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1. Introduction

Throughout this article, we shall assume that all hypothesized topological spaces
are Hausdorff.

Let S be a semigroup which is also a topological space. S is said to be a
topological semigroup if the operation · : S × S → S is continuous. Given x ∈ S,
define λx : S → S and ρx : S → S by λx(y) = x · y and ρx(y) = y · x. If
one only assumes that each λx is continuous and each ρx is continuous, then S
is a semitopological semigroup. If one only assumes that each ρx is continuous,
then S is a right topological semigroup. (Some authors call this a left topological
semigroup because multiplication is continuous in the left variable.)

From our point of view, probably the most fundamental theorem about right
topological semigroups is the following.

1.1. Theorem. Let S be a compact right topological semigroup. Then S has a
smallest two sided ideal K(S). Further K(S) is the union of all of the minimal left
ideals of S and is also the union of all of the minimal right ideals of S. Given any
minimal left ideal L of S and any minimal right ideal R of S, L ∩R is a maximal
subgroup of S. Also, any two minimal left ideals of S are isomorphic, any two
minimal right ideals of S are isomorphic, and any two maximal subgroups of K(S)
are isomorphic.

Theorem 1.1 was established for finite semigroups by Suschkewitsch [1928],
for topological semigroups by Wallace [1955], and for right topological semi-
groups by Ruppert [1973]. A crucial contribution to the result for right topolog-
ical semigroups was the proof by Ellis [1969] that any compact right topological
semigroup has an idempotent.

Classic (and neo-classic) references are the books by Clifford and Preston
[1961] on the algebraic theory of semigroups, by Hofmann and Mostert [1996]
on compact topological semigroups, by Ruppert [1984] on semitopological semi-
groups, and by Berglund, Junghenn, and Milnes [1989] on right topological
semigroups.

Suppose that S is both a semigroup and a topological space. A semigroup
compactification of S is a pair (φ, T ) such that T is a compact right topological
semigroup, φ : S → T is a continuous homomorphism, φ[S] is dense in T and
λφ(s) : T → T is continuous for every s ∈ S. (In this case, we may simply call T a
semigroup compactification of S. Note that a semigroup compactification need not
be a topological compactification, because φ is not required to be an embedding.)

Let P be a property of semigroups which are topological spaces. A semigroup
compactification (φ, T ) of S is said to be the universal P-semigroup compactifica-
tion of S if T has property P and if, for every semigroup compactification (φ′, T ′)
of S for which T ′ has property P, there is a continuous homomorphism θ : T → T ′

such that φ′ = θ ◦ φ.
We shall discuss the weakly almost periodic compactification wS of S and the

LMC compactification SLMC of S. We define (η, wS) to be the universal P-
semigroup compactification of S, where P denotes the property of being a semi-
topological semigroup. A bounded continuous function f : S → C is weakly almost
periodic if and only if there is a continuous γ : wS → C such that γ ◦ η = f .
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We define SLMC to be the universal P-semigroup compactification of S, where
P denotes the property of being a right topological semigroup.

It has been known for some time that if S is a discrete semigroup, the operation
on S can be uniquely extended to the Stone-Čech compactification βS of S so that
βS becomes a semigroup compactification of S, and in fact βS = SLMC . See the
notes to Chapter 4 of Hindman and Strauss [1998b] for a discussion of the origins
of this fact.

We shall also mention the uniform compactification uG of a topological group
G. We define this in terms of the right uniform structure on G, which has the
sets of the form {(x, y) ∈ G × G : xy−1 ∈ U}, where U denotes a neighborhood
of the identity in G, as a base for the vicinities. This compactification has the
property that a continuous bounded real-valued function defined on G has a con-
tinuous extension to uG if and only if it is uniformly continuous. It is a semigroup
compactification of G in which G is embedded. In the case in which G is locally
compact, uG = GLMC .

The semigroup βS plays a significant role in topological dynamics. Whenever
a discrete semigroup S acts on a compact topological space S, the enveloping
semigroup (defined as the closure in XX of the functions corresponding to elements
of S), is a semigroup compactification of S and therefore a quotient of βS. For this
reason, some of the concepts related to the algebra of βS originated in topological
dynamics. Several of these are described in Section 5 below.

Because the points of βS can be viewed as ultrafilters on S one obtains built
in applications to the branch of combinatorics known as Ramsey Theory . That
is, as soon as one knows that there is an ultrafilter on S which is contained in
some set G of “good” subsets of S, one automatically has a corresponding Ramsey
Theoretic result, namely that whenever S is divided into finitely many parts, one
of these parts is a member of G.

In this paper we propose to survey progress in the areas mentioned above in
the last decade, i.e. since the publication of Hušek and van Mill [1992]. Sec-
tion 2 of Comfort, Hofmann and Remus [1992] dealt primarily with topological
semigroups, with brief mention of results in semitopological semigroups, right topo-
logical semigroups, and the algebra of βS. In Section 2 of this paper we shall only
mention a few recent results of which we are aware from the theory of topologi-
cal semigroups. This light treatment is dictated by two facts. Most importantly,
neither of the authors is an expert in the theory of topological semigroups. Sec-
ondly, a thorough treatment of progress during the last decade of the theory of
topological semigroups would consume much more space than is allocated for this
paper.

