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Abstract

Let S be a discrete semigroup and let the Stone-Čech compactification βS of
S have the operation extending that of S which makes βS a right topological
semigroup with S contained in its topological center. Let S∗ = βS \ S. Al-
gebraically, the set of products S∗S∗ tends to be rather large, since it often
contains the smallest ideal of βS. We establish here sufficient conditions in-
volving mild cancellation assumptions and assumptions about the cardinality
of S for S∗S∗ to be topologically small, that is for S∗S∗ to be nowhere dense
in S∗, or at least for S∗ \ S∗S∗ to be dense in S∗. And we provide examples
showing that these conditions cannot be significantly weakend. These extend
results previously known for countable semigroups. Other results deal with large
sets missing S∗S∗ whose elements have algebraic properties, such as being right
cancelable and generating free semigroups in βS.
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1. Introduction

Let (S, ·) be a discrete semigroup. We take the Stone-Čech compactification
βS of S to be the set of ultrafilters on S with the points of S identified with
the principal ultrafilters. Given A ⊆ S, we let A = {p ∈ βS : A ∈ p}. The set
{A : A ⊆ S} is a basis for the open sets of βS as well as a basis for the closed
sets. The operation on S extends uniquely to βS so that (βS, ·) becomes a right
topoological semigroup (meaning that the function ρp defined by ρp(x) = x ·p is
continuous for each p ∈ βS) with S contained in its topological center (meaning
that the function λy defined by λy(x) = y · x is continuous for each y ∈ S). So,
if p, q ∈ βS, p · q = lim

s→p
lim
t→q

st, where s and t denote elements of S. Given p and

q in βS and A ⊆ S, one has A ∈ p · q if and only if {x ∈ S : x−1A ∈ q} ∈ p,
where x−1A = {y ∈ S : x · y ∈ A}.

If T is a subset of a set S, we shall regard βT as a subset of βS by identifying
each p ∈ βT with the unique ultrafilter in βS which contains p.

As does any compact Hausdorff right topological semigroup, βS has a small-
est two sided ideal, K(βS), which is the union of all of the minimal right ideals
and is also the union of all of the minimal left ideals. For an elementary intro-
duction to the algebraic structure of βS, see [5, Part I].

We let S∗ = βS \ S. Let N be the set of positive integers. In an early paper
[7] on the algebraic structure of βS, the second author of this paper showed
that the elements of N∗ \ (N∗ + N∗) generate a semigroup which is almost free
(subject only to the restriction that for p ∈ N∗ and n ∈ Z, p and p+n commute),
and that a corresponding assertion holds for (βN, ·). From a topological point
of view, N∗ \ (N∗ + N∗) is most of N∗, that is N∗ + N∗ is nowhere dense in N∗.
(As we remarked in the abstract, N∗ + N∗ is algebraically quite large since it
contains K(βN) and therefore contains 2c minimal right ideals, 2c minimal left
ideals, and 2c copies of the free group on 2c generators.)

That is the point of departure of this paper. We investigate here what
properties of a semigroup S guarantee that S∗S∗ is nowhere dense in S∗ or,
failing that, that S∗ \ S∗S∗ is dense in S∗. For example, we show that if S is
embeddable in a group, then regardless of its size, S∗S∗ is nowhere dense in
S∗. But there is a cancellative semigroup with |S| = c for which S∗S∗ is not
nowhere dense in S∗.

The points that we produce in S∗ \ S∗S∗ tend to have the property that
they are right cancelable in βS. Left and right cancellation properties have
been extensively studied. See, for example, [1], [2], [4], and [6].

Definition 1.1. Let S be a semigroup and let A ⊆ S.

(a) A is a left solution set if and only if there exist a and b in S such that
A = {x ∈ S : ax = b}.
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(b) A is a right solution set if and only if there exist a and b in S such that
A = {x ∈ S : xa = b}.

Notice that S is left cancellative if and only if each left solution set has at
most one member.

We let ω = N ∪ {0}. Then ω is the first infinite cardinal (and also the first
infinite ordinal).

Definition 1.2. Let S be a semigroup with |S| = κ ≥ ω.

(a) S is weakly left cancellative if and only if every left solution set in S is
finite.

(b) S is weakly right cancellative if and only if every right solution set in S is
finite.

(c) S is very weakly left cancellative if and only if whenever B is a set of left
solution sets in S with |B| < κ, one has |

⋃
B| < κ.

(d) S is very weakly right cancellative if and only if whenever B is a set of
right solution sets in S with |B| < κ, one has |

⋃
B| < κ.

(e) Given p ∈ βS, the norm of p, ||p|| = min{|A| : A ∈ p}.

(f) Uκ = Uκ(S) = {p ∈ βS : ||p|| = κ}.

Notice that if κ is regular, then S is very weakly left cancellative if and only
if every left solution set has cardinality less than κ. In particular, if |S| = ω,
then weakly left cancellative and very weakly left cancellative are equivalent
notions.

In Section 2 of this paper we investigate conditions on S guaranteeing that
S∗S∗ is nowhere dense in S∗ and conditions guaranteeing that S∗Uκ is nowhere
dense in Uκ.

In Section 3 we deal with conditions guaranteeing that S∗ \S∗S∗ is dense in
S∗, a conclusion weaker than the assertion that S∗S∗ is nowhere dense in S∗.

Some of the results about S∗S∗ include conclusions about right cancelable
elements of Uκ. In Section 4 we investigate the problem of producing right
cancelable elements p of S∗ with ||p|| < κ = |S|.

2. Nowhere dense products

We will be concerned first with determining whether S∗S∗ is nowhere dense
in S∗. For that, we would, of course, like to have S∗S∗ ⊆ S∗, that is that S∗ is
a subsemigroup of βS. All of our results about S∗S∗ involve semigroups that
satisfy cancellation conditions, which are usually weaker than cancellativity. By
[5, Theorem 4.31 and Corollary 4.33], if S is weakly left cancellative, then S∗ is
a left ideal of βS, while if S is right cancellative, then S∗ is a right ideal of βS.

We remark that it was previously known [5, Theorem 6.35] that if |S| = ω
and S is right cancellative and weakly left cancellative, then S∗S∗ is nowhere
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dense in S∗. And it has been noted before that the assumption cannot be
weakened to weakly right cancellative and weakly left cancellative. Indeed,
given n,m ∈ N, let n ∨ m = max{n,m}. Then (N,∨) is both weakly right
cancellative and weakly left cancellative, while every element of (βN,∨) is an
idempotent, so N∗ ∨ N∗ = N∗.

We aim to investigate this question for semigroups of arbitrary cardinality.
We observe that the algebraic properties of uncountable semigroups are often
far more challenging to handle.

For A ⊆ S, we write A∗ = A ∩ S∗. The following is our only positive result
which does not have a restriction on |S|.

Theorem 2.1. Let S be an infinite semigroup which is embeddable in a group
G. Then S∗ ∩ (G∗G∗) is nowhere dense in S∗. In particular S∗S∗ is nowhere
dense in S∗.

Proof. Suppose A is an infinite subset of S and A∗ ⊆ c`(G∗G∗). Pick t1 ∈ A.
Inductively, for s > 1, having chosen 〈tn〉s−1n=1, choose

ts ∈ A \ {trt−1n tm : m,n, r < s} .

