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LONG INCREASING CHAINS OF IDEMPOTENTS IN βG

NEIL HINDMAN AND DONA STRAUSS

Abstract. We show that there is a sequence 〈pα〉α<ω1
of idempotents

in (βZ,+) with the property that whenever α < δ < ω1, pα <R pδ,
where p <R q means that p = q + p and q 6= p + q. More generally, if
G is any countably infinite discrete group, p is an element of βG \ G
which is right cancelable in βG, and q is any minimal idempotent in the
smallest compact subsemigroup of βG with p as a member, then there
is a a sequence 〈qα〉α<ω1

of idempotents in βG which is <R-increasing
with q0 = q.

1. Introduction

Given a discrete space X we take the Stone-Čech compactification βX

of X to be the set of ultrafilters on X, identifying the principal ultrafilters

with the points of X. A basis for the open sets of βX (as well as a basis for

the closed sets) is {A : A ⊆ X}, where A = {p ∈ βX : A ∈ p}. We write

X? = βX \X.

Sometime in the 1970’s or 1980’s Mary Ellen Rudin was asked by some,

now anonymous, analysts whether every point of Z∗ is a member of a

maximal orbit closure under the continuous extension σ̃ of the shift map

σ : Z→ Z defined by σ(n) = 1 + n. This question is still open. Although it

was not known at the time, this question turned out to be a question about

the algebraic structure of the compact right topological semigroup (βZ,+).

We pause to give a brief introduction to this structure.

Given a discrete semigroup (S, ·), there is a unique extension of the

operation to βS, also denoted by ·, with the property that (βS, ·) is right

topological (meaning that for each p ∈ βS, the function ρp : βS → βS

defined by ρp(q) = q · p is continuous) with S contained in its topological

center (meaning that for each x ∈ S, the function λx : βS → βS defined

by λx(q) = x · q is continuous). We systematically use the same symbol for

the extended operation on βS as for the operation on S. The reader should
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be cautioned that the operation on βS is very unlikely to be commutative,

even if the operation on S is commutative and is denoted by +. Given p

and q in βS and A ⊆ S, A ∈ p · q if and only if {x ∈ S : x−1A ∈ q} ∈ p,
where x−1A = {y ∈ S : x · y ∈ A}. If the operation is denoted by +

we have A ∈ p + q if and only if {x ∈ S : −x + A ∈ q} ∈ p, where

−x+ A = {y ∈ S : x+ y ∈ A}.
As with any compact Hausdorff right topological semigroup, βS has a

smallest 2-sided ideal, K(βS), which is the union of all minimal right ideals

of βS as well as the union of all minimal left ideals of βS. The intersection of

any minimal right ideal with any minimal left ideal is a group. In particular,

βS has idempotents. For detailed information about the algebraic structure

of βS see [5].

Returning to the analysts’ question above, one sees that the continuous

functions σ̃ and λ1 from βZ to βZ agree on the dense subspace Z, and so for

p ∈ βZ, σ̃(p) = 1 + p. Consequently, the orbit of σ̃ at p, {σ̃n(p) : n ∈ Z} =

Z+ p, and so the orbit closure is c`(Z+ p) = βZ+ p. Thus their question in

algebraic terms was whether every point of Z∗ is a member of some maximal

left ideal of βZ of the form βZ + p. Since for p ∈ Z∗, p = 0 + p ∈ βZ + p,

one could answer this question in the affirmative by showing that there is

no strictly increasing sequence of principal left ideals, that is left ideals of

the form βZ+p. This question also remains open. However, in [3, Corollary

1.8], it was shown that there is a strictly increasing sequence of principal

right ideals 〈pn+βZ〉∞n=0 in βZ. (They were called “left ideals” in [3] because

there βZ was taken to be left topological rather than right topological.) In

[6, Theorem 5.4], this result was extended by showing that one could take

each pn to be an idempotent. The extension is intimately related to one of

the orderings of idempotents.

Given idempotents p and q in (βS, ·),

(1) p ≤L q if and only if p · q = p;

(2) p ≤R q if and only if q · p = p; and

(2) p ≤ q if and only if p · q = q · p = p.

The partial orders ≤L and ≤R are not antisymmetric. We write p <R q

when p ≤R q and it is not the case that q ≤R p, and define p <L q similarly.

Given idempotents p and q in βS, one has that p ≤R q if and only if

p · βS ⊆ q · βS. (The necessity is trivial. For the sufficiency, observe that

p = p · p ∈ p · βS and if p ∈ q · βS, then p = q · r for some r ∈ βS so

q · p = q · q · r = q · r = p.) Therefore p <R q if and only if p · βS ( q · βS.



CHAINS OF IDEMPOTENTS 3

In these terms, the result of [6, Theorem 5.4] mentioned above says that

there is a sequence 〈pn〉∞n=0 of idempotents in βN such that pn <R pn+1 for

each n ∈ ω. (We take ω = {0, 1, 2, . . .} to be the first infinite ordinal and

let N = {1, 2, 3, . . .} = ω \ {0}.) Similarly, if one could show that there is a

sequence 〈pn〉∞n=0 of idempotents in βN such that pn <L pn+1 for each n ∈ ω,

one would obtain a strictly increasing sequence of principal left ideals of βZ.

