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Abstract

Let S be a discrete semigroup and let the Stone-Cech compactification 58S of
S have the operation extending that of S which makes 8S a right topological
semigroup with S contained in its topological center. Let S* = S\ S. Al-
gebraically, the set of products S*S* tends to be rather large, since it often
contains the smallest ideal of 5S. We establish here sufficient conditions in-
volving mild cancellation assumptions and assumptions about the cardinality
of S for S*S* to be topologically small, that is for S*S* to be nowhere dense
in S*, or at least for S* \ S*S* to be dense in S*. And we provide examples
showing that these conditions cannot be significantly weakend. These extend
results previously known for countable semigroups. Other results deal with large
sets missing S*S* whose elements have algebraic properties, such as being right
cancelable and generating free semigroups in 35.
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1. Introduction

Let (S, -) be a discrete semigroup. We take the Stone-Cech compactification
BS of S to be the set of ultrafilters on S with the points of S identified with
the principal ultrafilters. Given A C S, we let A = {p € BS : A € p}. The set
{A: AC S} is a basis for the open sets of 35 as well as a basis for the closed
sets. The operation on S extends uniquely to 55 so that (85, -) becomes a right
topoological semigroup (meaning that the function p, defined by p,(z) = z-pis
continuous for each p € 55) with S contained in its topological center (meaning
that the function A, defined by A\, (x) =y - z is continuous for each y € S). So,
if p,q € S, p-q = lim lim st, where s and ¢ denote elements of S. Given p and

s—pt—q
qgin BS and A C S, one has A € p- ¢ if and only if {x € S: 2714 € ¢} € p,
where z7'A={ye S:z-ye A}

If T is a subset of a set S, we shall regard 87 as a subset of 55 by identifying
each p € ST with the unique ultrafilter in 58S which contains p.

As does any compact Hausdorff right topological semigroup, 85 has a small-
est two sided ideal, K (8S5), which is the union of all of the minimal right ideals
and is also the union of all of the minimal left ideals. For an elementary intro-
duction to the algebraic structure of 55, see [5, Part I].

We let S* = 85\ S. Let N be the set of positive integers. In an early paper
[7] on the algebraic structure of 85, the second author of this paper showed
that the elements of N* \ (N* + N*) generate a semigroup which is almost free
(subject only to the restriction that for p € N* and n € Z, p and p+n commute),
and that a corresponding assertion holds for (5N, ). From a topological point
of view, N* \ (N* + N*) is most of N*, that is N* + N* is nowhere dense in N*.
(As we remarked in the abstract, N* + N* is algebraically quite large since it
contains K (AN) and therefore contains 2° minimal right ideals, 2¢ minimal left
ideals, and 2 copies of the free group on 2¢ generators.)

That is the point of departure of this paper. We investigate here what
properties of a semigroup S guarantee that S*S* is nowhere dense in S* or,
failing that, that S*\ S*S* is dense in S*. For example, we show that if S is
embeddable in a group, then regardless of its size, S*S* is nowhere dense in
S*. But there is a cancellative semigroup with |S| = ¢ for which $*S* is not
nowhere dense in S*.

The points that we produce in S* \ S*S* tend to have the property that
they are right cancelable in 8S. Left and right cancellation properties have
been extensively studied. See, for example, [1], [2], [4], and [6].

Definition 1.1. Let S be a semigroup and let A C S.

(a) A is a left solution set if and only if there exist @ and b in S such that
A={x €S :ax=>}



(b) A is a right solution set if and only if there exist a and b in S such that
A={x €S :za=0}

Notice that S is left cancellative if and only if each left solution set has at
most one member.

We let w = NU{0}. Then w is the first infinite cardinal (and also the first
infinite ordinal).

Definition 1.2. Let S be a semigroup with |S| =k > w.

(a) S is weakly left cancellative if and only if every left solution set in S is
finite.

(b) S is weakly right cancellative if and only if every right solution set in S' is
finite.

(¢) S is very weakly left cancellative if and only if whenever B is a set of left
solution sets in S with |B| < , one has ||JB| < &.

(d) S is very weakly right cancellative if and only if whenever B is a set of
right solution sets in S with |B| < &, one has ||JB| < k.

(e) Given p € 55, the norm of p, ||p|| = min{|A| : A € p}.
(f) Us = Ux(5) = {p € BS : [Ipl| = 5}

Notice that if « is regular, then S is very weakly left cancellative if and only
if every left solution set has cardinality less than k. In particular, if |S| = w,
then weakly left cancellative and very weakly left cancellative are equivalent
notions.

In Section 2 of this paper we investigate conditions on S guaranteeing that
S*S* is nowhere dense in S* and conditions guaranteeing that S*U, is nowhere
dense in U,.

In Section 3 we deal with conditions guaranteeing that S*\ S*S* is dense in
S*, a conclusion weaker than the assertion that S*S* is nowhere dense in S*.

Some of the results about S*S* include conclusions about right cancelable
elements of U;. In Section 4 we investigate the problem of producing right
cancelable elements p of S* with ||p|| < k =|95].

2. Nowhere dense products

We will be concerned first with determining whether S*S* is nowhere dense
in S*. For that, we would, of course, like to have S*S* C S*, that is that S* is
a subsemigroup of 5S. All of our results about S*S* involve semigroups that
satisfy cancellation conditions, which are usually weaker than cancellativity. By
[6, Theorem 4.31 and Corollary 4.33], if S is weakly left cancellative, then S* is
a left ideal of 8S, while if S is right cancellative, then S* is a right ideal of 8.S.

We remark that it was previously known [5, Theorem 6.35] that if |S| = w
and S is right cancellative and weakly left cancellative, then S*S™* is nowhere



dense in S*. And it has been noted before that the assumption cannot be
weakened to weakly right cancellative and weakly left cancellative. Indeed,
given n,m € N, let n V. m = max{n,m}. Then (N,V) is both weakly right
cancellative and weakly left cancellative, while every element of (8N, V) is an
idempotent, so N* v N* = N*.

We aim to investigate this question for semigroups of arbitrary cardinality.
We observe that the algebraic properties of uncountable semigroups are often
far more challenging to handle.

For A C S, we write A* = AN S*. The following is our only positive result
which does not have a restriction on |S|.

Theorem 2.1. Let S be an infinite semigroup which is embeddable in a group
G. Then S* N (G*G*) is nowhere dense in S*. In particular S*S* is nowhere
dense in S*.