In 1998 our book Hindman and Strauss [1998b] was published. Sections 3
through 5 of this paper will survey results in subjects covered in that book, and
will concentrate on progress since the manuscript went to the publisher. Section
3 will deal with results in the theory of right topological semigroups. Section 4
will present recent progress in the algebra of βS. And Section 5 will survey recent
progress in the applications of the algebra of βS to Ramsey Theory.

In Section 6 we deal with a subject, the Stone-Čech compactification of partial
semigroups, that has only recently emerged as an area of productive research, both
in terms of abstract algebra and in terms of combinatorial applications.
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2. Topological and Semitopological Semigroups

For reasons mentioned in the introduction, we are unable to give a substantive
review of recent progress in the theory of topological semigroups. The excellent
article Hofmann [2000] discusses the theory beginning in antiquity (meaning in
this case the 19th century) and continues through results as recent as 1998, with
an emphasis on the Lie theory of semigroups. See also the volume Hofmann and
Mostert [1996], which has several relevant articles, and the survey Hofmann
and Lawson [1996].

In a now classic result, Ellis [1957] showed that any semitopological semigroup
which is locally compact and is algebraically a group is in fact a topological group.
Bouziad [1993] describes a class C of Baire spaces and shows that if G is a left
topological group which acts on a space X in a separately continuous fashion and
if G and X both belong to the class C, then the action is jointly continuous.

It is reasonably easy to see that if S is an infinite discrete cancellative semi-
group, then βS contains at least 2c idempotents. (See Hindman and Strauss
[1998b, Section 6.3].) In the case of wS, even for S discrete, the situation is not so
simple. Using techniques of harmonic analysis, Brown and Moran [1972] estab-
lished in 1972 that wZ has 2c idempotents. The proof of this result was simplified
by an elementary (but still complicated) exhibition of specific weakly almost pe-
riodic functions on Z by Ruppert [1991]. Bordbar [1998], gave a much simpler
construction of enough weakly almost periodic functions on Z to guarantee the
existence of 2c idempotents in wZ.

Bordbar’s construction used the base −2 expansion of an arbitrary integer. It
is a simple, but not so well known, fact that for any p ∈ N with p ≥ 2, any x ∈ Z
has a unique expansion to the base −p using only the digits {0, 1, 2, . . . , p − 1}.
This expansion has the virtue that, so long as the supports of x and y are disjoint,
there is no borrowing and no carrying when x and y are added. We shall have
occasion to refer to another use of this representation in Section 4.

Berglund [1980] asked whether the set of idempotents in any compact mono-
thetic semitopological semigroup must be closed. (A semigroup S with topology
is monothetic provided there is some x ∈ S for which {xn : n ∈ N} is dense.)
Bordbar and Pym [2000] used the base −2 expansion of integers to show that
the set of idempotents in wN is not closed, thereby answering Berglund’s question.
They also showed that the set of idempotents in wZ is not closed. Independently,
Bouziad, Memańczyk, and Mentzen [2001] also answered Berglund’s question
by constructing a class of compact semitopological semigroups, each containing a
dense topological group which is monothetic (as a semigroup), in which the set of
idempotents is not closed. Notice that because of the universal extension property
of wN and wZ, this latter result implies that the set of idempotents in wN is not
closed and that the set of idempotents in wZ is not closed.

Bordbar and Pym [1998] investigated the structure of wG, where G is the
direct sum of countably many finite groups. In any semigroup there is a natu-
ral ordering of the idempotents according to which one has e ≤ f if and only if
e = ef = fe. Bordbar and Pym established that not only does wG have 2c idem-
potents, it in fact has an antichain consisting of 2c idempotents. They showed
further that under the continuum hypothesis, there is also a chain of 2c idempo-

3



tents.
Notice that in the definition of the weak almost periodic compactification, the

continuous homomorphism from S into wS is not required to be an embedding.
Of course, if S is not a semitopological semigroup, then it could not possibly be an
embedding. In the following remarkable result, M. Megrelishvili established that
it can be very far from being an embedding, even when S is not only a topological
semigroup, but in fact a topological group.

2.1. Theorem (Megrelishvili). Let G be the set of all orientation preserving
self homeomorphisms of the interval [0, 1] with the compact-open topology. Then
G is a topological group and all weakly almost periodic functions on G are constant.
Consequently |wG| = 1.

tu Megrelishvili [2001, Theorem 3.1] tu

If G is a locally compact group, the homomorphism mapping G into wG is
an embedding. However, wG need not be much larger than G. Ruppert [1984,
Theorem 6.3] has shown that, if G is a simple non-compact Lie group, then wG
is the one-point compactification of G. It was recently shown by Ferri [2001]
that wG is large if G is an IN group (i.e. a group in which the identity has
a compact neighborhood invariant under conjugation). More precisely, let κ be
the cardinal denoting the smallest number of compact subsets of G required to
cover G. Assuming that G is non-compact, wG has at least 22κ

points. If G
is a non-compact SIN group (i.e. a group in which the identity has a basis of
compact neighborhoods invariant under conjugation), S. Ferri showed that uG\G
has a dense open subset W of cardinality 22κ

with the following property: for
every w ∈ W , {w} = φ−1[{φ(w}], where φ : uG → wG denotes the natural
homomorphism. This extends a result due to Ruppert [1973], who had previously
proved this fact for a discrete group G.

3. Right (or Left) Topological Semigroups

As we mentioned in the introduction, if S is a discrete semigroup, then βS is in a
natural way a right topological semigroup.