The main result of this paper is that there is a sequence 〈qσ〉σ<ω1 of

idempotents in βN such that qσ <R qδ whenever σ < δ < ω1, where ω1 is

the first uncountable ordinal. It is also true that if (G, ·) is any countably

infinite discrete group, p ∈ G∗ is right cancelable in βG, and q is any

idempotent which is minimal (see below for the definition) in the smallest

compact subsemigroup Cp of βG which has p as a member, then there is

a sequence 〈qσ〉σ<ω1 of idempotents in βG such that qσ <R qδ whenever

σ < δ < ω1 and q0 = q.

If e is an idempotent in a compact right topological semigroup (T, ·), the

following statements are equivalent.

(1) e is minimal with respect to ≤L;

(2) e is minimal with respect to ≤R;

(3) e is minimal with respect to ≤;

(4) e is a member of the smallest ideal K(T ) of T .

For the proof of the above equivalence see [5, Theorems 1.36 and 2.9].

An idempotent satisfying these equivalent statements is said to be minimal

in T .

The semigroups Cp have a very rich algebraic structure, as shown in [5,

Section 8.5], and have been useful in studying the algebra of βN. For exam-

ple, the authors [4, Corollary 2.4] were able to answer the open question of

whether there are any idempotents in c`K(βN) \K(βN), by showing that

this set contains a semigroup of the form Cp and therefore contains 2c idem-

potents, where c = |R|. The results in this paper show, in particular, that

that there are uncountable increasing <R-chains of idempotents contained

in c`K(βN) \K(βN).

We remark that much more is known about decreasing chains of idempo-

tents. By [4, Theorem 3.1], given any nonminimal idempotent p in βN, there

are 2c nonminimal idempotents q such that q < p and there does not exist

an idempotent r such that q < r < p, from which it follows immediately

that there exists a sequence 〈pn〉n<ω of idempotents such that pn+1 < pn for

each n.



4 N. HINDMAN AND D. STRAUSS

For the relation <L, even more is known. Let λ be any ordinal with the

property that |λ| ≤ c (such as λ equal to the ordinal sum c + c + ω1) and

let q be any nonminimal idempotent in βN. There is a sequence 〈qσ〉σ<λ of

idempotents such that q0 = q, qσ+1 < qσ for each σ with σ + 1 < λ, and

qτ <L qσ whenever σ < τ < λ.

It is an old result [7, Lemma I.2.6] that given any idempotent p ∈ βN,

there is a ≤R-maximal idempotent q, with p ≤R q. But it was not known

until recently whether it could be shown in ZFC that ≤L-maximal idem-

potents exist. It was shown by Y. Zelenyuk in [8, Corollary 1.2] that if G

is any countably infinite discrete group, then there are idempotents in G∗

that are both minimal and ≤L-maximal. As a consequence, the same result

holds for N∗.
We remark that properties of idempotents in βS have had numerous ap-

plications to Ramsey Theory. In particular, order relations between idempo-

tents have provided algebraic proofs of important Ramsey theoretic results.

For example, A. Blass in [1, Theorem 8] gave a short and elegant proof of the

powerful Hales-Jewett Theorem, based on the order relation between two

idempotents in the Stone-Čech compactification of a semigroup of variable

words. The authors, in collaboration with T. Carlson, were able to prove

the even more powerful Graham Rothschild Parameter Sets Theorem by

proving the existence of an infinite decreasing chain of idempotents in the

Stone-Čech compactification of a larger semigroup of variable words [2].

The authors wish to thank the referee for a thoughtful and helpful report.

2. Preliminary results

Most of this section consists of a presentation of some of the details of

[5, Exercise 8.5.1]. Throughout this section we will assume that we have

an element p of N∗ which is right cancelable in βN. We will also assume

we have a strictly increasing sequence 〈bn〉∞n=1 such that for each k ∈ N, if

Pk = {bn : bn + k < bn+1}, then Pk ∈ p. (The existence of such a sequence

is guaranteed by [5, Theorem 8.27].) We let P = {bn : n ∈ N}.

Definition 2.1. (a) T = {bn1 + bn2 + . . . + bnk : if k > 1, then n1 <

n2 and for each i ∈ {2, 3, . . . , k} , bni+1 > (1 + 2 + . . .+ bni−1
) + bni}.

(b) For n ∈ N, Tn = {bn1+bn2+. . .+bnk : n1 > n , bn1+1 > 1+2+. . .+bn+

bn1 and if k > 1, then n1 < n2 and for each i ∈ {2, 3, . . . , k} , bni+1

> 1 + 2 + . . .+ bni−1
+ bni}.