Proof. Suppose A is an infinite subset of S and A* C ¢/(G*G*). Pick t; € A.

Inductively, for s > 1, having chosen <tn>f,;117 choose

te € A\ {tot ' - mym,r < s}

Note that t5 ¢ {t, : n € {1,2,...,s —1}}. Let V = {t;, : s € N}. Then
V is infinite so V* N G*G* # (). So pick p,q € G* such that V € pq. Then
{x € G:27'V € ¢} € p so pick distinct z; and zy in G such that z;'V € ¢
and z;,'V € ¢q. Pick y € 7'V Nay 'V and let n,r € N such that x1y = t,, and
Toy = tp.

Now {w eSS nw e {t17t2,...,tmax{n)T}} is finite and 7'V N a;'V
is infinite, so pick w € 27V Ny 'V and m,s > max{n,r} in N such that
1w = t,, and zow = ts. Assume without loss of generality that s > m. Then
tot,t = xoxyt = t.t; ! so t, = t,t; ', a contradiction. O

We show now that cancellation is not necessary for a semigroup S with
|S| = ¢ to have S*S* nowhere dense in S*.
Given a set A and a cardinal k, we let [A]* ={B C A:|B| = k}.

Theorem 2.2. Let S = {f: (3D CN)(I[N\ D| <w and f : DULN)} with the
operation of composition. Then S is a semigroup, |S| = ¢, S is not cancellative
(though S is right cancellative and weakly left cancellative), and S*S* is nowhere
dense in S*.

Proof. Tt is routine to verify that S is closed under composition, |S| = ¢, S is
right cancellative, S is not left cancellative, and S is weakly left cancellative.
We establish first the following two assertions.

(*) Let t’l’L7t7'7tm € S. Then
IN\{a € dom(t,,) : t,;* (tm(a)) € dom(t,)}| < [N\dom(ty,)|+[N\dom(t,)]| .

In particular, {a € dom(ty,) : t;* (tm(a)) € dom(t,)} is cofinite.



(**) Let A be a cofinite subset of N and let v: AXBN. Then C={t€ S: AC
dom(t) and t|4 = v} is finite.

To verify (*), note that N\ {a € dom(t,) : t,; (tm(a)) € dom(t,)} =
(N\ dom(t,)) U{a € dom(ty,) : t,;* (tm(a)) ¢ dom(t,)} and
tyt oty {a € dom(ty) : ;' (tm(a)) ¢ dom(t LN dom(t,.).

To verify (**), note that if [N\ v[A]| > [N\ 4|, then C = 0, so we assume
that r = [N\ v[A4]] < N\ A| = m. Then

C =Upepnap-{t € S:dom(t) = AUD and ¢p : DELN\ v[A]},

onto

and for each D € [N\ A", {t € S : dom(t) = AU D and t|p : D=LN\ v[A]} is
finite.

Suppose we have infinite V' C S such that V* C ¢f(5*S*). We claim that
we can choose a sequence (t,)%2; in V with the property that if s > 1 and
n,r,m € {1,2,...,s — 1}, then there do not exist x1,zs,y,w € S such that
1Y = tp, Toy = tp, T1wW =ty and Tow = t.

So let t; € V and assume that s > 1 and (t,) -} have been chosen. For
n,r,m € {1,2,...,8— 1}, let

Dyprm={teS: (Fr1,z2,y,w € S)(x1y =ty , T2y = tr,
W = by, and zow =t)}.

We shall show that each D, ., is finite. So let n,r,m € {1,2,...,s —1}. We
will show that if ¢ € Dy, a € dom(ty,), and ¢, (tm(a)) € dom(t,), then
t(a) = ty(t;"(tm(a))) so that, by (*) and (**) (where A = {a € dom(ty,) :
t7t (tm(a)) € dom(t,)} and v = t, ot  otp,), Dy is finite. So let ¢ € Dy
and pick x1,22,y,w € S such that 1y =t,, xoy = t,, T1w = t,, and xow =t
and let a € dom(t,,) such that ;' (t,,(a)) € dom(t,).

Since a € dom(t )7 w(a)) = tm(a) and thus w(a) = 27" (tm(a)). Since

£ (tm(a)) € dom(t ( ))) to (£ (tm(@))) = tm(a) s0
( (tm )) =27 (tm(a)) =w(a).

Since ¢, (tm(a)) € dom(t,), we have

22 (w(@)) = 22 (y(t (tn(@))) ) = to (5" (tun(@))

so t(a) = z2(w(a)) =ty (t;* (tm(a))) as claimed.
Thus we may choose

ts EV\({tn:ne{1,2,...,3}}UU{Dmr,m:n,r,m€{1,2,...,s—1}}).

Let A = {t, : n € N}. Then A* N S*S* % () so pick p,q € S* such that
A € pq. Pick distinct x; and x5 in S such that :vflA N m;lA € q. Pick
Yy € xl_lA N xQ_IA and pick n,r € N such that z;y = t,, and z2y = t,.. By right
cancellation, assume without loss of generality that n < 7.



Since S is weakly left cancellative, {w € S : zyw = t,, or zow = ¢, } is finite,
so pick w € xflAﬁxglA such that zyw # t,, and xow # t,.. Pick m, s € N such
that 1w = t,, and zqw = ts. We have that {z € S : 12 = t,, or z2z = 5}
is finite so pick z € asl_lA N xz_lA such that z1z # t,,, xoz # t,., x12 # t,,, and
oz # ts. Pick k,l € N such that z12z =t and x5z = t;. By right cancellation
we have that m # s and k # [.

Case 1. Either m < s or k < [. Assume without loss of generality that
m < s and that r < s. But then t;, € D, ,,,, a contradiction.

Case 2. m > s and k > [. Assume without loss of generality that m > k.
Since x2z = t;, T12 = t§, Tow = tg, and 1w = t,, we have that ¢,, € Dy s, a
contradiction. O

Lemma 2.3. Let S be an infinite semigroup and assume that S* is a subsemi-
group of 8S. The following statements are equivalent.

(a) S*S* is not nowhere dense in S*.

(b) AV € [SI)(VA € [V]*)(3Han)7Zr) Blyn)iir) ((wn)7sy and (yn)72, are
injective sequences in S and (Vk € N)(Vn € N)(n > k = ay, € A)).