If S is a right topological semigroup, its topological center Λ(S) is the set
of points s ∈ S for which λs : S → S is continuous. In the case of discrete
commutative S, it is easy to see that the topological center and the algebraic
center of βS coincide by a simple consideration of the functions λx and ρx. (See
Hindman and Strauss [1998b, Theorem 4.24].) If S is weakly left cancellative
(meaning that for all u, v ∈ S, {x ∈ S : ux = v} is finite), then the algebraic center
of βS is equal to the algebraic center of S, and the algebraic center of S∗ = βS \S
is empty (See Hindman and Strauss [1998b, Theorem 6.54].)

If q ∈ S∗, the question of the continuity of λq restricted to S∗ is not straight-
forward. The following is an old result of E. van Douwen. (The date on the paper
is 1991, but the result was established in 1979.)

3.1. Theorem (van Douwen). Let S be a countable cancellative semigroup.

(a) There is a dense subset D of S∗ such that for all p ∈ D and all q ∈ S∗, the
restriction of λq to S∗ is discontinuous at p.
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(b) There is a P-point in N∗ if and only if there is a dense subset E of S∗ such
that for all p ∈ E and all q ∈ S∗, the restriction of the operation · to S∗×S∗

is continuous at (q, p).

tu These conclusions follow from Theorems 9.7 and 9.8 of van Douwen [1991]
respectively. tu

The following theorem about joint continuity was proved by Protasov.

3.2. Theorem (Protasov). [1996] If G is a countable discrete abelian group,
with only a finite number of elements of order 2, then there is no point in G∗×G∗

at which the operation · from βG× βG to βG is continuous.

tu Protasov[1996, Theorem 4.1] tu

In the same paper, Protasov [1996, Example 4.4] showed that, if G denotes a
discrete abelian group for which |G| is Ulam measurable, then G∗×G∗ does contain
a point at which the operation · from βG × βG to βG is continuous. Zelenyuk
[1996b] showed that Martin’s Axiom implies that the same statement holds if G
is a countable Boolean group. We do not know whether examples of this kind of
joint continuity can be constructed in ZFC.

We shall continue with the discussion of continuity in G∗ momentarily. How-
ever, in this discussion we shall use the notion of strongly summable ultrafilters,
which we pause now to introduce. An ultrafilter on a semigroup (S, +) is said
to be strongly summable if it has a base of sets of the form FS(〈xn〉∞n=1), where
FS(〈xn〉∞n=1) = {

∑
n∈F xn : F is a finite nonempty subset of N}. Blass and

Hindman [1987] showed that Martin’s Axiom implies the existence of strongly
summable ultrafilters on N, but that their existence cannot be established in ZFC.
This result was extended from N to arbitrary countable abelian groups by Hind-
man, Protasov, and Strauss [1998a]. If p is a strongly summable ultrafilter
of a certain kind on a countable abelian group G, it has a remarkable algebraic
property. The equation x + y = p can only hold with x, y ∈ G∗ if x = a + p and
y = −a + p for some a ∈ G. The existence of ultrafilters p with this property
follows from Martin’s Axiom. This extends to many non-commutative groups. If
G is any countable group which can be embedded algebraically in a compact topo-
logical group, MA guarantees the existence of ultrafilters p on G with the property
that whenever xy = p, with x, y ∈ G∗, one must have that x = pa−1 and y = ap
for some a ∈ G.

Strongly summable ultrafilters on a countable Boolean group are particularly
interesting, because they can be used to define topologies for which the group
is an extremally disconnected non-discrete topological group. This construction
is due to Malykhin [1975]. It is not known whether extremally disconnected
non-discrete topological groups can be defined in ZFC.

Suppose that G is a countable discrete group. For each p ∈ βG, let λ∗p denote
the restriction of λp to G∗. It is easy to see that, if q is a P-point in G∗, then λ∗p
is continuous at q for every p ∈ G∗. Conversely, Protasov [20∞] has announced
that if G can be algebraically embedded in a compact topological group and if
q ∈ G∗ has the property that λ∗p is continuous at q for every p ∈ G∗, then q is a P-
point in G∗. Protasov [20∞] has also announced that for any countable discrete
group, if p ∈ G∗ is idempotent, the continuity of λ∗p at p implies the existence of

5



a P-point in ω∗. So the existence of an idempotent p with the property that λ∗p is
continuous at p cannot be established in ZFC. However, as we have just observed,
if G is a countable abelian group, then Martin’s Axiom implies that there is an
idempotent p ∈ G∗ which is strongly summable. If G is Boolean and countable
and p ∈ G∗ is strongly summable, it is easy to show that λ∗p is continuous at p.
We do not know whether it is consistent with ZFC that there exists an infinite
discrete group G with the property that λ∗p is discontinuous at q for all p, q ∈ G∗.

Recall that, if G is a locally compact group, then GLMC = uG, and if S
is discrete, then SLMC = βS. Since in general G is embedded in uG we may
pretend that G ⊆ uG (just as we pretend that S ⊆ βS) and one may then let
G∗ = uG\G. I. Protasov and J. Pym proved that the topological center of G∗

is empty for any locally compact topological group G. They also obtained the
following generalization of Theorem 3.1(a).