(c) T∞ =
⋂∞
n=1 c`βNTn.
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An expression of the form bn1 + bn2 + . . . + bnk as in the definition of T

will be called a P -sum. As an example, the requirements for b2 + b5 + b9 to

be a P sum are that b6 > 1 + 2 + . . .+ b2 + b5 and b10 > 1 + 2 + . . .+ b5 + b9.

Lemma 2.2. Let a, k, l ∈ N and assume that bm1+. . .+bmk and bn1+. . .+bnl
are P -sums, bm1+1 > (1+2+. . .+a)+bm1, bm1 > a, and a+bm1 +. . .+bmk =

bn1 + . . .+ bnl. Then l > k and, if i = l− k, then a = bn1 + . . .+ bni and for

j ∈ {1, 2, . . . , k}, bmj = bni+j.

Proof. Suppose the conclusion fails and pick a counterexample with k+ l a

minimum among all counterexamples. Assume first that k > 1 and l > 1.

We cannot have mk = nl, for then the equation a + bm1 + . . . + bmk−1
=

bn1 + . . .+ bnl−1
would provide a smaller counterexample.

If mk < nl, then mk + 1 ≤ nl, so

bnl ≥ bmk+1 > 1+2+ . . .+bmk−1
+bmk ≥ a+bm1 + . . .+bmk = bn1 + . . .+bnl ,

a contradiction. If nl < mk, then nl + 1 ≤ mk so

bmk ≥ bnl+1 > 1 + 2 + . . .+ bnl−1
+ bnl ≥ bn1 + . . .+ bnl = a+ bm1 + . . .+ bmk ,

again a contradiction.

Thus we must have k = 1 or l = 1.

Case 1. k = 1 and l = 1. Then a + bm1 = bn1 so bn1 > bm1 and thus

m1 + 1 ≤ n1. Therefore bn1 ≥ bm1+1 > 1 + 2 + . . . + a + bm1 ≥ bn1 , a

contradiction.

Case 2. l = 1 and k > 1. Then a+ bm1 + . . .+ bmk = bn1 so n1 ≥ mk + 1.

Therefore bn1 ≥ bmk+1 > 1+2+ . . .+bmk−1
+bmk ≥ a+bm1 + . . .+bmk = bn1 ,

a contradiction.

Case 3. l > 1 and k = 1. Then a+bm1 = bn1 +. . .+bnl . If m1 < nl or m1 >

nl we derive a contradiction as in cases 1 and 2. So m1 = nl and thus the

conclusion of the lemma holds, and we did not have a counterexample. �

Lemma 2.3. The expression of an element of T as a P -sum is unnique.

Proof. Suppose that we have P -sums bm1 + . . .+ bmk and bn1 + . . .+ bnl such

that bm1 + . . .+ bmk = bn1 + . . .+ bnl but (m1,m2, . . . ,mk) 6= (n1, n2, . . . , nl)

and pick such an example with k + l a minimum among all examples.

Case 1. k > 1 and l > 1. Then mk 6= nl or else the equation bm1 + . . .+

bmk−1
= bn1 + . . .+ bnl−1

provides a smaller example. So assume without loss

of generality that mk+1 ≤ nl. Then bnl ≥ bmk+1 > 1+2+. . .+bmk−1
+bmk ≥

bm1 + . . .+ bmk = bn1 + . . .+ bnl , a contradiction.
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Case 2. k = 1 or l = 1. Assume without loss of generality that k = 1. If

l = 1 also, then there was not a counterexample, so l > 1. Then m1 ≥ nl+1

so bm1 ≥ bnl+1 > 1 + 2 + . . .+ bnl−1
+ bnl ≥ bm1 , a contradiction. �

Definition 2.4. Define ψ : T → N by ψ(bn1 + bn2 + . . . + bnk) = k and let

ψ̃ : c`βNT → βN be its continuous extension.

Recall that by we are denoting the smallest compact subsemigroup of

βN with p as a member by Cp.

Theorem 2.5. T∞ is a compact subsemigroup of N∗, Cp ⊆ T∞, the restric-

tion of ψ̃ to T∞ is a homomorphism, ψ̃(p) = 1, and ψ̃[Cp] = βN.

Proof. We first claim that for each n ∈ N, if k = 1 + 2 + . . . + bn, then

{bm ∈ Pk : m > n} ⊆ Tn. To see this let bm ∈ Pk such that m > n. Then

bm+1 > 1 + 2 + . . . + bn + bm so bm ∈ Tn. Thus, given n, since {bm ∈ Pk :

m > n} ∈ p, we have that p ∈ c`βNTn. Consequently, p ∈ T∞ and ψ̃(p) = 1.

To see that T∞ is a subsemigroup of βN, let m ∈ N and let x = bm1 +

. . . + bmk ∈ Tm, where bm1 + . . . + bmk is a P -sum as in the definition of

Tm. By [5, Theorem 4.20], it suffices to show that x + Tmk ⊆ Tm. So let

bn1 + . . . + bnl ∈ Tmk . To see that x + bn1 + . . . + bnl ∈ Tm we need that

bm1 + . . . + bmk + bn1 + . . . + bnl is as in the definition of Tm. If k > 1, we

only need to note that bn1+1 > 1 + 2 + . . .+ bmk + bn1 . If k = 1, we also need

to note that n1 > mk.