Proof. To see that (a) implies (b), assume that we have V' € [S]“ such that V* C
cl(S5*S*). Let A € [V]“ be given. Then AN(S*S*) # () so pick p and ¢ in S* such
that A € pg. Then {z € S : 271 A € ¢} € p and is therefore infinite. Let (z,,)3,
be an injective sequence in {x € S : 27*A € ¢}. Pick y; € S. Inductively for
n € N, having chosen (y)7, pick yn11 € (Mp—y 2 "A)\ {y1, 2, - Yn}-

For the other implication assume we have V' as guaranteed by (b). We claim
that V* C ¢f(S*S*). So let » € V* be given. To see that r € cf(S5*S*), let
A € r be given with A C V. Pick injective sequences (z,)5°; and (y,)5; as
guaranteed for A. Pick p € S* such that {x, : n € N} € p and pick ¢ € S* such
that {{y, :n >k} :k €N} Cq. Then {z,: ke N} C{seS:stAe€q}so
A€ pq. O

We see now that, unlike the countable situation, cancellation is not sufficient
to guarantee that S*S* is nowhere dense in S*.

Theorem 2.4. There is a cancellative semigroup S with |S| = ¢ such that S*S*
is not nowhere dense in S*.

Proof. Let L ={z, :n e N}U{zop:0<cand ke N} U{y,r:0<cand k€
N} where the z,’s, z,1’s and y,1’s are all distinct.

Let V = {z, : n € N}. Enumerate [V]* as (A, )o<c, and for o < ¢, enumerate

A, as <<w0,k7n>g°:1>n:k+1.

Let S be the set of all words ay - - - a; (with each a; in L) that do not have
any ¢ € {1,2,...,t — 1}, any 0 < ¢, and any k < n in N such that a; = z,
and @j4+1 = Yo,n. For words u = a;---a; and v = by ---bs in S, define u - v
as ordinary concatenation unless there exist ¢ < ¢, and k¥ < n in N such that
a; = Ty, and by = Y5 pn, in which case u - v = ay - - a1 W4 kb2 - - - bs, Where,
for example, a; - -+ a;—1 is the empty word if t = 1.



By Lemma 2.3 it suffices to verify that with this operation, S is a cancellative
semigroup since (Zgn)52; and (Y, )22, are as required by this lemma for A, €
V],

To verify associativity, let v = ay---ay, v = by ---bs, and w = ¢1--- ¢, be
words in S. If it is not the case that by = y,,, or by = x, ,, for some o < ¢ and
some n,m € N then both (u-v)-w and u - (v-w) are ordinary concatenation,
hence equal.

Case 1. b1 = Yo, and by = z, , for some o < ¢ and some n,m € N. (In this
case necessarily s > 2.)

Case la. a; # x, for any k € {1,2,...,n — 1} and ¢; # y,,; for any

[ > m. In this case again both products are ordinary concatenation.

Case 1b. a; = x5 for some k € {1,2,...,n — 1} and ¢; # y,,; for
any [ > m. Then

(u.’v).w:al...atilwo_’k’an...bscl...cr:u.(v.w).

Case 1c. a; # xs ) for any k € {1,2,...,n—1} and ¢; = y,,; for some
[ > m. Then

(u-v) - w=ay---aby - -bs_1Wrmc2---cr =u-(v-w).

Case 1d. a; = z, for some k € {1,2,...,n — 1} and ¢; = y,,; for
some [ > m. Then

(u . 'U) W =aq - at_1w07k7nb2 e bs—le,m,lCQ e Cp = U ('U . w)
unless s = 2 in which case

(W-v) w=a1" G 1Wo gnWrm,iC2 Cr =U- (V- w).

Case 2 (namely b1 = y,,, for some o < ¢ and some n € N and by # z,, for
any 7 < ¢ and any m € N) and case 3 (namely b; # y,.,, for any o < ¢ and any
n € N and by = z,,, for some 7 < ¢ and some m € N) are handled in a very
similar fashion.

We will verify that S is left cancellative. The verification of right cancella-
tivity is very similar. Let w =aq---a¢, v="0b1---bs, and w = ¢1 - - - ¢, be words
in S and assume that u-v = u - w. If it is not the case that a; = x4 for some
o < ¢ and some k € N, then u-v and u-w are ordinary concatenation so v = w.

So assume that a; = z, for some o < ¢ and some k € N. If it is not the
case that by = y,,, for some n > k or ¢; = Yy, for some m > k, then again
u-v and u - w are ordinary concatenation. So assume that either by = y, 5, for
some n > k or ¢; = Yo, for some m > k.

If by = Yo,n for some n >k, then u-v =a; -+ G—1Wo k,nb2 - - - bs.

If ¢; = Yo,m for some m >k, then u-w =ay -+ @t 1Ws g, mC2 - - Cr.

Since neither wey i, = a; DO Wk m = a¢ for any n or m in N, we must
have that b1 = y,, for some n > k and ¢; = Yy, for some m > k. Since
((Wokn)321 )y oy, eMUMerates A, we must have that m = nand sov = w. [



It is a consequence of Theorem 3.1 below that if S is cancellative and |S| =
w1, then S*\ (S*S*) is dense in S*. So the continuum hypothesis implies that
the semigroup of Theorem 2.4 has S* \ (§*S*) dense in S*.

Question 2.5. Is it consistent that for the semigroup S of Theorem 2.4, S*\
(S*S*) is not dense in S*.

We saw in Theorem 2.1 that if S is embeddable in a group, then G*G* is
nowhere dense in S*. We shall now see that considerably more can be said if
|S]¥ < 2¢.

Theorem 2.6. Let S be a semigroup which is embeddable in a group G and
assume that |S| = k > w and k¥ < 2°. Let V = {A € [S]* : AN (G*G*) = 0}
and let T = J{A*: A€ V}. Then

(1) T is open and dense in S*, T N (G*G*) = 0, and every element of T is
right cancelable in {p € S* : ||p|| < w}.

(2) Let H be the subgroup of G generated by S. Define an equivalence relation
~ on S* by p ~ q if and only if there exist a,b € H such that apb = q. If
k7m € N7 P1,P2,- -3 Pmy91,492,---,qk € T7 andplpm ~q1- 4k, then
k=m and for each t € {1,2,...,m}, p; = ;.

(3) There exists X C T such that X is dense in S*, | X| = 2%, and X generates
a free subsemigroup of S*.

Proof. Trivially, T is open in S* and T'N (G*G*) = (). Using Theorem 2.1, one
easily sees that T is dense in S*.