Note that ts /∈
{
tn : n ∈ {1, 2, . . . , s − 1}

}
. Let V = {ts : s ∈ N}. Then

V is infinite so V ∗ ∩ G∗G∗ 6= ∅. So pick p, q ∈ G∗ such that V ∈ pq. Then
{x ∈ G : x−1V ∈ q} ∈ p so pick distinct x1 and x2 in G such that x−11 V ∈ q
and x−12 V ∈ q. Pick y ∈ x−11 V ∩ x−12 V and let n, r ∈ N such that x1y = tn and
x2y = tr.

Now
{
w ∈ S : x1w ∈ {t1, t2, . . . , tmax{n,r}

}
is finite and x−11 V ∩ x−12 V

is infinite, so pick w ∈ x−11 V ∩ x−12 V and m, s > max{n, r} in N such that
x1w = tm and x2w = ts. Assume without loss of generality that s > m. Then
tst
−1
m = x2x

−1
1 = trt

−1
n so ts = trt

−1
n tm, a contradiction.

We show now that cancellation is not necessary for a semigroup S with
|S| = c to have S∗S∗ nowhere dense in S∗.

Given a set A and a cardinal κ, we let [A]κ = {B ⊆ A : |B| = κ}.

Theorem 2.2. Let S = {f : (∃D ⊆ N)(|N \D| < ω and f : D 1-1−→
onto

N)} with the
operation of composition. Then S is a semigroup, |S| = c, S is not cancellative
(though S is right cancellative and weakly left cancellative), and S∗S∗ is nowhere
dense in S∗.

Proof. It is routine to verify that S is closed under composition, |S| = c, S is
right cancellative, S is not left cancellative, and S is weakly left cancellative.

We establish first the following two assertions.

(*) Let tn, tr, tm ∈ S. Then

|N\{a ∈ dom(tm) : t−1n
(
tm(a)

)
∈ dom(tr)}| ≤ |N\dom(tm)|+|N\dom(tr)| .

In particular, {a ∈ dom(tm) : t−1n
(
tm(a)

)
∈ dom(tr)} is cofinite.
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(**) Let A be a cofinite subset of N and let v : A 1-1−→N. Then C = {t ∈ S : A ⊆
dom(t) and t|A = v} is finite.

To verify (*), note that N \ {a ∈ dom(tm) : t−1n
(
tm(a)

)
∈ dom(tr)} =

(N \ dom(tm)
)
∪ {a ∈ dom(tm) : t−1n

(
tm(a)

)
/∈ dom(tr)} and

t−1n ◦ tm : {a ∈ dom(tm) : t−1n
(
tm(a)

)
/∈ dom(tr)} 1-1−→N \ dom(tr).

To verify (**), note that if |N \ v[A]| > |N \ A|, then C = ∅, so we assume
that r = |N \ v[A]| ≤ |N \A| = m. Then

C =
⋃
D∈[N\A]r{t ∈ S : dom(t) = A ∪D and t|D : D 1-1−→

onto
N \ v[A]} ,

and for each D ∈ [N \A]r, {t ∈ S : dom(t) = A ∪D and t|D : D 1-1−→
onto

N \ v[A]} is
finite.

Suppose we have infinite V ⊆ S such that V ∗ ⊆ c`(S∗S∗). We claim that
we can choose a sequence 〈tn〉∞n=1 in V with the property that if s > 1 and
n, r,m ∈ {1, 2, . . . , s − 1}, then there do not exist x1, x2, y, w ∈ S such that
x1y = tn, x2y = tr, x1w = tm and x2w = ts.

So let t1 ∈ V and assume that s > 1 and 〈tn〉s−1n=1 have been chosen. For
n, r,m ∈ {1, 2, . . . , s− 1}, let

Dn,r,m = {t ∈ S : (∃x1, x2, y, w ∈ S)(x1y = tn , x2y = tr ,
x1w = tm, and x2w = t)} .

We shall show that each Dn,r,m is finite. So let n, r,m ∈ {1, 2, . . . , s − 1}. We
will show that if t ∈ Dn,r,m, a ∈ dom(tm), and t−1n

(
tm(a)

)
∈ dom(tr), then

t(a) = tr
(
t−1n
(
tm(a)

))
so that, by (*) and (**) (where A = {a ∈ dom(tm) :

t−1n
(
tm(a)

)
∈ dom(tr)} and v = tr ◦ t−1n ◦ tm), Dn,r,m is finite. So let t ∈ Dn,r,m

and pick x1, x2, y, w ∈ S such that x1y = tn , x2y = tr , x1w = tm and x2w = t
and let a ∈ dom(tm) such that t−1n

(
tm(a)

)
∈ dom(tr).

Since a ∈ dom(tm), x1
(
w(a)

)
= tm(a) and thus w(a) = x−11

(
tm(a)

)
. Since

t−1n
(
tm(a)

)
∈ dom(tn), x1

(
y
(
t−1n
(
tm(a)

)))
= tn

(
t−1n
(
tm(a)

))
= tm(a) so

y
(
t−1n
(
tm(a)

))
= x−11

(
tm(a)

)
= w(a) .

Since t−1n
(
tm(a)

)
∈ dom(tr), we have

x2
(
w(a)

)
= x2

(
y
(
t−1n
(
tm(a)

)))
= tr

(
t−1n
(
tm(a)

))
so t(a) = x2

(
w(a)

)
= tr(t

−1
n

(
tm(a)

))
as claimed.

Thus we may choose

ts ∈ V \
({
tn : n ∈ {1, 2, . . . , s}

}
∪
⋃
{Dn,r,m : n, r,m ∈ {1, 2, . . . , s− 1}

})
.

Let A = {tn : n ∈ N}. Then A∗ ∩ S∗S∗ 6= ∅ so pick p, q ∈ S∗ such that
A ∈ pq. Pick distinct x1 and x2 in S such that x−11 A ∩ x−12 A ∈ q. Pick
y ∈ x−11 A ∩ x−12 A and pick n, r ∈ N such that x1y = tn and x2y = tr. By right
cancellation, assume without loss of generality that n < r.
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Since S is weakly left cancellative, {w ∈ S : x1w = tn or x2w = tr} is finite,
so pick w ∈ x−11 A∩x−12 A such that x1w 6= tn and x2w 6= tr. Pick m, s ∈ N such
that x1w = tm and x2w = ts. We have that {z ∈ S : x1z = tm or x2z = ts}
is finite so pick z ∈ x−11 A ∩ x−12 A such that x1z 6= tn, x2z 6= tr, x1z 6= tm, and
x2z 6= ts. Pick k, l ∈ N such that x1z = tk and x2z = tl. By right cancellation
we have that m 6= s and k 6= l.

Case 1. Either m < s or k < l. Assume without loss of generality that
m < s and that r < s. But then ts ∈ Dn,r,m, a contradiction.

Case 2. m > s and k > l. Assume without loss of generality that m > k.
Since x2z = tl, x1z = tk, x2w = ts, and x1w = tm we have that tm ∈ Dl,k,s, a
contradiction.

Lemma 2.3. Let S be an infinite semigroup and assume that S∗ is a subsemi-
group of βS. The following statements are equivalent.

(a) S∗S∗ is not nowhere dense in S∗.

(b) (∃V ∈ [S]ω)(∀A ∈ [V ]ω)(∃〈xn〉∞n=1)(∃〈yn〉∞n=1)
(
〈xn〉∞n=1 and 〈yn〉∞n=1 are

injective sequences in S and (∀k ∈ N)(∀n ∈ N)(n > k ⇒ xkyn ∈ A)
)
.