Further, with x = bm1 + . . .+ bmk and y = bn1 + . . .+ bnl as in the above

paragraph, we have that ψ(x+ y) = k+ l = ψ(x) +ψ(y), so by [5, Theorem

4.21], the restriction of ψ̃ to T∞ is a homomorphism.

Since p ∈ T∞, we have Cp ⊆ T∞. Since D = {p, p+p, p+p+p, . . .} ⊆ Cp

and ψ[D] = N, we have ψ̃[Cp] = βN. �

Lemma 2.6. Let x ∈ βN, let y ∈ T∞, and assume that x + y ∈ T∞. Then

x ∈ T∞.

Proof. Suppose that x /∈ T∞ and pick r ∈ N such that x /∈ c`βNTr. Let

X = N \ Tr and let Z = {a + bm1 + . . . + bmk : a ∈ X , bm1 + . . . + bmk is a

P -sum, bm1+1 > 1+2+ . . .+a+bm1 , and m1 > a}. We claim that Z ∈ x+y

for which it suffices that X ⊆ {a ∈ N : −a + Z ∈ y}. So let a ∈ X. We

claim that Ta ⊆ −a+ Z. To see this, let bm1 + . . .+ bmk be a P -sum in Ta.

Then m1 > a and bm1+1 > 1 + 2 + . . .+ ba + bm1 ≥ 1 + 2 + . . .+ a+ bm1 . so

a+ bm1 + . . .+ bmk ∈ Z as claimed.

Now x+ y ∈ T∞ ⊆ c`βNTr so pick w ∈ Z ∩ Tr. Since w ∈ Z, pick a ∈ X
and a P -sum bm1 + . . .+ bmk such that bm1+1 > 1+2+ . . .+a+ bm1 , m1 > a,
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and w = a+ bm1 + . . .+ bmk . Since w ∈ Tr, pick a P -sum bn1 + bn2 + . . .+ bnl
such that w = bn1 + bn2 + . . . + bnl , n1 > r, bn1+1 > 1 + 2 + . . . + br + bn1

and if k > 1, then n1 < n2. By Lemma 2.2, there is some i < l such that

a = bn1 + . . .+ bni , so that a ∈ Tr, a contradiction. �

Definition 2.7. (a) For n ∈ N, supp(n) is the finite set F ⊆ ω such

that n =
∑

t∈F 2t.

(b) Define φ : N→ ω by φ(n) = max supp(n).

(c) Define M : Z→ ω by M(n) =

{
φ(|n|) if n 6= 0

0 if n = 0 .

Lemma 2.8. (1) M [N] = ω;

(2) for all n < ω, {m ∈ Z : M(m) < n} is finite; and

(3) for all r and s in Z, if M(s) + 1 < M(r), then M(r + s) ∈
{M(r)− 1,M(r),M(r) + 1}.

Proof. Conclusions (1) and (2) are immediate. To verify conclusion (3), let

r, s ∈ Z and assume that M(s) + 1 < M(r). Note that r 6= 0. If s = 0, then

M(r + s) = M(r). So we assume s 6= 0.

If s > 0 and r > 0, then s < 2M(s)+1 and 2M(r) ≤ r < 2M(r)+1 so 2M(r) <

s+ r < 2M(s)+1 + 2M(r)+1 < 2M(r)+2 and thus M(r+ s) ∈ {M(r),M(r) + 1}.
If s < 0 and r < 0, then M(r + s) = M(−r +−s) ∈ {M(−r),M(−r) +

1} = {M(r),M(r) + 1}.
If s < 0 and r > 0, then 2M(s) ≤ −s < 2M(s)+1 ≤ 2M(r)−1 and 2M(r) ≤

r < 2M(r)+1 so 2M(r)−1 = 2M(r)−2M(r)−1 < s+r < 2M(r)+1 and consequently

M(r + s) ∈ {M(r)− 1,M(r)}.
If s > 0 and r < 0, then M(r + s) = M(−r + −s) ∈ {M(−r) −

1,M(−r)} = {M(r)− 1,M(r)}. �

3. Increasing right chains

We write H =
⋂∞
n=1 c`βN2nN. Given any p ∈ βN, Cp is a compact right

topological semigroup, so it has a smallest ideal and idempotents minimal

in Cp.

Lemma 3.1. Assume that p ∈ N∗, p is right cancelable in βN, and q is

an idempotent which is minimal in Cp. There exist p′ ∈ Cp ∩ H and an

idempotent q′ which is minimal in Cp′ such that p′ is right cancelable in βN,

q <R q
′, and p′ + q = q.