To see that T is right cancelable in {p € S* : ||p|]| < w}, let p € T and
suppose we have distinct ¢ and r in S such that ||q|| < w, ||r]] € w, and
gp = rp. Pick A € ¢ and B € r such that |A| = |B| = w and AN B = 0.
Then qp € Ap N Bp = cl(Ap) N cl(Bp). Therefore by [5, Theorem 3.40] either
ApNBp # 0 or ApN Bp # (. We assume without loss of generality that we
have a € A and b € B such that ap = bp. By [5, Corollary 8.2], b ¢ B, so
b€ B*. Then p = a'bp and a~'b € G* by [5, Corollary 4.33] so p € G*G*, a
contradiction.

To verify (2), assume that k,m € N, p1,p2,...,Dm,q1,92,...,qx € T, and
P1L-Pm = q1 - Q. Suppose that the conclusion fails and assume that k 4+ m
is minimal among all counterexamples. Note that m > 1 and k& > 1. (If
m =k = 1, we don’t have a counterexample. If, say m =1 and k& > 1, then for
some a,b € H,p; = (a7 Yq1 - - qr_1)qb™t € G*G*.)

Pick a,b € H such that apy - - pmb = ¢1 - - - q.. Note that {p € S* : ||p|| = w}
is a subsemigroup of S*. (If A € p and B € ¢, then AB € pq.) So pick
A,B € [S]“ such that A € p;- pp_1 and B € q1---qr—1. Then aAp,,b =
clpc(aApmb) and Bgy = clgc(Bgx) so by [5, Theorem 3.40], we may either

(a) pick ¢ € A and d € B such that acp,,b = dg;, or

(b) pick ¢ € A* and d € B such that acp,,b = dqy.



If (b) held, we would have g, = d~lacp,b € G*G*, a contradiction. So
(a) holds. If d € B*, then p,, = ¢ ta"ldgb~! € G*G*, a contradiction. So
d € B. Since d tacpmb = q; we have that p,, ~ gi. Also pn,b = ¢ ta=tdgy
SO apy -+ Pm_1¢ ta"tdqy = q1---qr. By conclusion (1), we may cancel g so
we conclude that py - pm_1 = ¢1---qe_1. By the minimality of m + k, we
conclude that m —1 =k — 1 and for each ¢t € {1,2,...,m — 1}, py =~ ¢;.

To verify conclusion (3) let A = |V|. Then V C [S]¥ so A < k¥ < 2C
Enumerate V as (Ag)o<.

Since |H| = |S|, each ~-equivalence class has at most |S| members (in fact
exactly |S| members). And given o < A, |A%| = 2% So each A} hits 2° equiva-
lence classes. Inductively, choose z, € A% such that if o # 7, then z, % x.

For x € S*, let [x] denote the ~-equivalence class of . Let R = {[z] : z €
Af} and let S = R\ {[zo] : 0 < A}. Pick Y C A§ such that S = {[y] : y € Y}
and if y and z are distinct members of Y, then y % z. Let X = YU{z, : 0 < A}.
Then X C T so by conclusion (2), if k,m € N, p1,p2,...,Pm,q1,42,---,q € X,
and p1-- pm = q1-°qk, then &k = m and for each t € {1,2,...,m}, p; = ¢.
But since X includes at most one member from each equivalence class, one has
that for each ¢t € {1,2,...,m}, pr = ¢;- That is the semigroup generated by X
is free. Since X includes a representative of [x] for each = € A, | X| = 2°.

Finally, to see that X is dense in S, let V' be an infinite subset of S and pick
D € [V]¥. Pick ¢ € D* \ (G*G*) and pick B € ¢q such that BN G*G* = (). Let
A=BnND. Then A€V so for someo < A\, A=A, and thusz, e VNX. O

We now turn our attention to determining whether S*U, is nowhere dense
in U", and for this we would like to know that S*U, C U,.. All of our results
about S*U, involve semigroups that are very weakly left cancellative, and by
[5, Lemma 6.34.3], if S is very weakly left cancellative, then Uy is a left ideal of
BS.

The hypotheses of the following theorem could be superficially weakened by
replacing the assumption that S is right cancellative by the assumption that
whenever a and b are distinct members of S, one has |[{z € S : ax = bx}| < k.
But that is not in fact a weakening since if S is very weakly left cancellative
and [{x € S : ax = bx}| < k whenever a¢ and b are distinct members of S,
then S is right cancellative. To see this, suppose we have a, b, and ¢ in S with
a # b and ac = be. Then ¢S C {z € S : ax = bz} so |c¢S| < k. But then,
S = Ugeest® € S:cx =d}, so S is the union of fewer than « left solution sets,
a contradiction.

Theorem 2.7. Let S be a right cancellative and very weakly left cancellative
semigroup with |S| =k > w. Then S*U, is nowhere dense in U,.

Proof. Enumerate S as (s4)a<x. Suppose we have V' € [S]* such that VNU, C
cl(S*Uy). Pick vg € V. Let 0 < 6 < k and assume we have chosen (vy)s<s SO
that

(1) if @« < o < 6, then v, # v, and

(2) fa<o<T<d, u<t,and x € S, then either s,z # v, or s, # v,.



Fora <o <d,let Cho={r €8S :5.,0 =0} andlet B=J, ,.5Ca,o. Since
each C, o is a left solution set we have |B| < kso [{s,z : p < § and = € B}| < k.
Pick vs € V\ {vo : 0 < 0} U{s,z : p < § and € B}). Hypothesis (1) is
trivially satisfied. Suppose we have @« < 0 < §, p < J, and & € S such that
SqZ = Uy and s, = vs. Then z € Co o € B sovs € {s,x: u < and x € B},
a contradiction.

Let A ={v, : 0 < K} and for o < K, let A, = {vy : @« < 0 < kK}. We
claim that if s € S, ¢ € U,., and s~ 'A € ¢, then for each o < &, s 1A, € q.
To see this, let a < x and suppose s *A, ¢ q. Then s71A\ s7tA, € ¢ and
sTPAN\ s Ay = Uy {z € S sz = vp}. Thus s7'A\ s7'A, is a union of
fewer than  left solution sets, so |s71A4\ s71A4,| < k, a contradiction.

Now ANU, NS*U, # 0 so pick p € S* and ¢q € U, such that A € pg. Then
{reS:a7tAecqlepso{reS:ax A€ q} is infinite. Pick distinct a < »
and pu < k such that s;'A € g and s,,'A € ¢. Pick # € s;' A, N5, ' A, Pick
o < kand § < k such that o < 0, pp < 9, 542 = v, and s,z = vs. Since
Sa 7# Su, we have o # 0, so we assume without loss of generality that o < 4.
This contradicts the choice of vs. O

In case S is countable, Theorem 2.7 is just [5, Theorem 6.35], since U,, = S*
and for countable S, weakly cancellative and very weakly cancellative are the
same.