Proof. To see that (a) implies (b), assume that we have V ∈ [S]ω such that V ∗ ⊆
c`(S∗S∗). Let A ∈ [V ]ω be given. Then A∩(S∗S∗) 6= ∅ so pick p and q in S∗ such
that A ∈ pq. Then {x ∈ S : x−1A ∈ q} ∈ p and is therefore infinite. Let 〈xn〉∞n=1

be an injective sequence in {x ∈ S : x−1A ∈ q}. Pick y1 ∈ S. Inductively for
n ∈ N, having chosen 〈yt〉nt=1, pick yn+1 ∈ (

⋂n
k=1 x

−1
k A) \ {y1, y2, . . . yn}.

For the other implication assume we have V as guaranteed by (b). We claim
that V ∗ ⊆ c`(S∗S∗). So let r ∈ V ∗ be given. To see that r ∈ c`(S∗S∗), let
A ∈ r be given with A ⊆ V . Pick injective sequences 〈xn〉∞n=1 and 〈yn〉∞n=1 as
guaranteed for A. Pick p ∈ S∗ such that {xn : n ∈ N} ∈ p and pick q ∈ S∗ such
that

{
{yn : n > k} : k ∈ N

}
⊆ q. Then {xk : k ∈ N} ⊆ {s ∈ S : s−1A ∈ q} so

A ∈ pq.

We see now that, unlike the countable situation, cancellation is not sufficient
to guarantee that S∗S∗ is nowhere dense in S∗.

Theorem 2.4. There is a cancellative semigroup S with |S| = c such that S∗S∗

is not nowhere dense in S∗.

Proof. Let L = {zn : n ∈ N} ∪ {xσ,k : σ < c and k ∈ N} ∪ {yσ,k : σ < c and k ∈
N} where the zn’s, xσ,k’s and yσ,k’s are all distinct.

Let V = {zn : n ∈ N}. Enumerate [V ]ω as 〈Aσ〉σ<c, and for σ < c, enumerate
Aσ as

〈
〈wσ,k,n〉∞k=1

〉∞
n=k+1

.

Let S be the set of all words a1 · · · at (with each ai in L) that do not have
any i ∈ {1, 2, . . . , t − 1}, any σ < c, and any k < n in N such that ai = xσ,k
and ai+1 = yσ,n. For words u = a1 · · · at and v = b1 · · · bs in S, define u · v
as ordinary concatenation unless there exist σ < c, and k < n in N such that
at = xσ,k and b1 = yσ,n, in which case u · v = a1 · · · at−1wσ,k,nb2 · · · bs, where,
for example, a1 · · · at−1 is the empty word if t = 1.
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By Lemma 2.3 it suffices to verify that with this operation, S is a cancellative
semigroup since 〈xσ,n〉∞n=1 and 〈yσ,n〉∞n=1 are as required by this lemma for Aσ ∈
[V ]ω.

To verify associativity, let u = a1 · · · at, v = b1 · · · bs, and w = c1 · · · cr be
words in S. If it is not the case that b1 = yσ,n or bs = xτ,m for some σ < c and
some n,m ∈ N then both (u · v) · w and u · (v · w) are ordinary concatenation,
hence equal.

Case 1. b1 = yσ,n and bs = xτ,m for some σ < c and some n,m ∈ N. (In this
case necessarily s ≥ 2.)

Case 1a. at 6= xσ,k for any k ∈ {1, 2, . . . , n− 1} and c1 6= yτ,l for any
l > m. In this case again both products are ordinary concatenation.

Case 1b. at = xσ,k for some k ∈ {1, 2, . . . , n − 1} and c1 6= yτ,l for
any l > m. Then

(u · v) · w = a1 · · · at−1wσ,k,nb2 · · · bsc1 · · · cr = u · (v · w) .

Case 1c. at 6= xσ,k for any k ∈ {1, 2, . . . , n−1} and c1 = yτ,l for some
l > m. Then

(u · v) · w = a1 · · · atb1 · · · bs−1wτ,m,lc2 · · · cr = u · (v · w) .

Case 1d. at = xσ,k for some k ∈ {1, 2, . . . , n − 1} and c1 = yτ,l for
some l > m. Then

(u · v) · w = a1 · · · at−1wσ,k,nb2 · · · bs−1wτ,m,lc2 · · · cr = u · (v · w)

unless s = 2 in which case

(u · v) · w = a1 · · · at−1wσ,k,nwτ,m,lc2 · · · cr = u · (v · w) .

Case 2 (namely b1 = yσ,n for some σ < c and some n ∈ N and bs 6= xτ,m for
any τ < c and any m ∈ N) and case 3 (namely b1 6= yσ,n for any σ < c and any
n ∈ N and bs = xτ,m for some τ < c and some m ∈ N) are handled in a very
similar fashion.

We will verify that S is left cancellative. The verification of right cancella-
tivity is very similar. Let u = a1 · · · at, v = b1 · · · bs, and w = c1 · · · cr be words
in S and assume that u · v = u · w. If it is not the case that at = xσ,k for some
σ < c and some k ∈ N, then u · v and u ·w are ordinary concatenation so v = w.

So assume that at = xσ,k for some σ < c and some k ∈ N. If it is not the
case that b1 = yσ,n for some n > k or c1 = yσ,m for some m > k, then again
u · v and u · w are ordinary concatenation. So assume that either b1 = yσ,n for
some n > k or c1 = yσ,m for some m > k.

If b1 = yσ,n for some n > k, then u · v = a1 · · · at−1wσ,k,nb2 · · · bs.
If c1 = yσ,m for some m > k, then u · w = a1 · · · at−1wσ,k,mc2 · · · cr.
Since neither wσ,k,n = at nor wσ,k,m = at for any n or m in N, we must

have that b1 = yσ,n for some n > k and c1 = yσ,m for some m > k. Since〈
〈wσ,k,n〉∞k=1

〉∞
n=k+1

enumerates Aσ, we must have that m = n and so v = w.
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It is a consequence of Theorem 3.1 below that if S is cancellative and |S| =
ω1, then S∗ \ (S∗S∗) is dense in S∗. So the continuum hypothesis implies that
the semigroup of Theorem 2.4 has S∗ \ (S∗S∗) dense in S∗.

Question 2.5. Is it consistent that for the semigroup S of Theorem 2.4, S∗ \
(S∗S∗) is not dense in S∗.

We saw in Theorem 2.1 that if S is embeddable in a group, then G∗G∗ is
nowhere dense in S∗. We shall now see that considerably more can be said if
|S|ω < 2c.

Theorem 2.6. Let S be a semigroup which is embeddable in a group G and
assume that |S| = κ ≥ ω and κω < 2c. Let V = {A ∈ [S]ω : A ∩ (G∗G∗) = ∅}
and let T =

⋃
{A∗ : A ∈ V}. Then

(1) T is open and dense in S∗, T ∩ (G∗G∗) = ∅, and every element of T is
right cancelable in {p ∈ S∗ : ||p|| ≤ ω}.

(2) Let H be the subgroup of G generated by S. Define an equivalence relation
≈ on S∗ by p ≈ q if and only if there exist a, b ∈ H such that apb = q. If
k,m ∈ N, p1, p2, . . . , pm, q1, q2, . . . , qk ∈ T , and p1 · · · pm ≈ q1 · · · qk, then
k = m and for each t ∈ {1, 2, . . . ,m}, pt ≈ qt.

(3) There exists X ⊆ T such that X is dense in S∗, |X| = 2c, and X generates
a free subsemigroup of S∗.

Proof. Trivially, T is open in S∗ and T ∩ (G∗G∗) = ∅. Using Theorem 2.1, one
easily sees that T is dense in S∗.

