm ∈ p. We claim that if m, k ∈ N, u ∈ Bm, v ∈ Bk, i ∈
{0, 1, . . . ,m}, j ∈ {0, 1, . . . , k}, and siu = sjv, then i = j. Suppose instead
we have such m, k, u, v, i, j with i 6= j and assume without loss of generality
that i < j. Then u = s−1

i sjv. By assumption s0s
−1
i sj ∈ S so s0s

−1
i sj ∈ Dk.

Since u ∈ Bm, 1 = Tu(x)(s0) = x(s0u). Since v ∈ Bk and s0s
−1
i sj ∈ Dk,

0 = Tv(x)(s0s
−1
i sj) = x(s0s

−1
i sjv), a contradiction.

Now to see that Tp is surjective, let y ∈ Y be given. Define w ∈ Y as follows.
If m ∈ N, u ∈ Bm, and i ∈ {0, 1, . . . ,m}, then w(siu) = y(si). For s ∈ S which
is not of the form siu for some m ∈ N, u ∈ Bm, and i ∈ {0, 1, . . . ,m}, define
w(s) at will. To see that Tp(w) = y, let U be a neighborhood of y. Pick m ∈ N
such that

⋂m
i=0 π

−1
i [{y(si)}] ⊆ U . Then Bm ⊆ U .

The following is an immediate corollary of Theorem 5.13.

Corollary 5.14. Let S be a countable group with identity e, let (Y, 〈Ts〉s∈S) be
the dynamical system of Lemma 1.2 determined by R = S, and let p ∈ βS. The
following statements are equivalent.

(a) Tp is surjective.
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(b) For each s ∈ S, there exists x ∈ Y such that Tp(x) is the characteristic
function of {s}.

(c) There exists x ∈ Y such that Tp(x) is the characteristic function of {e}.

Notice that the hypotheses of the following theorem hold if S is very weakly
left cancellative and right cancellative. If κ is regular, the assumption that
for any subset D of S with fewer than κ members, |{e ∈ S : (∃s ∈ D)(∃t ∈
D \ {s})(se = te)}| < κ can be replaced by the assumption that for all distinct
s and t in S, |{e ∈ S : se = te}| < κ.

Theorem 5.15. Let S be a semigroup with |S| = κ ≥ ω which is very weakly
left cancellative and has the property that for any subset D of S with fewer than
κ members, |{e ∈ S : (∃s ∈ D)(∃t ∈ D \ {s})(se = te)}| < κ. Let (Y, 〈Ts〉s∈S)
be the dynamical system of Lemma 1.2 determined by R = S. There is a dense
open subset W of Uκ(S) such that for every p ∈W , p is right cancelable in βS
and Tp : Y → Y is surjective.

Proof. We show that for any C ∈ [S]κ, there exists B ∈ [C]κ such that for every
p ∈ B ∩ Uκ(S), p is right cancelable in βS and Tp : Y → Y is surjective.

Enumerate S as 〈sγ〉γ<κ. Choose t0 ∈ C. Let 0 < α < κ and assume that
we have chosen 〈tδ〉δ<α in C satisfying the following inductive hypotheses:

(1) If γ < δ, then tγ 6= tδ.

(2) If γ < δ, µ < β ≤ δ, and µ 6= γ, then sγtδ 6= sµtβ .

The hypotheses are satisfied for δ = 0. Let E = {e ∈ S : (∃µ < β ≤
α)(sµe = sβe)}. For µ < β < α and γ < α let Aγ,µ,β = {t ∈ S : sγt = sµtβ}.
Then each Aγ,µ,β is a left solution set. Pick

tα ∈ C \ ({tγ : γ < α} ∪ E ∪
⋃
γ<α

⋃
β<α

⋃
µ<β Aγ,µ,β) .

Hypothesis (1) is trivially satisfied and if µ < β < α and γ < α, then
tα /∈ Aγ,µ,β so sγtα 6= sµtβ . If µ < β = α and γ < α, then tα /∈ E so
sγtα 6= sµtβ .

Let B = {tα : α < κ} and let p ∈ B∩Uκ(S). To see that p is right cancelable
in βS, let q 6= r ∈ βS and suppose that qp = rp. Pick subsets C and D of S
such that C ∩D = ∅ and C ∈ q and D ∈ r. Then H = {sγtα : γ < α and sγ ∈
C} ∈ qp. (To see this, let sγ ∈ C. Then {tα : γ < α < κ} ⊆ s−1

γ H.) Similarly,
{sµtβ : µ < β and sµ ∈ D} ∈ rp. Since these sets are disjoint by hypothesis (2),
we have a contradiction.

The fact that Tp is surjective follows from Theorem 5.10.

Lemma 5.16. Let S be a cancellative semigroup, let a ∈ S, and let (Y, 〈Ts〉s∈S)
be the dynamical system of Lemma 1.2 determined by R = S. If x is the char-
acteristic function of {a} in Y , then x is not a recurrent point.
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Proof. We claim that |{s ∈ S : Ts(x)(a) = 1}| ≤ 1. Indeed, if x(as) = 1,
then as = a so by left cancellation, s is a left identity for S and then by right
cancellation, s is a two sided identity for S.

We have seen that U(x) is always a left ideal of βS and that NS is a right
ideal of βS provided it is nonempty.

Theorem 5.17. Let S be a countable cancellative semigroup. Let (Y, 〈Ts〉s∈S)
be the dynamical system of Lemma 1.2 determined by R = S. Then NSY is not
a left ideal of βS.

Proof. By [4, Corollary 6.33] pick an idempotent p ∈ βS \K(βS). By Theorem
5.8 pick r ∈ βS such that rp is right cancelable in βS. By Lemma 5.16 and
Theorem 5.6, p ∈ NS and by Theorem 5.10, rp /∈ NS.

If S is commutative, then by [4, Exercise 4.4.9] and Theorem 5.5, if NS 6= ∅,
then c`NS is a two sided ideal of βS. The following theorem shows that this
may fail if S is not commutative.

Theorem 5.18. Let S be the free semigroup on the alphabet {a, b} (where a 6=
b). Let (Y, 〈Ts〉s∈S) be the dynamical system of Lemma 1.2 determined by R = S.
Then NS 6= ∅ and c`NS is not a left ideal of βS.

Proof. Let p be an idempotent in βS with {an : n ∈ N} ∈ p. By Lemma 5.16 and
Theorem 5.6, p ∈ NS. We will show that bp /∈ c`NS. Let B = {ban : n ∈ N}.
Then B ∈ bp. We shall show that B∩NS = ∅. So let q ∈ B. Let s0 = a and let
〈sn〉∞n=1 enumerate S \ {a} so that if the length of si is less than the length of
sj , then i < j. By Theorem 5.13, to see that Tq is surjective, it suffices to show
that there is some x ∈ Y such that Tq(x) is the characteristic function of {a}.

Let x be the characteristic function of {aban : n ∈ N} in Y . Let U be a neigh-
borhood of χ{a} and pick F ∈ Pf (S\{a}) such that π−1

a [{1}]∩
⋂
y∈F π

−1
y [{0}] ⊆

U . It suffices to show that B ⊆ {w ∈ S : Tw(x) ∈ π−1
a [{1}] ∩

⋂
y∈F π

−1
y [{0}]}.

So let ban ∈ B. Then Tban(x)(a) = x(aban) = 1 and for y ∈ F , Tban(x)(y) =
x(yban) = 0.

We remark that Theorem 5.18 remains valid if S is the free semigroup on a
countably infinite alphabet.
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