We shall see in Theorem 3.2 that left cancellative and weakly right cancella-
tive are not sufficient to force a countable semigroup to have S*S* nowhere
dense in S*.

Lemma 2.8. Let S be a weakly left cancellative and very weakly right can-
cellative semigroup with |S| = k > w. Enumerate S as (Sq)a<x and let V =
{g€S5*: (3 <k){sa:a<d} €q)}. Then (BS)V NU, is nowhere dense in
U,.

Proof. Suppose we have C' € [S]* such that C' N U, C cl((8S)V). Pick ¢ € C.
Let 0 < a < k and assume that we have chosen (t5)s<o in C such that

(a) (ts)s<a 1s injective and
(b) ifz €S, v <0 <d<a,and pu <6, then either xs, # t, or xs, # t5.

Let D={z € S:(3y <o < a)(xsy =t,}. Then D is the union of fewer than
r right solution sets, so |D| < k and so [{zs, : € D and p < a}| < k. Pick
ta € C\({ts : 6 < a}U{zs, : 2 € D and pu < a}). To verify hypothesis (b),
suppose we have x € S, v < 0 < «, and ¢ < a such that xs, = t, and x5, = t,.
Then x € D so t, # s, a contradiction.

Let B = {t, : @« < k}. Then BN U, N (BS)V # 0, so pick r € BS and
q € V such that rq¢ € BN U,. Pick § < & such that {s, : & < §} € q and let
H={ty:a >3} Then H €rgso{xr e S:21H € q} €r. Pickze S such
that v"'H € gand let W = 2 ' HN{s, : a < §}. Then W € ¢ so W is infinite.
We claim that |£W| = 1. Suppose instead we have § < ¢ < o and v < ¢ and
p < 6 such that xs, =t, and xs, = t,. This contradicts hypothesis (b). Thus
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we have some « > ¢ such that W = {t,}. But now, W C {s € S :xs=1t,}
which is a left solution set, and is therefore finite. This is a contradiction. [

Theorem 2.9. Let S be a right cancellative and weakly left cancellative semi-
group with |S| = kK > w. Assume that k is regular. Then S*S* N U, is nowhere
dense in U,.

Proof. Enumerate S as (Sq)a<x and let V.={q € §*: (30 < k)({sa : @ < 0} €
q)}. Since k is regular, V = §* \ U, so by Lemma 2.8, (8S)(S* \ U,) N U, is
nowhere dense in U,. By Theorem 2.7, S*U, is nowhere dense in Uj. O

We introduce some notation which is used in the following theorem. Given
a set X, we let P¢(X) be the set of finite nonempty subsets of X. We say
that a set C of sets has the k-uniform finite intersection property provided
[ F| > k whenever F € P;(C). Given a sequence (tq)a< in a semigroup S,
we let FP((ta)a<s) = {Ilocpta : F' € Pp(k)}, where [, cpta is computed in
increasing order of indices. (Recall that each ordinal is the set of its predecessors,

so Pr(k) =Pr({a: o < K}).)

Theorem 2.10. Let S be a right cancellative and very weakly left cancellative
semigroup with |S| = k > w. Let C be a nonempty set of at most k subsets
of S with the k-uniform finite intersection property. There exists an injective
sequence (to)a<wk n S such that, letting B = {t, : o < &}, the following
statements hold.

(1) BNU,NS*U, = 0.

(2) If p and q are distinct members of BN U,, then BSpN BSq = 0.
(3) If p € BN U,, then p is right cancelable in 3S.

(4) |IBNU.| =22 and BN U, generates a free semigroup in U,.

(5) Let T = (e FP({to)a<o<x). Then T is a compact subsemigroup of 3.S
with the property that every maximal group in K(T) contains a copy of
the free group on 22" generators. In particular, FP((ta)a<x) contains a
copy of the free group on 22" generators.

(6) If k is reqular and S is weakly left cancellative, then B N U, N S*S* = ().

Further, there is a set P C BN U, such that |P| = 22" and for every p € P,
C Cp.

Proof. Enumerate S as (Sq)a<x. We may assume that C is closed under finite
intersections. Let A = |C|, enumerate C as (Co)a<r, and let f: kZlok x A
Fix a € Sand let A = {s € S : as = a}. Then A is a left solution set so
|A] < k. Pick tg € Cr,(f(0)) \ A, where my is the projection from s x A onto .
Let 0 < a < k and assume we have chosen (t5)s5<, such that

(a) if 6 < «, then t5 ¢ FP((ty)y<5);

11



(b) if § < a and v = 72(f(8)), then ts € C;
(c) ify<d<aand p<o<d,then s ts # s,ts;
(d) ify<o<d<a,pu<d, and x € S, then either s x # t, or s,x # t5;
(e) if 6 < a and u,v € FP({ty)y<s), then u # vts;

(f) if 6 < o, u,v € FP({ty)y<s), and u # v then ut; # vts;

(g) if 6 <@ and u € FP((ty)y<s), then uts # ts;

(h) FP({ts)s<a) N A = ; and

(i) if x is regular, S is weakly left cancellative, z € S, v < 0 < § < «, and
i < 6, then either s, # t, or xs, # ts.

All hypotheses are satisfied at & = 1, all but (b) and (h) vacuously.

For p <o <aandy<a,let Ay, , ={x €S:sx=s,t,}. Then each
Ay o 1s aleft solution set, s0 [U, o Us<a Upco Avpol < k-

Fory <o <a,let o ={z €S :s,0=1,}. Then |, ., U, <, Fyol <k
so {spz:p<aandz e, ,U,o, Fyol}l <k

Let V = FP({ts)s<a). Then |V| < k. By hypothesis (h), if u € V, then
au#aso [{xeS: (FueV)(aur = az)}| < k.

Also, |Uyeyir € S aur = a}| < K, |Uyey Upey iz € S 1 v = u}| < &,
and |U,ev Uye fuy{@ € 51 ve = uz}| <.

If k is regular and S is weakly left cancellative, let D ={z € S: (Iy <o <
a)(xzsy =t5)}. Then |D| < k and consequently, [{zs, : x € D and p < a}| < k.