To see that T is right cancelable in {p ∈ S∗ : ||p|| ≤ ω}, let p ∈ T and
suppose we have distinct q and r in βS such that ||q|| ≤ ω, ||r|| ≤ ω, and
qp = rp. Pick A ∈ q and B ∈ r such that |A| = |B| = ω and A ∩ B = ∅.
Then qp ∈ Ap ∩ Bp = c`(Ap) ∩ c`(Bp). Therefore by [5, Theorem 3.40] either
Ap ∩ Bp 6= ∅ or Ap ∩ Bp 6= ∅. We assume without loss of generality that we
have a ∈ A and b ∈ B such that ap = bp. By [5, Corollary 8.2], b /∈ B, so
b ∈ B∗. Then p = a−1bp and a−1b ∈ G∗ by [5, Corollary 4.33] so p ∈ G∗G∗, a
contradiction.

To verify (2), assume that k,m ∈ N, p1, p2, . . . , pm, q1, q2, . . . , qk ∈ T , and
p1 · · · pm ≈ q1 · · · qk. Suppose that the conclusion fails and assume that k + m
is minimal among all counterexamples. Note that m > 1 and k > 1. (If
m = k = 1, we don’t have a counterexample. If, say m = 1 and k > 1, then for
some a, b ∈ H, p1 = (a−1q1 · · · qk−1)qkb

−1 ∈ G∗G∗.)
Pick a, b ∈ H such that ap1 · · · pmb = q1 · · · qk. Note that {p ∈ S∗ : ||p|| = ω}

is a subsemigroup of S∗. (If A ∈ p and B ∈ q, then AB ∈ pq.) So pick
A,B ∈ [S]ω such that A ∈ p1 · · · pm−1 and B ∈ q1 · · · qk−1. Then aApmb =
c`βG(aApmb) and Bqk = c`βG(Bqk) so by [5, Theorem 3.40], we may either

(a) pick c ∈ A and d ∈ B such that acpmb = dqk or

(b) pick c ∈ A∗ and d ∈ B such that acpmb = dqk.

8



If (b) held, we would have qk = d−1acpmb ∈ G∗G∗, a contradiction. So
(a) holds. If d ∈ B∗, then pm = c−1a−1dqkb

−1 ∈ G∗G∗, a contradiction. So
d ∈ B. Since d−1acpmb = qk we have that pm ≈ qk. Also pmb = c−1a−1dqk
so ap1 · · · pm−1c−1a−1dqk = q1 · · · qk. By conclusion (1), we may cancel qk so
we conclude that p1 · · · pm−1 ≈ q1 · · · qk−1. By the minimality of m + k, we
conclude that m− 1 = k − 1 and for each t ∈ {1, 2, . . . ,m− 1}, pt ≈ qt.

To verify conclusion (3) let λ = |V|. Then V ⊆ [S]ω so λ ≤ κω < 2c.
Enumerate V as 〈Aσ〉σ<λ.

Since |H| = |S|, each ≈-equivalence class has at most |S| members (in fact
exactly |S| members). And given σ < λ, |A∗σ| = 2c. So each A∗σ hits 2c equiva-
lence classes. Inductively, choose xσ ∈ A∗σ such that if σ 6= τ , then xσ 6≈ xτ .

For x ∈ S∗, let [x] denote the ≈-equivalence class of x. Let R = {[x] : x ∈
A∗0} and let S = R \ {[xσ] : σ < λ}. Pick Y ⊆ A∗0 such that S = {[y] : y ∈ Y }
and if y and z are distinct members of Y , then y 6≈ z. Let X = Y ∪{xσ : σ < λ}.
Then X ⊆ T so by conclusion (2), if k,m ∈ N, p1, p2, . . . , pm, q1, q2, . . . , qk ∈ X,
and p1 · · · pm = q1 · · · qk, then k = m and for each t ∈ {1, 2, . . . ,m}, pt ≈ qt.
But since X includes at most one member from each equivalence class, one has
that for each t ∈ {1, 2, . . . ,m}, pt = qt. That is the semigroup generated by X
is free. Since X includes a representative of [x] for each x ∈ A∗0, |X| = 2c.

Finally, to see that X is dense in S∗, let V be an infinite subset of S and pick
D ∈ [V ]ω. Pick q ∈ D∗ \ (G∗G∗) and pick B ∈ q such that B ∩G∗G∗ = ∅. Let
A = B ∩D. Then A ∈ V so for some σ < λ, A = Aσ and thus xσ ∈ V ∩X.

We now turn our attention to determining whether S∗Uκ is nowhere dense
in Uκ, and for this we would like to know that S∗Uκ ⊆ Uκ. All of our results
about S∗Uκ involve semigroups that are very weakly left cancellative, and by
[5, Lemma 6.34.3], if S is very weakly left cancellative, then Uκ is a left ideal of
βS.

The hypotheses of the following theorem could be superficially weakened by
replacing the assumption that S is right cancellative by the assumption that
whenever a and b are distinct members of S, one has |{x ∈ S : ax = bx}| < κ.
But that is not in fact a weakening since if S is very weakly left cancellative
and |{x ∈ S : ax = bx}| < κ whenever a and b are distinct members of S,
then S is right cancellative. To see this, suppose we have a, b, and c in S with
a 6= b and ac = bc. Then cS ⊆ {x ∈ S : ax = bx} so |cS| < κ. But then,
S =

⋃
d∈cS{x ∈ S : cx = d}, so S is the union of fewer than κ left solution sets,

a contradiction.

Theorem 2.7. Let S be a right cancellative and very weakly left cancellative
semigroup with |S| = κ ≥ ω. Then S∗Uκ is nowhere dense in Uκ.

Proof. Enumerate S as 〈sα〉α<κ. Suppose we have V ∈ [S]κ such that V ∩Uκ ⊆
c`(S∗Uκ). Pick v0 ∈ V . Let 0 < δ < κ and assume we have chosen 〈vσ〉σ<δ so
that

(1) if α < σ < δ, then vα 6= vσ and

(2) if α < σ < τ < δ, µ < τ , and x ∈ S, then either sαx 6= vσ or sµx 6= vτ .
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For α < σ < δ, let Cα,σ = {x ∈ S : sαx = vσ} and let B =
⋃
α<σ<δ Cα,σ. Since

each Cα,σ is a left solution set we have |B| < κ so |{sµx : µ < δ and x ∈ B}| < κ.
Pick vδ ∈ V \ ({vσ : σ < δ} ∪ {sµx : µ < δ and x ∈ B}). Hypothesis (1) is
trivially satisfied. Suppose we have α < σ < δ, µ < δ, and x ∈ S such that
sαx = vσ and sµx = vδ. Then x ∈ Cα,σ ⊆ B so vδ ∈ {sµx : µ < δ and x ∈ B},
a contradiction.

Let A = {vσ : σ < κ} and for α < κ, let Aα = {vσ : α < σ < κ}. We
claim that if s ∈ S, q ∈ Uκ, and s−1A ∈ q, then for each α < κ, s−1Aα ∈ q.
To see this, let α < κ and suppose s−1Aα /∈ q. Then s−1A \ s−1Aα ∈ q and
s−1A \ s−1Aα =

⋃
σ≤α{x ∈ S : sx = vσ}. Thus s−1A \ s−1Aα is a union of

fewer than κ left solution sets, so |s−1A \ s−1Aα| < κ, a contradiction.
Now A ∩ Uκ ∩ S∗Uκ 6= ∅ so pick p ∈ S∗ and q ∈ Uκ such that A ∈ pq. Then

{x ∈ S : x−1A ∈ q} ∈ p so {x ∈ S : x−1A ∈ q} is infinite. Pick distinct α < κ
and µ < κ such that s−1α A ∈ q and s−1µ A ∈ q. Pick x ∈ s−1α Aα ∩ s−1µ Aµ. Pick
σ < κ and δ < κ such that α < σ, µ < δ, sαx = vσ, and sµx = vδ. Since
sα 6= sµ, we have σ 6= δ, so we assume without loss of generality that σ < δ.
This contradicts the choice of vδ.