Proof. Let T∞ and ψ be as defined in Section 2 for p. Then by Theorem

2.5, ψ̃ is a homomorphism on T∞, Cp ⊆ T∞, and ψ̃[Cp] = βN. Let φ and

M be as in Definition 2.7. By [5, Lemma 6.8] if r ∈ βN and s ∈ H, then
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φ̃(r + s) = φ̃(s). And, of course, for r ∈ βN, M̃(r) = φ̃(r). By Lemma 2.8,

M satisfies the conclusion (as f) of [5, Lemma 6.47] with S = Z, T = N,

and κ = ω.

Pick an injective sequence 〈xn〉∞n=1 in {2t : t ∈ N}∗ = c`βN{2t : t ∈
N} \ N. We claim 〈φ̃(xn)〉∞n=1 is also injective. So let n 6= m be given. Pick

A ⊆ {2t : t ∈ N} such that A ∈ xn and {2t : t ∈ N} \ A ∈ xm. Let

B = {t ∈ N : 2t ∈ A}. Then φ[A] = B and φ[{2t : t ∈ N} \ A] = N \ B so

B ∈ φ̃(xn) and N \B ∈ φ̃(xm).

By thinning the sequence we may assume that {φ̃(xn) : n ∈ N} is dis-

crete. For each n ∈ N pick yn ∈ Cp such that ψ̃(yn) = xn. Then Cp + yn is a

left ideal of Cp which therefore contains a minimal left ideal of Cp and q+Cp

is a minimal right ideal of Cp. Recalling that in any compact Hausdorff right

topological semigroup, the intersection of a minimal left ideal and a minimal

right ideal is a group, we may pick an idempotent qn ∈ (Cp + yn)∩ (q+Cp)

and pick sn ∈ Cp such that qn = sn + yn. Let p′ be a cluster point of the

sequence 〈qn〉∞n=1. Since by [5, Lemma 6.6] all idempotents of βN are in H,

we have that p′ ∈ Cp ∩H.

Let r = ψ̃(p′) and note that r is a cluster point of 〈ψ̃(qn)〉∞n=1. Now, given

n ∈ N, ψ̃(qn) = ψ̃(sn + yn) = ψ̃(sn) + ψ̃(yn) = ψ̃(sn) + xn and since xn ∈ H,

φ̃(ψ̃(sn) + xn) = φ̃(xn). That is, M̃
(
ψ̃(qn)

)
= φ̃

(
ψ̃(qn)

)
= φ̃(xn). Since

{φ̃(xn) : n ∈ N} is discrete and r is a cluster point of 〈ψ̃(qn)〉∞n=1, we have

by [5, Theorem 6.54.4] with S = Z and T = N that (Z+ r)∩ (Z∗+Z∗) = ∅.
We claim that r is right cancelable in βZ. By (9)⇒ (3) of [5, Theorem

8.11] with S = T = Z, it suffices to show that for a ∈ Z and s ∈ βZ \ {a},
a+ r 6= s+ r. If s ∈ Z, this holds by [5, Corollary 8.2]. If s ∈ Z∗, this holds

because (Z + r) ∩ (Z∗ + Z∗) = ∅.
Next we claim that p′ is right cancelable in βN. Suppose not and by

[5, Theorem 8.18] pick an idempotent e ∈ N∗ such that p′ = e + p′. Now

p′ ∈ Cp ⊆ T∞ so by Lemma 2.6, e ∈ T∞ and thus by Theorem 2.5, r =

ψ̃(p′) = ψ̃(e) + ψ̃(p′) = ψ̃(e) + r so by [5, Theorem 8.18], r is not right

cancelable in βN, hence not right cancelable in βZ, a contradiction.

For each n ∈ N, qn ∈ q +Cp so qn +Cp ⊆ q +Cp and, since q is minimal

in Cp, q+Cp is a minimal right ideal of Cp, so qn+Cp = q+Cp and therefore

qn + q = q. That is ρq is constantly equal to q on {qn : n ∈ N}, so p′+ q = q.

Since p′ ∈ {y ∈ βN : y+ q = q} = ρ−1q [{q}] we have {y ∈ βN : y+ q = q}
is a compact subsemigroup of βN with p′ as a member and thus Cp′ ⊆ {y ∈
βN : y + q = q}. Let q′ be a minimal idempotent in Cp′ . Then q′ + q = q so

q ≤R q′. It remains only to show that the inequality is strict.
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We have that ψ̃−1[Cr]∩Cp is a compact subsemigroup of βN with p′ as a

member, so Cp′ ⊆ ψ̃−1[Cr]. We have that r is right cancelable in βZ (not just

in βN), so by [5, Theorem 8.57], Cr∩K(βZ) = ∅ and therefore Cr∩K(βN) =

∅. Further, ψ̃−1[K(βN)] ∩ Cp is an ideal of Cp so K(Cp) ⊆ ψ̃−1[K(βN)]. If

we had some s ∈ Cp′∩K(Cp), we would have ψ̃(s) ∈ Cr∩K(βN). Therefore

Cp′ ∩ K(Cp) = ∅. If q′ ≤R q, then q′ = q + q′ ∈ K(Cp) ∩ Cp′ . Therefore

q <R q
′. �

In the above proof note the distinction between right cancelability in

βN versus βZ. (One has p and p′ right cancelable in βN while r is right

cancelable in βZ.) By [5, Example 8.29], right cancelability in βN does not

imply right cancelability in βZ.