Let v =mo (f(a)) and pick t, € C, such that t, is not a member of

U'y<a Uo<a Uu<a A’Ya/LaU uvu A U

{sprp<aandzel, ,U,o, FrotU
{reS:(FueV)(aur=ar)} U, cy{r €5 :aux =a}U

Uuev Upeviz € vz =ub UU, ey Uper uy {2 € S 1 vz = uz}.

If K is regular and S is weakly left cancellative, require also that t, ¢ {zs, :
x €D and p < a}.

Hypotheses (a) and (b) hold directly. To verify hypothesis (c), assume that
vy<aand p <o <ca Thenty ¢ Ay o 80 Syta # Suto.

To verify hypothesis (d), assume that v < 0 < o, p < @, and x € S. If
54T = to, then x € F, 5 50 to # 5,2.

Hypotheses (e) and (f) hold directly. To verify hypothesis (g), let v €
FP({ts)s<a. Then aut, # aty S0 Uty # tq.

To verify hypothesis (h), note that t, ¢ A and if u € V, then aut, # a so
uty ¢ A.

To verify hypothesis (i), assume that x is regular, S is weakly left cancella-
tive,z € 5,7y <o <o, u<a,and xsy =t,. Then z € D, so t, # xs,.

The inductive construction being complete, let B = {t, : @ < k} and for
a <k, let By ={ty:a <y <k}
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To verify conclusion (1), let p € BN U, and suppose we have ¢ € S* and
r € U, such that p = qr. Pick v < g < & such that s;lB € r and s;lB €r. We
claim that s ' B, € r. For otherwise, Usc {z €5 syz =15}t = s5'B\s;'B, €
r so the union of fewer than k left solution sets is a member of r, a contradiction.
Similarly, s, ' B, € r. Let H = {z € S : s,z = syx}. Then |H| < kso S\H € r.
Pick z € s7'B,Ns, ' B,N(S\H). Pick 0 > vy and § > pu such that s,z = t, and
sux =ts. Since v ¢ H, 0 # 6. But then we get a contradiction to hypothesis
(d) regardless of whether o < 6 or § < 0.

To verify conclusion (2), let p and ¢ be distinct members of B N U,. Pick
F and G in [B]* such that F € p, G € q, and F NG = (). Suppose we have u
and v in £S5 such that up = vq. Let D = {s,to : v < @ < k and t, € F'}. We
claim that D € up. Indeed, given v < k, one has that {t, : vy < a < k and t, €
F} C s;'D. Similarly {sut, : p < 0 < kand t, € G} € vg. Picky < a <&
and pu < 0 < k such that syt = suls, to € F, and t, € G. Since FNG = 0,
a # 0. But then we have a contradiction to hypothesis (c).

To verify conclusion (3), let p € BN U, and suppose that we have u # v
in BS such that up = vp. Pick F € u and G € v such that F NG = 0. Then
{syta 7 <a<kands, € F} €up and {sut, : p <o <kands, € G} €vp
so pick vy < o < k and p < 0 < k such that s, € I, s, € G, and s,t, = s,t,.
Then « # o so this contradicts hypothesis (c).

To verify conclusion (4) note first that |B N U,| = 22" by [5, Theorem
3.58]. We will show that if k,m € N, p1,....,pm,q1,---,q& € BN U, and
DL Pm = q1-°-Qk, then m = k and for each ¢ € {1,2,...,m}, p; = ¢.
Suppose that this fails and pick a counterexample with m+ % a minimum among
all counterexamples. If m = k = 1, one does not have a counterexample, and
m + k = 3 is out by conclusion (1). By conclusion (2) we have that p,, = gx
and so by conclusion (3), p1-+ Pm-1 =¢1 - qk—1 and thus m — 1 =k — 1 and
forallie {1,2,...,m—1}, p; = ¢;.

To verify conclusion (5), it suffices by [5, Theorem 7.35] to show that (¢4 )a<s
has distinct finite products. So suppose instead there exist F' # G in Py(k) such
that [[,cpta = [lacgta and pick F' and G with |F' U G| a minimum among
all such examples. Assume without loss of generality that max F' < maxG = a.
Suppose first that max F' < a. If G = {a} we have a contradiction to hypothesis
(a) and if |G| > 2 we have a contradiction to hypothesis (e). So we must have
a € F. If either F or G is a singleton, we get a contradiction to hypothesis (g)
and otherwise we get a contradiction to hypothesis (f).

To verify conclusion (6), assume that x is regular and S is weakly left can-
cellative. Suppose we have ¢ and 7 in S* such that r¢ € BN U,. By con-
clusion (1), ¢ € S* \ U,. Since & is regular, there is some § < & such that
{Sa : @ < 0} € q. One now derives a contradiction to hypothesis (j) exactly as
in the last paragraph of the proof of Lemma 2.8.

Finally, let B = {BNCy, : @ < A}. We claim that B has the s-uniform
finite intersection property. So let F' € Py(A). Since C is closed under finite
intersections, pick v < A such that Cy = (,cp Ca. Then {to : m(f(e)) =
7} CBNC,. Let P={p €U, :BCp}. By[5 Theorem 3.62], |P| =2%". O
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Note that, by the proof of [5, Theorem 6.42], conclusion (2) of Theorem 2.10
does not require the assumption that .S is right cancellative.

3. Dense nonproducts

We have one theorem guaranteeing that S* \ S*S* is dense in S*. Recall
that by Theorem 2.4 there is a cancellative semigroup with |S| = ¢ such that
S5*S* is not nowhere dense in S*. So, if the continuum hypothesis holds, this
is an example of a semigroup such that S*\ S*S* is dense in S* while S*S* is
not nowhere dense in S*. On the other hand, as we will see, it is a consequence
of Martin’s Axiom and the negation of the continuum hypothesis, that any
cancellative semigroup S with |S| = wy does have S*S* nowhere dense in S*.
For an elementary introduction to Martin’s Axiom, see [5, Section 12.1].

Theorem 3.1. Let S be a semigroup with |S| = wy and assume that S is right
cancellative and weakly left cancellative. Then S* \ (S*S*) is dense in S*. If
MA(wy) holds, then S*S* is nowhere dense in S*.

Proof. Enumerate S as (Sy)o<w,. For w < o < wi, let S, be the semigroup
generated by {s, : 7 < o}. By [5, Theorem 6.35], for each o with w < o < wy,
SxS% is nowhere dense in S}.