In case S is countable, Theorem 2.7 is just [5, Theorem 6.35], since Uω = S∗

and for countable S, weakly cancellative and very weakly cancellative are the
same.

We shall see in Theorem 3.2 that left cancellative and weakly right cancella-
tive are not sufficient to force a countable semigroup to have S∗S∗ nowhere
dense in S∗.

Lemma 2.8. Let S be a weakly left cancellative and very weakly right can-
cellative semigroup with |S| = κ ≥ ω. Enumerate S as 〈sα〉α<κ and let V =
{q ∈ S∗ : (∃δ < κ)({sα : α < δ} ∈ q)}. Then (βS)V ∩ Uκ is nowhere dense in
Uκ.

Proof. Suppose we have C ∈ [S]κ such that C ∩ Uκ ⊆ c`
(
(βS)V

)
. Pick t0 ∈ C.

Let 0 < α < κ and assume that we have chosen 〈tδ〉δ<α in C such that

(a) 〈tδ〉δ<α is injective and

(b) if x ∈ S, γ < σ < δ < α, and µ < δ, then either xsγ 6= tσ or xsµ 6= tδ.

Let D = {x ∈ S : (∃γ < σ < α)(xsγ = tσ}. Then D is the union of fewer than
κ right solution sets, so |D| < κ and so |{xsµ : x ∈ D and µ < α}| < κ. Pick
tα ∈ C \ ({tδ : δ < α} ∪ {xsµ : x ∈ D and µ < α}). To verify hypothesis (b),
suppose we have x ∈ S, γ < σ < α, and µ < α such that xsγ = tσ and xsµ = tα.
Then x ∈ D so tα 6= xsµ, a contradiction.

Let B = {tα : α < κ}. Then B ∩ Uκ ∩ (βS)V 6= ∅, so pick r ∈ βS and
q ∈ V such that rq ∈ B ∩ Uκ. Pick δ < κ such that {sα : α < δ} ∈ q and let
H = {tα : α > δ}. Then H ∈ rq so {x ∈ S : x−1H ∈ q} ∈ r. Pick x ∈ S such
that x−1H ∈ q and let W = x−1H ∩{sα : α < δ}. Then W ∈ q so W is infinite.
We claim that |xW | = 1. Suppose instead we have δ < σ < α and γ < δ and
µ < δ such that xsγ = tσ and xsµ = tα. This contradicts hypothesis (b). Thus
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we have some α > δ such that xW = {tα}. But now, W ⊆ {s ∈ S : xs = tα}
which is a left solution set, and is therefore finite. This is a contradiction.

Theorem 2.9. Let S be a right cancellative and weakly left cancellative semi-
group with |S| = κ ≥ ω. Assume that κ is regular. Then S∗S∗ ∩ Uκ is nowhere
dense in Uκ.

Proof. Enumerate S as 〈sα〉α<κ and let V = {q ∈ S∗ : (∃δ < κ)({sα : α < δ} ∈
q)}. Since κ is regular, V = S∗ \ Uκ so by Lemma 2.8, (βS)(S∗ \ Uκ) ∩ Uκ is
nowhere dense in Uκ. By Theorem 2.7, S∗Uκ is nowhere dense in Uκ.

We introduce some notation which is used in the following theorem. Given
a set X, we let Pf (X) be the set of finite nonempty subsets of X. We say
that a set C of sets has the κ-uniform finite intersection property provided
|
⋂
F| ≥ κ whenever F ∈ Pf (C). Given a sequence 〈tα〉α<κ in a semigroup S,

we let FP (〈tα〉α<κ) = {
∏
α∈F tα : F ∈ Pf (κ)}, where

∏
α∈F tα is computed in

increasing order of indices. (Recall that each ordinal is the set of its predecessors,
so Pf (κ) = Pf ({α : α < κ}).)

Theorem 2.10. Let S be a right cancellative and very weakly left cancellative
semigroup with |S| = κ ≥ ω. Let C be a nonempty set of at most κ subsets
of S with the κ-uniform finite intersection property. There exists an injective
sequence 〈tα〉α<κ in S such that, letting B = {tα : α < κ}, the following
statements hold.

(1) B ∩ Uκ ∩ S∗Uκ = ∅.

(2) If p and q are distinct members of B ∩ Uκ, then βSp ∩ βSq = ∅.

(3) If p ∈ B ∩ Uκ, then p is right cancelable in βS.

(4) |B ∩ Uκ| = 22
κ

and B ∩ Uκ generates a free semigroup in Uκ.

(5) Let T =
⋂
α<κ FP (〈tσ〉α<σ<κ). Then T is a compact subsemigroup of βS

with the property that every maximal group in K(T ) contains a copy of
the free group on 22

κ

generators. In particular, FP (〈tα〉α<κ) contains a
copy of the free group on 22

κ

generators.

(6) If κ is regular and S is weakly left cancellative, then B ∩ Uκ ∩ S∗S∗ = ∅.

Further, there is a set P ⊆ B ∩ Uκ such that |P | = 22
κ

and for every p ∈ P ,
C ⊆ p.

Proof. Enumerate S as 〈sα〉α<κ. We may assume that C is closed under finite
intersections. Let λ = |C|, enumerate C as 〈Cα〉α<λ, and let f : κ 1-1−→

onto
κ × λ.

Fix a ∈ S and let A = {s ∈ S : as = a}. Then A is a left solution set so
|A| < κ. Pick t0 ∈ Cπ2(f(0)) \ A, where π2 is the projection from κ× λ onto λ.
Let 0 < α < κ and assume we have chosen 〈tδ〉δ<α such that

(a) if δ < α, then tδ /∈ FP (〈tγ〉γ<δ);
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(b) if δ < α and ν = π2
(
f(δ)

)
, then tδ ∈ Cν ;

(c) if γ < δ < α and µ < σ < δ, then sγtδ 6= sµtσ;

(d) if γ < σ < δ < α, µ < δ, and x ∈ S, then either sγx 6= tσ or sµx 6= tδ;

(e) if δ < α and u, v ∈ FP (〈tγ〉γ<δ), then u 6= vtδ;

(f) if δ < α, u, v ∈ FP (〈tγ〉γ<δ), and u 6= v then utδ 6= vtδ;

(g) if δ < α and u ∈ FP (〈tγ〉γ<δ), then utδ 6= tδ;

(h) FP (〈tδ〉δ<α) ∩A = ∅; and

(i) if κ is regular, S is weakly left cancellative, x ∈ S, γ < σ < δ < α, and
µ < δ, then either xsγ 6= tσ or xsµ 6= tδ.

All hypotheses are satisfied at α = 1, all but (b) and (h) vacuously.
For µ < σ < α and γ < α, let Aγ,µ,σ = {x ∈ S : sγx = sµtσ}. Then each

Aγ,µ,σ is a left solution set, so |
⋃
γ<α

⋃
σ<α

⋃
µ<σ Aγ,µ,σ| < κ.

For γ < σ < α, let Fγ,σ = {x ∈ S : sγx = tσ}. Then |
⋃
σ<α

⋃
γ<σ Fγ,σ| < κ

so |{sµx : µ < α and x ∈
⋃
σ<α

⋃
γ<σ Fγ,σ}| < κ.