3.3. Theorem (Protasov and Pym). Let G be a locally compact, noncompact,
σ-compact topological group. There is a dense subset D of G∗ such that for all
p ∈ D and all q ∈ G∗, the restriction of λq to G∗ is discontinuous at p.

tu Protasov and Pym [2001, Theorem 1]. tu

Recall from Theorem 1.1 that any compact right topological semigroup S has
a smallest two sided ideal which is the union of all minimal left ideals, and each
minimal left ideal is the union of pairwise isomorphic groups. Further, given a
minimal left ideal L of S and a point x ∈ L, L = Sx = ρx[S] so L is compact, and
thus closed.

3.4. Theorem (Lau, Milnes, and Pym). Let G be a locally compact noncompact
topological group and let L be a minimal left ideal of uG. Then L is not a group.

tu Lau, Milnes, and Pym [1999]. tu

In the process of proving Theorem 3.4, Lau, Milnes, and Pym establish for
“nearly all groups” the stronger result that no maximal subgroup of the smallest
ideal can be closed.

The following result is a local structure theorem for uG, when G is a locally
compact topological group.

3.5. Theorem (Lau, Medghalchi, and Pym). Let G be a locally compact
topological group and let U be an open symmetric neighborhood of the identity
with c`G(U) compact. Let X ⊆ G be maximal with respect to the property that
{Ux : x ∈ X} is a disjoint family. Then X = c`uG(X) is homeomorphic with
βX. Also, for each open neighborhood V of the identity with c`G(V ) ⊆ U , the
subspace V X is open in uG and homeomorphic with V × βX.

Moreover, given any µ ∈ uG one may choose an open symmetric neighborhood
of the identity with c`G(U) compact and X ⊆ G maximal with respect to the
property that {Ux : x ∈ X} is a disjoint family such that µ ∈ X.

tu Lau, Medghalchi, and Pym [1993, Theorem 2.10] and Pym [1999]. tu

Pym [1999] used Theorem 3.5 to provide a short proof of a theorem of W.
Veech, namely that if G is a locally compact group, s ∈ G, and s is not the
identity of G, then for all µ ∈ uG, sµ 6= µ (Veech [1977, Theorem 2.2.1]).

6



M. Filali and J. Pym have recently extended some results known to hold for
βS (for a discrete semigroup S) to uG = GLMC for a locally compact group G.

3.6. Theorem (Filali). Let G be a locally compact noncompact abelian topo-
logical group. Then the set of points in G∗ which are right cancelable in uG
has dense interior in G∗. If, in addition, G is countable, then for each x ∈ G∗,
{y ∈ G∗ : (G∗ + y) ∩ (G∗ + x) 6= ∅} is nowhere dense in G∗.

tu Filali [1997, Corollary 1] tu
In Filali and Pym [20∞] this result was extended and the commutativity

assumption was eliminated.

3.7. Theorem (Filali and Pym). Let G be a locally compact noncompact topo-
logical group. Then the set of points in G∗ which are right cancellable in uG has
dense interior in G∗. If κ is the cardinal denoting the smallest number of compact
subsets of G required to cover G, then GLMC has 22κ

minimal left ideals.

tu Filali and Pym [20∞, Theorem 1 and Corollary 3] tu
S. Ferri and one of the authors have obtained results of this kind for a class of

topological groups larger than the class of locally compact groups, in which case
one need not have uG = GLMC .

3.8. Theorem (Ferri and Strauss). Let G be a topological group. For each
neighborhood U of the identity in G, let κU be the cardinal denoting the smallest
number of sets of the form Uy, where y ∈ G, required to cover G, and let κ =
sup{κU : U is a neighborhood of the identity in G}. If κ is infinite and there is a
neighborhood U of the identity in G for which G cannot be covered by fewer than
κ sets of the form xUy with x, y ∈ G, then there are at least 22κ

points in G∗

which are right cancelable in uG and at least 22κ

minimal left ideals in uG.

tu Ferri and Strauss [2001, Theorem 1.3] tu
Observe that the hypotheses of Theorem 3.8 are satisfied if G is a topological

group which is not totally bounded and is either locally compact or separable. It
is an open problem whether there exists a topological group G, which is not totally
bounded, for which uG has precisely one minimal left ideal.

In collaboration with I. Protasov, we described a method for obtaining topolo-
gies on a semigroup S that are completely determined by the algebra of S and
make S into a left topological semigroup by using idempotents in the right topo-
logical compactification βS. (Of course, if one takes βS to be left topological, the
resulting topologies are right topological.)

3.9. Theorem (Hindman, Protasov, and Strauss). Let S be a cancellative
semigroup. For any idempotent p ∈ βS, let T p = {V ⊆ S : for all x ∈ V ,
V ∈ xp} and let Vp = {ρ−1

p [U ] ∩ S : U is open in βS}. Then for each idempotent
p ∈ βS, Vp and T p are Hausdorff topologies on S making S into a left topological
semigroup. If |S| = κ, then there are 22κ

noncomparable topologies of the form
Vp. One always has that Vp ⊆ T p and the inclusion is proper unless p has the
property that {q ∈ βS : q · p = p} = {p}. If S is a group, the property that
{q ∈ βS : q · p = p} = {p} guarantees that Vp = T p.

tu Hindman, Protasov, and Strauss [1998b, Theorems 3.4, 3.6, 4.1, 4.2, and
5.1 and Corollary 3.13]. tu
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An idempotent p ∈ βS such that {q ∈ βS : q · p = p} = {p} is said to
be strongly right maximal . They are certainly rare birds, but it is a result of
I. Protasov that their existence can be established in ZFC. (See Hindman and
Strauss [1998b, Theorem 9.10].) If S is an infinite group and p a strongly right
maximal idempotent in βS, then Vp = Tp and this topology on S is extremally
disconnected and maximal subject to having no isolated points. (See Hindman
and Strauss [1998b, Corollary 9.17].) This fact answers an old question posed by
E. van Douwen: is it possible in ZFC to define a regular homogeneous topology
on Z which is maximal subject to having no isolated points?