Let A be a countably infinite subset of S. We will show that AN(S*\S*S*) #
() and that, if M A(w;) holds, then A*\ ¢f(S*S*) # 0. Pick 6 < w; such that
A C Ss. Since A\ cl(S;Sy) # 0, pick Vs € [A]“ such that V3 N (S5S5) = 0.
Now let § < 0 < w;y and assume that we have chosen (V;)s<,<, such that for
each 7 with § < 7 < o,

(a) V7 € [A]7,
(b) if p <7, then V¥ CV¥; and
(0) V7 1(8:82) = 0.

If o = v +1 for some v, we have that V" \ ¢/(S3S5) # 0 so pick V, € [V,]¥
such that V, N (S:S%) = 0.

Now assume that o is a limit ordinal. Note that {V, : 6 < 7 < o} has the
finite intersection property. Enumerate {7 : 6 < 7 < o} as (T,)n<w. Choose
ap € Vy, and inductively for n > 0 choose a, € Ni_q Ve \ {00, a1,-..,an_1}.
Pick infinite V, C {a,, : n < w} such that V, N (S:S%) = 0.

The inductive construction being complete, we have that {V : § <o < wy}
is a collection of closed subsets of S* with the finite intersection property so
pick ¢ € ﬂ5§a<w1 V*. Then ¢ € A. We claim that ¢ ¢ S*S*. So suppose
instead we have ¢ = pr for some p,r € S*. Since U,, is an ideal of S by [5,
Lemma 6.34.3], we have ||p|| = ||r|| = w. So pick B € p and C € r such that
|B| = |C| = w. Pick 0 < wy such that BUC C S,. Then q € V, N (S:S), a
contradiction.

Now assume that M A(w;) holds and suppose A* C ¢/(5*S*). By [5, Corol-
lary 12.12], int 4+ Ns<yr, Voo 7 050 pick B € [A]“ such that B* C N, ., Vo

[ea

Picking ¢ € B*N(S*S*) we derive a contradiction as in the paragraph above. [
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Recall from [5, Theorem 6.35] that if S is a countably infinite right can-
cellative and weakly left cancellative semigroup, then S*S* is nowhere dense in
S*.

The semigroup produced in the following theorem is very similar to that of
[5, Exercise 4.3.7].

Theorem 3.2. There is a countably infinite left cancellative and weakly right
cancellative semigroup S such that S*S* has nonempty interior. In particular,
S*\ (5*5*) is not dense in S*.

Proof. Let L = {x, : n € N} U{z, : n € N} U {y} be an alphabet of distinct
letters. Let

S= {ajaz---a;: eacha; € Landifie {1,2,...,t —1},
a; = Ty, and a; 11 = zm, then n > m}.

For wy = ay---a; and we = by ---bs in S (with each a; and b; in L), let wiws
be ordinary concatenation unless a; = x, and b; = z, with n < m in which
case wiwg = ay -« -+ at_lybl s bs-

It is routine (though at least mildly tedious) to verify that the operation on S
is associative, that S is left cancellative, and that S is weakly right cancellative.

Let A = {yz, : n € N}. We claim that A* C S*S*, so let p € A*. For
B € p, let Cp = {z, : yz, € B}. Then {Cp : B € p} has the w-uniform
finite intersection property, so pick ¢ € S* such that {Cp : B € p} € q. Let
r € {x, : n € N}*. We claim that p = rq. So let B € p. We claim that
{z,:mneN}C{seS:s5'Begq}. SoletneN. Let D =CpnN{zy,:m>n}.
ThenDEqandDQm;lB. O

4. Right cancelable elements

We saw in Theorem 2.10 that with mild cancellation assumptions on S we
can get lots of uniform ultrafilters on S that are right cancelable in 5S. And
by [5, Lemma 8.1], if s is right cancelable in S, it is also right cancelable in §5S.
In [2, Theorem 3.2], M. Filali showed that if S is an infinite semigroup which
can be embedded in a group and w < k < | S|, then there exist right cancelable
elements p of BS with ||p|| = x. We shall see as a consequence of Theorem
4.2, if p is right cancelable in in SZ or in SQg, then p is right cancelable in
PRy and in SCy. Here, if X is a topological space, Xy denotes the set X with
the discrete topology. As we have already remarked, if " C S, we ignore the
subtle distinction between an ultrafilter on T and an ultrafilter on S with T as
a member and pretend that 7 C 8S.

Lemma 4.1. Let S be an infinite semigroup. An element p € BS is right
cancelable in BS if and only if, for each A C S, there exists B C S such that
A={x e S:27'B € p}.

Proof. This is [5, Theorem 8.7]. O
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In the following proof we use the notation

P < Q@
& R

to abbreviate the statement “P < @ and QQ < R”.

Theorem 4.2. Let S be an infinite semigroup and let T be a semigroup with
identity e. Let p € (S x {e})* be right cancelable in B(S x {e}). Then p is right
cancelable in (S x T).

Proof. We use Lemma 4.1. Let A C S x T. We shall produce B C S x T such
that A={ve SxT:v 'Be€p}.

We observe that the coordinate function 7o : S x T' — T extends to a
continuous homomorphism 7 : (S x T') — BT.

Foreacht € T, let C; = {x € S : (x,t) € A}. By Lemma 4.1, for each t € T,
pick B; C S such that, for every s € S,

(s,e)pe By x {e} < seC
& (s,t) € A

Let B = [J;cp Bi x {t}. Since each t € T is an isolated point of BT, B; x {t} =
{z € B:Ta(z) =t}.

Let (v;)icp be a net in S for which ((v;, €));ep converges to p in (S x T).
Let (s,t) € S x T. We show that (s,t)"'B € p if and only if (s,t) € A. Given
i € D, the statements (s,t)(v;,e) € By x {t} and (s,e)(v;,e) € By x {e} are
equivalent, because each is equivalent to the statement that sv; € B;. Since
A(s,t) and A(g ¢y are continuous in 3(S x T'), we have (s,t)p = llierjr:l)(s, t)(vi, e) and
(s,e)p = 1ierg(s, e)(vs,e) so (s,t)p € By x {t} if and only if (s,e)p € B; x {e}.

Since o ((s, t)p) =t, it follows that:

(s,tpe B & (s,t)p€ By x {t}
& (s,e)p € By x {e}
& (s,t) € A

O

A consequence of Theorem 4.2 is that if p € N* is right cancelable in (SN, +),
T is any left cancelative semigroup with identity e, and ¢ € S(N x T') has the
property that p = {A C N: Ax {e} € ¢}, then ¢ is right cancelable in S(N x T).
By way of contrast, by [5, Example 8.29], there exists p € N* which is right
cancelable in (SN, +) but not in (5Z,+).