Let V = FP (〈tδ〉δ<α). Then |V | < κ. By hypothesis (h), if u ∈ V , then
au 6= a so |{x ∈ S : (∃u ∈ V )(aux = ax)}| < κ.

Also, |
⋃
u∈V {x ∈ S : aux = a}| < κ, |

⋃
u∈V

⋃
v∈V {x ∈ S : vx = u}| < κ,

and |
⋃
u∈V

⋃
v∈V \{u}{x ∈ S : vx = ux}| < κ.

If κ is regular and S is weakly left cancellative, let D = {x ∈ S : (∃γ < σ <
α)(xsγ = tσ)}. Then |D| < κ and consequently, |{xsµ : x ∈ D and µ < α}| < κ.

Let ν = π2
(
f(α)

)
and pick tα ∈ Cν such that tα is not a member of⋃

γ<α

⋃
σ<α

⋃
µ<σ Aγ,µ,σ ∪ V ∪A ∪

{sµx : µ < α and x ∈
⋃
σ<α

⋃
γ<σ Fγ,σ} ∪

{x ∈ S : (∃u ∈ V )(aux = ax)} ∪
⋃
u∈V {x ∈ S : aux = a} ∪⋃

u∈V
⋃
v∈V {x ∈ S : vx = u} ∪

⋃
u∈V

⋃
v∈V \{u}{x ∈ S : vx = ux} .

If κ is regular and S is weakly left cancellative, require also that tα /∈ {xsµ :
x ∈ D and µ < α}.

Hypotheses (a) and (b) hold directly. To verify hypothesis (c), assume that
γ < α and µ < σ < α. Then tα /∈ Aγ,µ,σ so sγtα 6= sµtσ.

To verify hypothesis (d), assume that γ < σ < α, µ < α, and x ∈ S. If
sγx = tσ, then x ∈ Fγ,σ so tα 6= sµx.

Hypotheses (e) and (f) hold directly. To verify hypothesis (g), let u ∈
FP (〈tδ〉δ<α. Then autα 6= atα so utα 6= tα.

To verify hypothesis (h), note that tα /∈ A and if u ∈ V , then autα 6= a so
utα /∈ A.

To verify hypothesis (i), assume that κ is regular, S is weakly left cancella-
tive, x ∈ S, γ < σ < α, µ < α, and xsγ = tσ. Then x ∈ D, so tα 6= xsµ.

The inductive construction being complete, let B = {tα : α < κ} and for
α < κ, let Bα = {tγ : α < γ < κ}.
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To verify conclusion (1), let p ∈ B ∩ Uκ and suppose we have q ∈ S∗ and
r ∈ Uκ such that p = qr. Pick γ < µ < κ such that s−1γ B ∈ r and s−1µ B ∈ r. We
claim that s−1γ Bγ ∈ r. For otherwise,

⋃
δ≤γ{x ∈ S : sγx = tδ} = s−1γ B\s−1γ Bγ ∈

r so the union of fewer than κ left solution sets is a member of r, a contradiction.
Similarly, s−1µ Bµ ∈ r. Let H = {x ∈ S : sµx = sγx}. Then |H| < κ so S\H ∈ r.
Pick x ∈ s−1γ Bγ∩s−1µ Bµ∩(S\H). Pick σ > γ and δ > µ such that sγx = tσ and
sµx = tδ. Since x /∈ H, σ 6= δ. But then we get a contradiction to hypothesis
(d) regardless of whether σ < δ or δ < σ.

To verify conclusion (2), let p and q be distinct members of B ∩ Uκ. Pick
F and G in [B]κ such that F ∈ p, G ∈ q, and F ∩ G = ∅. Suppose we have u
and v in βS such that up = vq. Let D = {sγtα : γ < α < κ and tα ∈ F}. We
claim that D ∈ up. Indeed, given γ < κ, one has that {tα : γ < α < κ and tα ∈
F} ⊆ s−1γ D. Similarly {sµtσ : µ < σ < κ and tσ ∈ G} ∈ vq. Pick γ < α < κ
and µ < σ < κ such that sγtα = sµtσ, tα ∈ F , and tσ ∈ G. Since F ∩ G = ∅,
α 6= σ. But then we have a contradiction to hypothesis (c).

To verify conclusion (3), let p ∈ B ∩ Uκ and suppose that we have u 6= v
in βS such that up = vp. Pick F ∈ u and G ∈ v such that F ∩ G = ∅. Then
{sγtα : γ < α < κ and sγ ∈ F} ∈ up and {sµtσ : µ < σ < κ and sµ ∈ G} ∈ vp
so pick γ < α < κ and µ < σ < κ such that sγ ∈ F , sµ ∈ G, and sγtα = sµtσ.
Then α 6= σ so this contradicts hypothesis (c).

To verify conclusion (4) note first that |B ∩ Uκ| = 22
κ

by [5, Theorem
3.58]. We will show that if k,m ∈ N, p1, . . . , pm, q1, . . . , qk ∈ B ∩ Uκ, and
p1 · · · pm = q1 · · · qk, then m = k and for each i ∈ {1, 2, . . . ,m}, pi = qi.
Suppose that this fails and pick a counterexample with m+k a minimum among
all counterexamples. If m = k = 1, one does not have a counterexample, and
m + k = 3 is out by conclusion (1). By conclusion (2) we have that pm = qk
and so by conclusion (3), p1 · · · pm−1 = q1 · · · qk−1 and thus m− 1 = k − 1 and
for all i ∈ {1, 2, . . . ,m− 1}, pi = qi.

To verify conclusion (5), it suffices by [5, Theorem 7.35] to show that 〈tα〉α<κ
has distinct finite products. So suppose instead there exist F 6= G in Pf (κ) such
that

∏
α∈F tα =

∏
α∈G tα and pick F and G with |F ∪ G| a minimum among

all such examples. Assume without loss of generality that maxF ≤ maxG = α.
Suppose first that maxF < α. If G = {α} we have a contradiction to hypothesis
(a) and if |G| ≥ 2 we have a contradiction to hypothesis (e). So we must have
α ∈ F . If either F or G is a singleton, we get a contradiction to hypothesis (g)
and otherwise we get a contradiction to hypothesis (f).

To verify conclusion (6), assume that κ is regular and S is weakly left can-
cellative. Suppose we have q and r in S∗ such that rq ∈ B ∩ Uκ. By con-
clusion (1), q ∈ S∗ \ Uκ. Since κ is regular, there is some δ < κ such that
{sα : α < δ} ∈ q. One now derives a contradiction to hypothesis (j) exactly as
in the last paragraph of the proof of Lemma 2.8.

Finally, let B = {B ∩ Cα : α < λ}. We claim that B has the κ-uniform
finite intersection property. So let F ∈ Pf (λ). Since C is closed under finite
intersections, pick γ < λ such that Cγ =

⋂
α∈F Cα. Then {tα : π2

(
f(α)

)
=

γ} ⊆ B ∩ Cγ . Let P = {p ∈ Uκ : B ⊆ p}. By [5, Theorem 3.62], |P | = 22
κ

.
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Note that, by the proof of [5, Theorem 6.42], conclusion (2) of Theorem 2.10
does not require the assumption that S is right cancellative.