Protasov has obtained results about ω-resolvability by using the algebra of
the Stone-Čech compactification. He showed that any non-discrete left topological
group G, which is not of first category, is ω-resolvable; i.e. it can be partitioned
into infinitely many disjoint dense subsets Protasov [2001a].

In Hindman and Strauss [1995d] we investigated topological properties of
certain algebraically defined subsets of βS, where S denoted a countable commu-
tative discrete semigroup. In any compact right topological semigroup, all minimal
left ideals are homeomorphic as well as isomorphic. However, we showed that, if
the minimal left ideals of βS are infinite, then the minimal right ideals of βS be-
long to 2c different homeomorphism classes. The same statement is true for the
maximal groups contained in any minimal left ideal of βS. If, in addition, S is
cancellative, then the sets of the form S + e, where e denotes an idempotent in
S∗, also belong to 2c homeomorphism classes. We also showed that, if e and e′

are idempotents in βN, with e′ being non-minimal, then there is no continuous
surjective homomorphism from βN + e onto βN + e′, apart from the identity.

4. Algebra of βS

Let us begin with a little history about a difficult and annoying open problem which
has attracted some significant attention. In 1979, E. van Douwen asked (in van
Douwen [1991], published much later) whether there are topological and algebraic
copies of the right topological semigroup (βN,+) contained in N∗ = βN\N. This
question was answered in Strauss [1992a], where it was in fact established that if
ϕ is a continuous homomorphism from βN to N∗, then ϕ[βN] is finite. The problem
to which we refer is whether one can have such a continuous homomorphism with
|ϕ[βN]| > 1. We conjecture that one cannot.

Another old and difficult problem in the algebra of βN was solved by Zelenyuk
[1996a] who showed that there are no nontrivial finite groups contained in N∗. (See
Hindman and Strauss [1998b, Section 7.1] for a presentation of this proof.)

Protasov has generalized Zelenyuk’s Theorem by characterising the sub-
groups of βG, where G denotes a countable discrete group.

4.1. Theorem (Protasov). If G is a countable discrete group, every finite
subgroup of G∗ has the form Hp, where H is a finite subgroup of G and p an
idempotent in G∗ which commutes with all the elements of H.

tu Protasov [1998]. tu

Using Zelenyuk’s Theorem, it is not hard to show that there is a nontrivial
continuous homomorphism from βN to N∗ if and only if there exist distinct p and
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q in N∗ such that p + p = q = q + q = q + p = p + q. (See Hindman and Strauss
[1998b, Corollary 10.20].)

The question of which finite semigroups can exist in N∗ has implications for a
large class of semigroups of the form βS. It is not hard to prove that any finite
semigroup in N∗ is contained in H =

⋂
n∈N c`βN(2nN). Now if S is any infinite

discrete semigroup which is right cancellative and weakly left cancellative, S∗

contains copies of H. (See Hindman and Strauss [1998b, Theorem 6.32].) Thus
a finite semigroup which occurs in N∗ also occurs in S∗, if S is any semigroup of
this kind.

In collaboration with I. Protasov and J. Pym, one of us established a technical
lemma that has several corollaries relating to continuous homomorphisms. We
combine a few of these in the following.

4.2. Theorem (Protasov, Pym, and Strauss). Let G be a countable discrete
group.

(a) If S is a cancellative discrete semigroup, then any continuous injective ho-
momorphism from βS to βG is the extension of an injective homomorphism
from S to G.

(b) If S is a countable discrete semigroup and ϕ : βS → G∗ is a continuous
homomorphism, then every element of ϕ[S] has finite order.

(c) If ϕ : βN → G∗ is a continuous homomorphism, then ϕ[βN] is finite and
ϕ[N∗] is a finite group.

(d) If C is a compact subsemigroup of G∗, then every element of the topological
center of C has finite order.

tu Protasov, Pym, and Strauss [2000, Theorems 6.5 and 6.6 and Corollaries
6.7 and 6.8]. tu

The conjecture above can be stated equivalently by saying that N∗ contains no
elements of finite order, other than idempotents. This conjecture has implications
about the nature of possible continuous homomorphisms from βS into N∗, where
S is any countable semigroup at all. It follows from Theorem 4.2(b) that, if this
conjecture is true, then any continuous homomorphism from βS into N∗ must map
all the elements of S to idempotents.

Davenport, Hindman, Leader, and Strauss [2000] showed that the exis-
tence of the two element subsemigroup of N∗ mentioned above implies the existence
of a three element semigroup {p, q, r} where p + p = q = q + q = q + p = p + q,
r + r = r, p = p + r = r + p, and q = q + r = r + q. We also showed that if
there is a nontrivial continuous homomorphism from βN into N∗, then there is a
subset A of N with the property that, whenever A is finitely colored, there must
exist a sequence 〈xn〉∞n=1 in N\A such that {

∑
t∈F xt : F ∈ Pf (N)and |F | ≥ 2} is

a monochrome subset of A. (When we refer to a “k-coloring” of a set X we mean
a function φ : X → {1, 2, . . . , k}. The assertion that a set B is “monochrome” is
the assertion that φ is constant on B.)