The above proof cites [5, Theorem 8.57] and the proof of Corollary 3.3

below cites [5, Corollary 8.62]. These results use [5, Lemma 8.48] which

is incorrect as stated. We include a corrected statement and proof in an

appendix.

In the proof of the following theorem we shall inductively construct two

ω1 sequences, 〈pσ〉σ<ω1 and 〈qσ〉σ<ω1 where each pσ is right cancelable in βN
and 〈qσ〉σ<ω1 is a <R-increasing chain of idempotents, with each qσ being a

minimal idempotent in Cpσ .

Theorem 3.2. Let p be a right cancelable element of βN and let q be a

minimal idempotent in Cp. There exists a sequence 〈qσ〉σ<ω1 of idempotents

in βN such that q0 = q and qσ <R qδ whenever σ < δ < ω1.

Proof. Let p0 = p and q0 = q. Let 0 < α < ω1 and assume we have chosen

〈pσ〉σ<α and 〈qσ〉σ<α such that

(1) if 0 < δ < α, then pδ ∈ H;

(2) if δ < α, then pδ is right cancelable in βN;

(3) if δ < α, then qδ is a minimal idempotent in Cpδ ;

(4) if δ < σ < α, then qδ <R qσ;

(5) if δ < σ < α, then pσ ∈ Cpδ ; and

(6) if δ < σ < α, then pσ + qδ = qδ.

The hypotheses hold for α = 1, all but (2) amd (3), vacuously.

Case 1. α = γ+ 1 for some γ. By hypotheses (2) and (3) and Lemma 3.1

we may pick pα ∈ Cpγ∩H which is right cancelable in βN and an idempotent

qα which is minimal in Cpα such that qγ <R qα and pα + qγ = qγ. One

sees immediately that hypotheses (1) through (4) hold at α + 1. To verify

hypothesis (5), let δ < α. If δ = γ, we have pα ∈ Cpδ directly. Otherwise, by

assumption pγ ∈ Cpδ by assumption so pα ∈ Cpγ ⊆ Cpδ .
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To verify hypothesis (6), again if δ = γ we have pα + qδ = qδ directly,

so assume δ < γ. Then pα + qγ = qγ and, since qδ <R qγ, qγ + qδ = qδ so

pα + qδ = pα + qγ + qδ = qγ + qδ = qδ.

Case 2. α is a limit ordinal. Choose a cofinal sequence 〈δ(n)〉n<ω in α

such that δ(0) > 0 and δ(n) < δ(n+ 1) for each n < ω. Let pα be a cluster

point of the sequence 〈pδ(n)〉n<ω. Let qα be a minimal idempotent in Cpα .

Since pδ(n) ∈ H for each n < ω, we have pα ∈ H.

We claim that pα is right cancelable in βN. Suppose not and by [5,

Theorem 8.18] pick an idempotent e ∈ N∗ such that pα = e + pα. Then

pα ∈ βN+pα = c`βN(N+pα) and pα ∈ c`βN{pδ(n) : n < ω} so by [5, Theorem

3.40], either there is some n ∈ N such that n + pα ∈ c`βN{pδ(n) : n < ω}
or there is some n < ω such that pδ(n) ∈ βN + pα. The first alternative is

impossible because pα ∈ H and {pδ(n) : n < ω} ⊆ H. So pick n < ω and

x ∈ βN such that pδ(n) = x + pα. Let T∞ and ψ be as defined in Section

2 for pδ(n). Since pδ(m) ∈ Cpδ(n) for all m > n by hypothesis (5), we have

pα ∈ Cpδ(n) ⊆ T∞. Since also pδ(n) ∈ T∞, we have by Lemma 2.6 that x ∈ T∞.

But now, by Theorem 2.5, 1 = ψ̃(pδ(n)) = ψ̃(x) + ψ̃(pα) which is impossible.

Thus hypothesis (2) holds.

Hypothesis (3) holds directly. To verify hypotheses (4), (5), and (6), let

σ < α and pick n < ω such tht σ < δ(n) < α. For each m with n < m < ω,

we have by hypothesis (6) that pδ(m) + qδ(n) = qδ(n) so pα + qδ(n) = qδ(n).

Therefore {y ∈ βN : y + qδ(n) = qδ(n)} is a compact subsemigroup of βN
with pα as a member so Cpδ(n) ⊆ {y ∈ βN : y + qδ(n) = qδ(n)}. Therefore

qα + qδ(n) = qδ(n) so qσ <R qδ(n) ≤R qα and we have verified hypothesis

(4). Also, for each m ≥ n we have pδ(n) ∈ Cpσ so pα ∈ Cpσ as required by

hypothesis (5). Since for all m ≥ n, pδ(m) + qσ = qσ, we have pα + qσ = qσ

as required by hypothesis (6). �

Corollary 3.3. Let G be a countably infinite discrete group, let p ∈ G∗ be

a right cancelable element of βG and let q be a minimal idempotent in Cp.