Corollary 4.3. Suppose that a divisible abelian group H is a subgroup of an
abelian group G. Then every element of BH which is right cancelable in SH is
also right cancelable in BG.
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Proof. By [3, Theorem 18.1], there is a subgroup L of G such that G = H &
L. O

Corollary 4.4. FEvery right cancelable element of Qg is right cancelable in
BRy, and every right cancelable element of SRy is right cancelable in 5Cy.

Proof. Corollary 4.3. O
The next lemma will be used in Corollaries 4.6 and 4.7.

Lemma 4.5. Let A be a countably infinite subset of a divisible group (H,+).
There is a countably infinite divisible subgroup D of H such that A C D.

Proof. By [3, Theorem 20.1], we may presume that H =
K, is either a copy of Q or a quasi-cyclic group. Let

ac1 Ka, where each

J={ael:3xe A)(zs £0)}

andlet D = {z € H : (Va € I\ J)(xo = 0)}. Then D is isomorphic to @, ; K«
so D is a countably infinite divisible subgroup of H containing A. O

Corollary 4.6. Let (S,+) be an infinite cancellative commutative semigroup
and let G denote the abelian group of differences of S. Let H denote any abelian
group which contains S, and which therefore contains G. There is a subset V
of S* satisfying the following statements.

(1) V is open and dense in S* and every element of V' is right cancelable in
BH.

(2) For any two elements v1 and vy of V, BH + vy and SH + vy intersect if
and only if S+ vy and S + v intersect.

(3) Define an equivalence relation =~ on S* by p ~ q if and only if (S +
p) N (S+q) 7é @ If k7m S N7 P1yD2y---3sPm-s4q1,492, - - ., qk S V; and
PL+ . .Pm R qL+ ...qk, then k = m and for each t € {1,2,...,m},
Pt = G-

Proof. By [3, Theorem 20.1], H can be embedded in a divisible abelian group
and so we may assume that H is divisible. Let V = {A C [S]* : AN(H*+ H*) =
0} and let U = (J{A* : A € V}. We claim that U is dense in S*, so let B € [S]~.
By Theorem 2.1, B* \ ¢{(H* + H*) # () so pick p € B* \ ¢l(H* + H*) and pick
A € p such that AN (H*+ H*) = 0. Then p € B*NU.

Let V = |J{U N D* : D is a countable divisible subgroup of H}. Then V is
open in S*. To see that V is dense in S*, let B € [S]¥. By Lemma 4.5, pick
a countable divisible subgroup D of H containing B. Pick p € B* NU. Then
p € UN D*. Note that each p € V has ||p|| = w and that V N (H* + H*) = ().

To see that every element of V' is right cancelable in SH, let p € V and pick
a countable divisible subgroup D of H such that p € U N D*. Since p € U,
p ¢ (D* + D*) and so by [5, Theorem 8.18], p is right cancelable in SD. By
Corollary 4.3, p is right cancelable in SH.
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To verify (2), let v; and vy be elements of V. By Lemma 4.5, we can choose
a countable divisible subgroup D of H such that D is a member of v; and of
vg. By [3, Theorem 18.1], we can write H as a direct sum H = D + E for some
some subgroup F of H. Let mp denote the projection of H onto D, and let
7p : BH — BD denote its continuous extension. Suppose that = 4+ v; =y + vs
for some z,y € BH. Then 7p(z)+v1 = Tp+va. So cl(D+wv1)Ncl(D+wvg) # 0.
By [5, Theorem 3.40], we may suppose that s+ v; = w + vy for some s € D and
some w € BD. So vy = z 4 vg, where z = —s + w. This equation implies that
z € BG and hence that z € G, becaause v1 ¢ H* + H*. So z = s — s1 for some
s1, 82 € S and therefore s + vy = s9 + vs.

Conclusion (3) can now be proved by an inductive argument similar to the
proof of Theorem 2.6(2). O

Corollary 4.7. Let G be a countably infinite subgroup of an abelian group
(H,+). Then every element of BG which is right cancelable in BG is also right
cancelable in SH.

Proof. Let p be a right cancelable element of SG. If p € G, then p € H so by
[5, Lemma 8.1], p is right cancelable in SH. So we assume that p € H*. By
[3, Theorem 19.1], H can be embedded in a divisible abelian group K and if p
is right cancelable in SK, it is also right cancelable in SH, so we may assume
that H is divisible. Pick by Lemma 4.5 a countably infinite divisible subgroup
D of H which contains G. We claim that p is right cancelable in 8D. Suppose
that p is not right cancelable in 8D and pick by [5, Theorem 8.18] ¢ € D* such
that p = ¢+ p. Since G € p, {r € D: —x+ G € p} € gso G € q. But then
p € G* 4+ p so p is not right cancelable in SG. Finally, by Corollary 4.3, p is
right cancelable in SH. O

Finally, we observe that, for example, there are many p € SR, that are right
cancelable in SR, and converge to a given point of R with respect to the usual
topology.

Theorem 4.8. Let S be a right cancellative and very weakly left cancellative
semigroup with |S| = k > w. Assume that T is a topology on S and x € S such
that there is a neighborhood base C for x with respect to T such that |C|] < k and
for each C € C, |C| = k. Then there is a set P of 22" right cancelable elements
of BSq, each of which converges to x with respect to T .

Proof. This is an immediate consequence of Theorem 2.10. O

References

[1] M. Filali, Weak p-points and cancellation in S, in Papers on General
Topology and Applications, S. Andima et. al. eds., Annals of the New York
Academy of Sciences 806 (1996), 130-139.

[2] M. Filali, t-sets and some algebraic properties in BS and in lo(S)*, Semi-
group Forum 65 (2002), 285-300.

18



[3] L. Fuchs, Abelian groups, Pergamon Press, New York-Oxford-London-Paris,
1960.

[4] N. Hindman, Minimal ideals and cancellation in SN, Semigroup Forum 25
(1982), 291-310.

[5] N. Hindman and D. Strauss, Algebra in the Stone-Cech compactification:
theory and applications, 2nd edition, Walter de Gruyter & Co., Berlin, 2012.

[6] N.Hindman and D. Strauss, Cancellation in the Stone-Cech compactification
of a discrete semigroup, Proc. Edinburgh Math. Soc. 37 (1994), 379-397.

[7] D. Strauss, Semigroup structures on BN, Semigroup Forum 41 (1992), 238-
244.

19