Finite subsemigroups of N∗ of any size do exist, for trivial reasons. Any minimal
right or left ideal of βN contains 2c idempotents and if e and f are idempotents
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in the same minimal left (respectively right) ideal then e + f = e (respectively
e + f = f). It was shown some time ago in Berglund and Hindman [1992] that
there are idempotents in the smallest ideal of βN whose sum is not idempotent.
(Idempotents in the smallest ideal are minimal idempotents.) This raised the
question of whether there are any minimal idempotents whose sum is again idem-
potent but not equal to either of them. This question has recently been answered
affirmatively by Zelenyuk [2001] in a grand fashion.

4.3. Definition. A semigroup S is an absolute coretract if and only if for any con-
tinuous homomorphism f from a compact Hausdorff right topological semigroup T
onto a compact Hausdorff right topological semigroup containing S algebraically
there exists a homomorphism g : S → T such that f ◦ g is the identity on S.

There is a copy of any absolute coretract in βN. Zelenyuk [2001] produced
a class of countable semigroups of idempotents, showed that each of them is an
absolute coretract, and showed that any finite semigroup of idempotents which is
an absolute coretract is a member of this class. The self contained proof of the
following special case of Zelenyuk’s result can be found in Hindman [2001].

4.4. Theorem (Zelenyuk [2001]). There exist p ∈ H and {α11, α12, α21, α22} ⊆
K(H) = K(βN)∩H such that the listed elements are all distinct and the operation
+ satifies

+ p α11 α12 α21 α22

p p α11 α12 α21 α22

α11 α12 α11 α12 α11 α12

α12 α12 α11 α12 α11 α12

α21 α22 α21 α22 α21 α22

α22 α22 α21 α22 α21 α22

In particular, α11, α22, and α12 are idempotents in K(βN) and α11 + α22 = α12.

Some recent results deal with the ability to solve certain equations in βS. An
element e of βS satisfying the equation xe = x for all x ∈ βS is a right identity for
βS. Recall that for any ultrafilter p, the norm of p, ||p|| = min{|A| : A ∈ p}. J.
Baker, A. Lau, and J. Pym recently obtained the following result, which implies
that if βS has a two sided identity e, then e ∈ S.

4.5. Theorem (Baker, Lau, and Pym). Let S be a discrete semigroup, let
e ∈ βS\S be a right identity for βS, and let κ = ||e||. Then βS has 22κ

right
identities.

tu Baker, Lau, and Pym [1999, Theorem 6]. tu

Hindman, Maleki, and Strauss [2000] showed that for any distinct positive
integers a and b, if (S, +) is any commutative cancellative semigroup, and the
equation n · s = n · t has at most finitely many solutions with s, t ∈ S and n =
ab|a− b|, then the equation u+a · p = v + b · p has no solutions with u, v ∈ βS and
p ∈ βS\S. (Note for example that 2 · p is the continuous extension of the function
s 7→ 2 · s to βS applied at p and it is usually not true that 2 · p = p + p.) We
also showed that if S can be embedded in the circle group T, then the equation
a · p + u = b · p + v has no solutions with u, v ∈ βS and p ∈ βS\S.
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Adams [2001] has shown that the above statements hold if S is a countable
commutative group and a and b are distinct elements of Z \ {0}.

We mentioned above a Ramsey Theoretic consequence of the (unknown) exis-
tence of a nontrivial continuous homomorphism from βN to N∗. In Section 5 we
shall present several Ramsey Theoretic results that have been obtained recently
using the algebraic structure of βS. The relationship between combinatorics and
topological algebra goes both ways. Recently, in collaboration with I. Leader, we
established a Ramsey Theoretic result which had the following as a corollary. We
shall not attempt to explain the Ramsey Theoretic result of which it is a corollary,
but remark that the proof used the idea of expansion of numbers to negative bases
which we mentioned in Section 2.

4.6. Theorem (Hindman, Leader, and Strauss). Let n, m ∈ N and let
a1, a2, . . . , an, b1, b2, . . . , bm ∈ Z\{0} such that ai 6= ai+1 and bj 6= bj+1 for
all i ∈ {1, 2, . . . , n − 1} and j ∈ {1, 2, . . . ,m − 1}. If p + p = p ∈ βN and
a1 · p + a2 · p + . . . + an · p = b1 · p + b2 · p + . . . + bm · p, then 〈a1, a2, . . . , an〉 =
〈b1, b2, . . . , bm〉.

tu Hindman, Leader, and Strauss [20∞c, Corollary 4.2]. tu

It is an open question whether the assumption that p = p + p in Theorem 4.6
can be replaced by the weaker assumption that p ∈ N∗.