There exists a sequence 〈qσ〉σ<ω1 of idempotents in βG such that q0 = q and

qσ <R qδ whenever σ < δ < ω1.

Proof. By [5, Corollary 8.62] there exist an element r ∈ N∗ such that {2n :

n ∈ N} ∈ r and a function f taking Cp (which is a subset of βG) onto

Cr such that f is an isomorphism and a homeomorphism. By [5, Theorem

8.27] r is right cancelable in βN. Since f(q) is a minimal idempotent in Cr,

Theorem 3.2 applies. �
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Corollary 3.4. Let G be a countably infinite discrete group and let q be a

minimal idempotent in βG. Then there is a sequence 〈qσ〉σ<ω1 of idempotents

in βG such that q0 = q and qσ <R qδ whenever σ < δ < ω1.

Proof. By [5, Lemma 6.47] pick a function f : G→ ω such that

(1) f [G] = ω;

(2) for each n < ω, f−1[{n}] is finite; and

(3) for r, s ∈ G, if f(s)+1 < f(r), then f(sr) ∈ {f(r)−1, f(r), f(r)+1}.

Let f̃ : βG → βω be the continuous extension of f and note that by (1),

f̃ [βG] = βω.

Pick an injective sequence 〈xn〉∞n=1 in 3N \ N such that {xn : n ∈ N} is

discrete and note that
{
xn + i : n ∈ N and i ∈ {−1, 0, 1}

}
is discrete. Given

n ∈ N, pick vn ∈ βG such that f̃(vn) = xn and note that vn ∈ G∗. Then

by [5, Lemma 6.54.2], βGvn ⊆ f̃−1[{xn− 1, xn, xn + 1}. Pick an idempotent

pn ∈ βGvn∩qβG. Note that pnβG ⊆ qβG so pnβG = qβG and consequently

pnq = q.

Pick an accumulation point p of the sequence 〈pn〉∞n=1. By [5, Theorem

6.54.4], Gp ∩ G∗G∗ = ∅ so by [5, Theorem 8.11(9) and Corollary 8.2], p is

right cancelable in βG. Since pnq = q for each n ∈ N, pq = q and thus Cp ⊆
{x ∈ βG : xq = q} because {x ∈ βG : xq = q} is a compact subsemigroup

of βG. Pick a minimal idempotent r ∈ Cp and pick by Corollary 3.3 a

sequence 〈qσ〉σ<ω1 of idempotents in βG such that q0 = r and qσ <R qδ

whenever σ < δ < ω1. Since r ∈ Cp, we have rq = q so q ≤R r and thus we

may replace q0 by q. �

A sequence 〈xn〉∞n=1 in a semigroup (S, ·) has distinct finite products if and

only if, whenever F and H are finite nonempty subsets of N and
∏

t∈F xt =∏
t∈H xt (where both products are written in increasing order of indices),

one has F = H.

Corollary 3.5. Let S be a semigroup which has some sequence which has

distinct finite products. Then there is a sequence 〈qσ〉σ<ω1 of idempotents in

βS such that qσ <R qδ whenever σ < δ < ω1.

Proof. By [5, Theorem 6.27], βS contains an algebraic and topological copy

of H and all idempotents of βN are in H so Theorem 3.2 applies. �

Question 3.6. Are there increasing <R chains of idempotents in βN in-

dexed by c? Can there be such chains indexed by a cardinal greater than

c?
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Idempotents that are minimal in Cp for some right cancelable p ∈ N∗

played a crucial role in the proof of Theorem 3.2. By induction hypothesis

(5) in the proof, the sequence 〈qσ〉σ<ω1 lies in Cp, so no idempotent which is

maximal with respect to <R can be minimal in Cp. Further, by [5, Theorem

8.57], q can not be minimal in βN, since Cp∩K(βN) = ∅. We have not been

able to find any other restrictions.

Question 3.7. Can one characterize those idempotents q in βN such that

there is some right cancelable p ∈ N∗ for which q is minimal in Cp?

Appendix. In this Appendix we give corrections to the results of [5,

Section 8.5] employed in the present paper. We start with a corrected version

of [5, Lemma 8.48] and its proof.

Lemma 8.48. Let a ∈ G\{e} and pick r ∈ N such that a < br. Let k, l ∈ N
and assume that bm1bm2 · · · bmk and bn1bn2 · · · bnl are P -products such that

abm1bm2 · · · bmk = bn1bn2 · · · bnl and bm1 ∈ Pr. Then k < l and, if i = l − k,

then a = bn1bn2 · · · bni and mj = ni+j for each j ∈ {1, 2, . . . , k}.