3. Dense nonproducts

We have one theorem guaranteeing that S∗ \ S∗S∗ is dense in S∗. Recall
that by Theorem 2.4 there is a cancellative semigroup with |S| = c such that
S∗S∗ is not nowhere dense in S∗. So, if the continuum hypothesis holds, this
is an example of a semigroup such that S∗ \ S∗S∗ is dense in S∗ while S∗S∗ is
not nowhere dense in S∗. On the other hand, as we will see, it is a consequence
of Martin’s Axiom and the negation of the continuum hypothesis, that any
cancellative semigroup S with |S| = ω1 does have S∗S∗ nowhere dense in S∗.
For an elementary introduction to Martin’s Axiom, see [5, Section 12.1].

Theorem 3.1. Let S be a semigroup with |S| = ω1 and assume that S is right
cancellative and weakly left cancellative. Then S∗ \ (S∗S∗) is dense in S∗. If
MA(ω1) holds, then S∗S∗ is nowhere dense in S∗.

Proof. Enumerate S as 〈sσ〉σ<ω1
. For ω < σ < ω1, let Sσ be the semigroup

generated by {sτ : τ < σ}. By [5, Theorem 6.35], for each σ with ω < σ < ω1,
S∗σS

∗
σ is nowhere dense in S∗σ.
Let A be a countably infinite subset of S. We will show that A∩(S∗\S∗S∗) 6=

∅ and that, if MA(ω1) holds, then A∗ \ c`(S∗S∗) 6= ∅. Pick δ < ω1 such that
A ⊆ Sδ. Since A \ c`(S∗δS∗δ ) 6= ∅, pick Vδ ∈ [A]ω such that V ∗δ ∩ (S∗δS

∗
δ ) = ∅.

Now let δ < σ < ω1 and assume that we have chosen 〈Vτ 〉δ≤τ<σ such that for
each τ with δ ≤ τ < σ,

(a) Vτ ∈ [A]ω,

(b) if µ < τ , then V ∗τ ⊆ V ∗µ ; and

(c) Vτ ∩ (S∗τS
∗
τ ) = ∅.

If σ = γ + 1 for some γ, we have that V ∗γ \ c`(S∗σS∗σ) 6= ∅ so pick Vσ ∈ [Vγ ]ω

such that Vσ ∩ (S∗σS
∗
σ) = ∅.

Now assume that σ is a limit ordinal. Note that {Vτ : δ ≤ τ < σ} has the
finite intersection property. Enumerate {τ : δ ≤ τ < σ} as 〈τn〉n<ω. Choose
a0 ∈ Vτ0 and inductively for n > 0 choose an ∈

⋂n
k=0 Vτk \ {a0, a1, . . . , an−1}.

Pick infinite Vσ ⊆ {an : n < ω} such that Vσ ∩ (S∗σS
∗
σ) = ∅.

The inductive construction being complete, we have that {V ∗σ : δ ≤ σ < ω1}
is a collection of closed subsets of S∗ with the finite intersection property so
pick q ∈

⋂
δ≤σ<ω1

V ∗σ . Then q ∈ A. We claim that q /∈ S∗S∗. So suppose
instead we have q = pr for some p, r ∈ S∗. Since Uω1

is an ideal of βS by [5,
Lemma 6.34.3], we have ||p|| = ||r|| = ω. So pick B ∈ p and C ∈ r such that
|B| = |C| = ω. Pick σ < ω1 such that B ∪ C ⊆ Sσ. Then q ∈ Vσ ∩ (S∗σS

∗
σ), a

contradiction.
Now assume that MA(ω1) holds and suppose A∗ ⊆ c`(S∗S∗). By [5, Corol-

lary 12.12], intA∗
⋂
δ≤σ<ω1

V ∗σ 6= ∅ so pickB ∈ [A]ω such thatB∗ ⊆
⋂
δ≤σ<ω1

V ∗σ .
Picking q ∈ B∗∩(S∗S∗) we derive a contradiction as in the paragraph above.
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Recall from [5, Theorem 6.35] that if S is a countably infinite right can-
cellative and weakly left cancellative semigroup, then S∗S∗ is nowhere dense in
S∗.

The semigroup produced in the following theorem is very similar to that of
[5, Exercise 4.3.7].

Theorem 3.2. There is a countably infinite left cancellative and weakly right
cancellative semigroup S such that S∗S∗ has nonempty interior. In particular,
S∗ \ (S∗S∗) is not dense in S∗.

Proof. Let L = {xn : n ∈ N} ∪ {zn : n ∈ N} ∪ {y} be an alphabet of distinct
letters. Let

S = {a1a2 · · · at : each ai ∈ L and if i ∈ {1, 2, . . . , t− 1} ,
ai = xn, and ai+1 = zm, then n ≥ m} .

For w1 = a1 · · · at and w2 = b1 · · · bs in S (with each ai and bi in L), let w1w2

be ordinary concatenation unless at = xn and b1 = zm with n < m in which
case w1w2 = a1 · · · at−1yb1 · · · bs.

It is routine (though at least mildly tedious) to verify that the operation on S
is associative, that S is left cancellative, and that S is weakly right cancellative.

Let A = {yzn : n ∈ N}. We claim that A∗ ⊆ S∗S∗, so let p ∈ A∗. For
B ∈ p, let CB = {zn : yzn ∈ B}. Then {CB : B ∈ p} has the ω-uniform
finite intersection property, so pick q ∈ S∗ such that {CB : B ∈ p} ∈ q. Let
r ∈ {xn : n ∈ N}∗. We claim that p = rq. So let B ∈ p. We claim that
{xn : n ∈ N} ⊆ {s ∈ S : s−1B ∈ q}. So let n ∈ N. Let D = CB ∩ {zm : m > n}.
Then D ∈ q and D ⊆ x−1n B.

4. Right cancelable elements

We saw in Theorem 2.10 that with mild cancellation assumptions on S we
can get lots of uniform ultrafilters on S that are right cancelable in βS. And
by [5, Lemma 8.1], if s is right cancelable in S, it is also right cancelable in βS.
In [2, Theorem 3.2], M. Filali showed that if S is an infinite semigroup which
can be embedded in a group and ω ≤ κ ≤ |S|, then there exist right cancelable
elements p of βS with ||p|| = κ. We shall see as a consequence of Theorem
4.2, if p is right cancelable in in βZ or in βQd, then p is right cancelable in
βRd and in βCd. Here, if X is a topological space, Xd denotes the set X with
the discrete topology. As we have already remarked, if T ⊆ S, we ignore the
subtle distinction between an ultrafilter on T and an ultrafilter on S with T as
a member and pretend that βT ⊆ βS.

Lemma 4.1. Let S be an infinite semigroup. An element p ∈ βS is right
cancelable in βS if and only if, for each A ⊆ S, there exists B ⊆ S such that
A = {x ∈ S : x−1B ∈ p}.

Proof. This is [5, Theorem 8.7].
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In the following proof we use the notation

P ⇔ Q
⇔ R

to abbreviate the statement “P ⇔ Q and Q⇔ R”.

Theorem 4.2. Let S be an infinite semigroup and let T be a semigroup with
identity e. Let p ∈ (S ×{e})∗ be right cancelable in β(S ×{e}). Then p is right
cancelable in β(S × T ).

Proof. We use Lemma 4.1. Let A ⊆ S × T . We shall produce B ⊆ S × T such
that A = {v ∈ S × T : v−1B ∈ p}.

We observe that the coordinate function π2 : S × T → T extends to a
continuous homomorphism π̃2 : β(S × T )→ βT .

For each t ∈ T , let Ct = {x ∈ S : (x, t) ∈ A}. By Lemma 4.1, for each t ∈ T ,
pick Bt ⊆ S such that, for every s ∈ S,

(s, e)p ∈ Bt × {e} ⇔ s ∈ Ct
⇔ (s, t) ∈ A.