The choice to make βS a right topological semigroup rather than a left topolog-
ical semigroup is an arbitrary one. Let us denote by � the operation on βS making
βS a left topological semigroup with S contained in its topological center (in this
case, {p ∈ βS : ρp is continuous}). One might suspect that results for (βS, �)
and (βS, ·) would be simply left-right switches of each other. If S is commutative,
this is correct because for any p, q ∈ βS, p � q = q · p. In particular a subset
of βS is a subsemigroup under one operation if and only if it is a subsemigroup
under the other and the smallest ideals K(βS, ·) and K(βS, �) are identical. It
has been known since 1994 that both conclusions can fail given sufficient noncom-
mutativity of S. El-Mabhouh, Pym, and Strauss [1994a] showed that if S is
the free semigroup on countably many generators, then there is a subsemigroup H
of (βS, ·) with the property that given any p, q ∈ H, p � q /∈ H. And it was shown
by Anthony [1994a] that if S is the free semigroup or free group on two gener-
ators, then K(βS, ·)\c`K(βS, �) 6= ∅. On the other hand, it was also shown in
Anthony [1994a] that for any semigroup S whatever, K(βS, ·)∩c`K(βS, �) 6= ∅.
It was recently shown by Burns [2001] that if S is the free semigroup or free
group on two generators, then K(βS, ·) ∩ K(βS, �) = ∅. In fact the following
much stronger result was established in the same paper.

4.7. Theorem. Let S be the free semigroup on two generators. If p ∈ c`K(βS, ·)∩
c`K(βS, �), then p is right cancelable in (βS, ·) or left cancelable in (βS, �).

tu Burns [2001, Theorem 3.13]. tu

Adams [2001] has proved the corresponding theorem for the free group on two
generators.
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5. Applications to Ramsey Theory

We were first led to study the algebra of βS because of the very simple proof given
in 1975 by F. Galvin and S. Glazer of the Finite Sums Theorem (whose proofs
had previously been very complicated). See the notes to Chapter 5 of Hindman
and Strauss [1998b] for details of the discovery of this proof. Over a quarter of
a century later, new applications of the algebra of βS to Ramsey Theory continue
to be discovered.

One of the classic results of Ramsey Theory is the Hales-Jewett Theorem
Hales and Jewett [1963]. Given an alphabet A, a variable word over A is a
word over the alphabet A∪{v} in which v actually occurs (where v is a “variable”
not in A). Given a variable word w and a ∈ A, w(a) has its obvious meaning,
namely the replacement of all occurrences of v by a. The Hales-Jewett Theorem
says that whenever A is a finite alphabet, r ∈ N, and the set of finite words over
A are r-colored, there is a variable word w over A such that {w(a) : a ∈ A}
is monochrome. For a simple algebraic proof of the Hales-Jewett Theorem see
Hindman and Strauss [1998b, Section 14.2].

Notice that one can color words based on what their leftmost and rightmost
letters are. Consequently, the variable word guaranteed by the Hales-Jewett The-
orem cannot be a left variable word (i.e., one whose leftmost letter is v) or a right
variable word . However, in collaboration with R. McCutcheon, one of us obtained
the the following theorem which extends previous generalizations of the Hales-
Jewett Theorem due to Carlson [1988] and to Carlson and Simpson [1984].
The proof of Theorem 5.1 uses in an intricate fashion the structure of the smallest
ideal K(βS). The products that are “obviously forbidden” are those beginning
with a left variable word, ending with a right variable word, or having a right vari-
able word immediately followed by a left variable word. The latter is forbidden
because one may count the number of occurrences of a 1 followed immediately
by a 2 and divide Wk+1 according to whether this count is even or odd. (See
Hindman and McCutcheon [20∞b, Theorem 2.10].) In an expression of the
form

∏
n∈F xn, the terms occur in the order of increasing indices.

5.1. Theorem (Hindman and McCutcheon). Let Wk be the free semigroup
on the alphabet {1, 2, . . . , k}. Let Wk and Wk+1\Wk be finitely colored. There
exists a sequence 〈wn〉∞n=1 of variable words over Wk such that

(1) for each n ∈ N, if n ≡ 1 (mod 3), then wn is a right variable word;

(2) for each n ∈ N, if n ≡ 0 (mod 3), then wn is a left variable word; and

(3) all products of the form
∏

n∈F wn

(
f(n)

)
that lie in Wk are monochrome

and all of those that lie in Wk+1 are monochrome, except for those that are
obviously forbidden.

tu Hindman and McCutcheon [20∞a, Theorem 2.9]. tu

Deuber, Hindman, Gunderson, and Strauss [1997] obtained results in
graph theory which depended on properties of idempotents in βS. A. Hajnal had
asked whether, for every triangle-free graph on N, there exists a sequence 〈xn〉∞n=1

in N for which FS〈xn〉∞n=1 is an independent set. We showed that the answer is
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“no”. However, we showed that for every Km-free graph G on a semigroup S, there
exists a sequence 〈xn〉∞n=1 in S such that {

∏
n∈F xn,

∏
n∈H xn} /∈ E(G) whenever

F and H are disjoint nonempty finite subsets of N. We also showed that, for every
Km,m-free graph on a cancellative semigroup S, there exists a sequence 〈xn〉∞n=1

for which FP (〈xn〉∞n=1) is independent, where FP (〈xn〉∞n=1) = {
∏

n∈F xn : F is a
finite nonempty subset of N}.

In another purely combinatorial result whose proof relies heavily on facts about
idempotents in βS, Hindman and Strauss [20∞b] have shown, extending (and
using) a result of Gunderson, Leader, Prömel, and Rödl [2001], that given
any m ∈ N and any graph on N which does not include a complete graph on m
vertices, there is a sequence of arithmetic progressions of all lengths such that there
are not edges within or between the progressions nor between certain specified sums
of the terms of those progressions.