Proof. Suppose the conclusion fails and pick a counterexample with k+ l a

minimum among all counterexamples. Note that bm1 ∈ Pr and

{b1, b2, . . . , br} ⊆ Fr

so m1 > r.

Assume first that k > 1 and l > 1. If nl−1 ≥ mk−1, we have

bnl = (bn1 · · · bnl−1
)−1(abm1 · · · bmk−1

)bmk

and, since bnl /∈ Fnl−1
P , we must have that abm1 · · · bmk−1

= bn1 · · · bnl−1
and

bnl = bmk so there is a smaller counterexample. Similarly, if nl−1 < mk−1,

we get a smaller counterexample because of the equation

bmk = (abm1 · · · bmk−1
)−1(bn1 · · · bnl−1

)bnl .

Therefore we must have k = 1 or l = 1. Suppose that l = 1. Then

bm1 · · · bmk = a−1bn1 . If k = 1, this says that bm1 = a−1bn1 ∈ FrP , a con-

tradiction. If k > 1, this says bmk = (abm1 · · · bmk−1
)−1bn1 so bmk ∈ Fmk−1

P

unless abm1 · · · bmk−1
= e. But if k − 1 = 1, the equation abm1 = e says

that bm1 ∈ Fr while if k − 1 > 1, the equation abm1 · · · bmk−1
= e says that

bmk−1
∈ Fmk−2

.

Thus we must have k = 1 and l > 1. If nl−1 ≤ r we get

bm1 = a−1(bn1 · · · bnl−1
)bnl

so a−1(bn1 · · · bnl−1
) = e; that is a = bn1 · · · bnl−1

and m1 = nl, so this is

not a counterexample. If nl−1 > r, we get bnl = (bn1 · · · bnl−1
)−1abm1 so
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(bn1 · · · bnl−1
)−1a = e and we again conclude that we don’t have a coun-

terexample. �

The lemmas and the theorem in [5] that cited Lemma 8.48 are all correct

as stated (except for a typo in the statement of Lemma 8.64), but all need

adjustments to their proofs – in the case of Lemma 8.49, the proof needs

replacement.

Lemma 8.49. The expression for an element of T as a P -product is unique.

Proof. Assume that there are P -products bm1bm2 · · · bmk and bn1bn2 · · · bnl
such that bm1bm2 · · · bmk = bn1bn2 · · · bnl but

(m1,m2, . . . ,mk) 6= (n1, n2, . . . , nl)

and pick such products with k + l a minimum. As in the proof of Lemma

8.48 above, if k > 1 and l > 1, then bnk = bnl and so the equation

bm1bm2 · · · bmk−1
= bn1bn2 · · · bnl−1

provides a smaller example.

Thus we can assume without loss of generality that k = 1. If also l = 1,

then bm1 = bn1 , so we must have l > 1. But then (bn1 · · · bnl−1
)−1bm1 = bnl

and so bnl ∈ Fnl−1
P , a contradiction. �

For the proof of Lemma 8.57, the sentence “For each a ∈ G, the set

Xa = {bn : n ∈ Q , bn > a, and bn > a−1} ∈ x.” should be replaced by

“For each a ∈ G, pick ra ∈ N such that a < bra and let Xa = {bn : n ∈
Q and bn ∈ Pra}. Note that Xa ∈ x.”

For the proof of Lemma 8.59, the sentence “For each a ∈ G, let Qa

denote the set of P -products bn1bn2 · · · bnk with bn1 > a and bn1 > a−1.”

should be replaced by “For each a ∈ G, pick ra ∈ N such that a < bra and

let Qa denote the set of P -products bn1bn2 · · · bnk such that bn1 ∈ Pra .”
For the proof of Theorem 8.63, the sentence “If we choose n such that

a < bn and a < b−1n , it follows from Lemma 8.48 that aTn∩Tm = ∅.” should

be replaced by “If we choose r ∈ N such that a < br and choose n such that

bn ∈ Pr, it follows from Lemma 8.48 that aTn ∩ Tm = ∅.”
Finally, the statement of Lemma 8.64 needs to specify that x 6= e and

the proof needs revision.

Lemma 8.64. Let G be a countably infinite discrete group and let p be a

right cancelable element of G∗. Suppose that x ∈ βG \ {e}, y ∈ T∞, and

xy ∈ T . Then x ∈ T .

Proof. Suppose that x /∈ T and let X = G \ (T ∪ {e}). For each a ∈ X,

pick ra ∈ N such that a < ra. Let Z be the set of all products of the form

abn1bn2 · · · bnk where bn1bn2 · · · bnk is a P -product, a ∈ X, and bn1 ∈ Pra .
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By Theorem 4.15, Z ∈ xy. Since T ∈ xy, pick a ∈ X and a P -product

bn1bn2 · · · bnk such that bn1 ∈ Pra and abn1bn2 · · · bnk ∈ T . Then by Lemma

8.48, a ∈ T , a contradiction. �
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