Let B =
⋃
t∈T Bt×{t}. Since each t ∈ T is an isolated point of βT , Bt × {t} =

{x ∈ B : π̃2(x) = t}.
Let 〈vi〉i∈D be a net in S for which 〈(vi, e)〉i∈D converges to p in β(S × T ).

Let (s, t) ∈ S × T . We show that (s, t)−1B ∈ p if and only if (s, t) ∈ A. Given
i ∈ D, the statements (s, t)(vi, e) ∈ Bt × {t} and (s, e)(vi, e) ∈ Bt × {e} are
equivalent, because each is equivalent to the statement that svi ∈ Bt. Since
λ(s,t) and λ(s,e) are continuous in β(S×T ), we have (s, t)p = lim

i∈D
(s, t)(vi, e) and

(s, e)p = lim
i∈D

(s, e)(vi, e) so (s, t)p ∈ Bt × {t} if and only if (s, e)p ∈ Bt × {e}.

Since π̃2
(
(s, t)p

)
= t, it follows that:

(s, t)p ∈ B ⇔ (s, t)p ∈ Bt × {t}
⇔ (s, e)p ∈ Bt × {e}
⇔ (s, t) ∈ A.

A consequence of Theorem 4.2 is that if p ∈ N∗ is right cancelable in (βN,+),
T is any left cancelative semigroup with identity e, and q ∈ β(N × T ) has the
property that p = {A ⊆ N : A×{e} ∈ q}, then q is right cancelable in β(N×T ).
By way of contrast, by [5, Example 8.29], there exists p ∈ N∗ which is right
cancelable in (βN,+) but not in (βZ,+).

Corollary 4.3. Suppose that a divisible abelian group H is a subgroup of an
abelian group G. Then every element of βH which is right cancelable in βH is
also right cancelable in βG.
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Proof. By [3, Theorem 18.1], there is a subgroup L of G such that G = H ⊕
L.

Corollary 4.4. Every right cancelable element of βQd is right cancelable in
βRd, and every right cancelable element of βRd is right cancelable in βCd.

Proof. Corollary 4.3.

The next lemma will be used in Corollaries 4.6 and 4.7.

Lemma 4.5. Let A be a countably infinite subset of a divisible group (H,+).
There is a countably infinite divisible subgroup D of H such that A ⊆ D.

Proof. By [3, Theorem 20.1], we may presume that H =
⊕

α∈I Kα, where each
Kα is either a copy of Q or a quasi-cyclic group. Let

J = {α ∈ I : (∃x ∈ A)(xα 6= 0)}

and let D = {x ∈ H : (∀α ∈ I \J)(xα = 0)}. Then D is isomorphic to
⊕

α∈J Kα

so D is a countably infinite divisible subgroup of H containing A.

Corollary 4.6. Let (S,+) be an infinite cancellative commutative semigroup
and let G denote the abelian group of differences of S. Let H denote any abelian
group which contains S, and which therefore contains G. There is a subset V
of S∗ satisfying the following statements.

(1) V is open and dense in S∗ and every element of V is right cancelable in
βH.

(2) For any two elements v1 and v2 of V , βH + v1 and βH + v2 intersect if
and only if S + v1 and S + v2 intersect.

(3) Define an equivalence relation ≈ on S∗ by p ≈ q if and only if (S +
p) ∩ (S + q) 6= ∅. If k,m ∈ N, p1, p2, . . . , pm, q1, q2, . . . , qk ∈ V , and
p1 + . . . pm ≈ q1 + . . . qk, then k = m and for each t ∈ {1, 2, . . . ,m},
pt ≈ qt.

Proof. By [3, Theorem 20.1], H can be embedded in a divisible abelian group
and so we may assume that H is divisible. Let V = {A ⊆ [S]ω : A∩(H∗+H∗) =
∅} and let U =

⋃
{A∗ : A ∈ V}. We claim that U is dense in S∗, so let B ∈ [S]ω.

By Theorem 2.1, B∗ \ c`(H∗ +H∗) 6= ∅ so pick p ∈ B∗ \ c`(H∗ +H∗) and pick
A ∈ p such that A ∩ (H∗ +H∗) = ∅. Then p ∈ B∗ ∩ U .

Let V =
⋃
{U ∩D∗ : D is a countable divisible subgroup of H}. Then V is

open in S∗. To see that V is dense in S∗, let B ∈ [S]ω. By Lemma 4.5, pick
a countable divisible subgroup D of H containing B. Pick p ∈ B∗ ∩ U . Then
p ∈ U ∩D∗. Note that each p ∈ V has ||p|| = ω and that V ∩ (H∗ +H∗) = ∅.

To see that every element of V is right cancelable in βH, let p ∈ V and pick
a countable divisible subgroup D of H such that p ∈ U ∩ D∗. Since p ∈ U ,
p /∈ (D∗ + D∗) and so by [5, Theorem 8.18], p is right cancelable in βD. By
Corollary 4.3, p is right cancelable in βH.
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To verify (2), let v1 and v2 be elements of V . By Lemma 4.5, we can choose
a countable divisible subgroup D of H such that D is a member of v1 and of
v2. By [3, Theorem 18.1], we can write H as a direct sum H = D+E for some
some subgroup E of H. Let πD denote the projection of H onto D, and let
π̃D : βH → βD denote its continuous extension. Suppose that x+ v1 = y + v2
for some x, y ∈ βH. Then π̃D(x)+v1 = π̃D+v2. So c`(D+v1)∩c`(D+v2) 6= ∅.
By [5, Theorem 3.40], we may suppose that s+ v1 = w+ v2 for some s ∈ D and
some w ∈ βD. So v1 = z + v2, where z = −s + w. This equation implies that
z ∈ βG and hence that z ∈ G, becaause v1 /∈ H∗+H∗. So z = s2− s1 for some
s1, s2 ∈ S and therefore s1 + v1 = s2 + v2.

Conclusion (3) can now be proved by an inductive argument similar to the
proof of Theorem 2.6(2).

Corollary 4.7. Let G be a countably infinite subgroup of an abelian group
(H,+). Then every element of βG which is right cancelable in βG is also right
cancelable in βH.

Proof. Let p be a right cancelable element of βG. If p ∈ G, then p ∈ H so by
[5, Lemma 8.1], p is right cancelable in βH. So we assume that p ∈ H∗. By
[3, Theorem 19.1], H can be embedded in a divisible abelian group K and if p
is right cancelable in βK, it is also right cancelable in βH, so we may assume
that H is divisible. Pick by Lemma 4.5 a countably infinite divisible subgroup
D of H which contains G. We claim that p is right cancelable in βD. Suppose
that p is not right cancelable in βD and pick by [5, Theorem 8.18] q ∈ D∗ such
that p = q + p. Since G ∈ p, {x ∈ D : −x + G ∈ p} ∈ q so G ∈ q. But then
p ∈ G∗ + p so p is not right cancelable in βG. Finally, by Corollary 4.3, p is
right cancelable in βH.

Finally, we observe that, for example, there are many p ∈ βRd that are right
cancelable in βRd and converge to a given point of R with respect to the usual
topology.

Theorem 4.8. Let S be a right cancellative and very weakly left cancellative
semigroup with |S| = κ ≥ ω. Assume that T is a topology on S and x ∈ S such
that there is a neighborhood base C for x with respect to T such that |C| ≤ κ and
for each C ∈ C, |C| = κ. Then there is a set P of 22

κ

right cancelable elements
of βSd, each of which converges to x with respect to T .

Proof. This is an immediate consequence of Theorem 2.10.
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