As mentioned in the introduction, the relationship between the algebra of βS
and topological dynamics has always been strong. Several notions from topological
dynamics are important in describing the algebraic structure of βS. For example
given an ultrafilter p on S, p ∈ c`K(βS) if and only if every member of p is piecewise
syndetic. Another notion, originally defined in terms of topological dynamics, is
central. A central set is quite simply characterized as one which is a member
of a minimal idempotent in βS. Central sets are guaranteed to have substantial
combinatorial structure. For example, the chosen monochrome sets in Theorem
5.1 above can both be chosen to be central (in Wk and in Wk+1 respectively).
Two other notions of largeness that originated in topological dynamics, namely
syndetic and thick have simple characterizations in terms of βS. A set A is thick
if and only if A contains a left ideal of βS, while A is syndetic if and only if A
meets every left ideal of βS.

Let u, v ∈ N∪{ω}. A u×v matrix with rational entries and only finitely many
nonzero entries in each row is image partition regular provided that whenever N is
finitely colored, there exists ~x ∈ Nv such that the entries of A~x are monochrome.
Such a matrix is kernel partition regular provided that whenever N is finitely
colored, there exists ~x ∈ Nv such that A~x = ~0 and the entries of ~x are monochrome.
A computable characterization of finite kernel partition regular matrices was found
by Rado [1933] and several characterizations of finite image partition regular
matrices were found by Hindman and Leader [1993].

For finite matrices which are either image partition regular or kernel partition
regular, one may always choose the color class in which solutions are found to be a
central set. It was shown by Deuber, Hindman, Leader, and Lefmann [1995]
that this need not hold for infinite image partition regular matrices. Hindman,
Leader, and Strauss investigated infinite matrices with entries from Z which
satisfied the requirement that images could be found in any central set, which we
call centrally image partition regular. We defined the compressed form of a finite
vector with entries in Z \ {0} to be the vector obtained from the given one by
deleting every entry equal to its predecessor. Let A be any matrix with entries
from Z with finitely many nonzero entries in each row and no row equal to ~0.
Assume that the rows of A have the same compressed form with positive last
entry and for some s ∈ Z \ {0}, each row of A has a sum of terms equal to s.
By using extensively the algebraic properties of βN, we showed that, for every
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central subset C of N, there is an infinite increasing sequence 〈xn〉∞n=1 in N with
the property that

∑∞
i=1 ai ·xi ∈ C for every row ~a of A. This implies the following

new result in Ramsey Theory.

5.2. Theorem (Hindman, Leader, and Strauss). Let E denote the set of
all finite vectors of the form 〈a1, a2, . . . , am〉 where each ai ∈ Z\{0}, am > 0
and a1 + a2 + . . . + am 6= 0. Let a finite coloring of N be given. For each ε =
〈a1, a2, . . . , am〉 ∈ E , there is an infinite increasing sequence 〈xn(ε)〉∞n=1 in N such
that, if Yε = {a1xn1(ε) + a2xn2(ε) + . . . + amxnm

(ε) : n1 < n2 < . . . < nm}, then⋃
ε∈E Yε is monochrome. Furthermore, the sequences 〈xn(ε)〉∞n=1 can be chosen so

that the sets Yε are pairwise disjoint.

tu Hindman, Leader, and Strauss [20∞b, Corollary 3.8]. tu

Hindman and Strauss [20∞a] provide, again using the algebra of βN as
well as some elementary combinatorics, ways of producing new centrally image
partition regular matrices from old ones.

Furstenberg and Glasner [1998] showed, in an extension of van der Waer-
den’s Theorem, that whenever B is a piecewise syndetic subset of Z and l ∈ N,
then the set of length l arithmetic progressions in B is not only nonempty, but
is in fact piecewise syndetic in the set of all arithmetic progressions. Using some
simple facts about the algebra of βS, Bergelson and Hindman [2001, Theorem
3.7] generalized this result by showing that for a large number of notions of large-
ness (including “piecewise syndetic”, “central”, and “thick”), if S is a semigroup,
l ∈ N, E is a subsemigroup of Sl with {(a, a, . . . , a) : a ∈ S} ⊆ E, I is an ideal of
E, and B is a large subset of S, then Bl ∩ I is a large subset of I.

In a similar vein, Hindman, Leader, and Strauss [20∞a, Theorem 4.5]
showed for the same notions of largeness mentioned above, that if u, v ∈ N, A is a
u× v matrix with entries from Q, I = {A~x : ~x ∈ Nv} ∩Nu, ~1 ∈ I, and C is a large
subset of N, then I ∩ Cu is a large subset of I.

It is a simple fact that if A ⊆ N has positive upper density, then A − A =
{x− y : x, y ∈ A and y < x} meets FS(〈xn〉∞n=1) for every sequence 〈xn〉∞n=1 in N.
Bergelson, Hindman, and McCutcheon [1998] investigated the relationship
between “left” and “right” versions of syndetic, thick , and piecewise syndetic,
in an arbitrary semigroup S. (The “right” versions are the usual notions. The
“left” versions correspond to the left topological structure on βS.) They then
investigated the conditions under which AA−1 or A−1A can be guaranteed to
meet FP (〈xn〉∞n=1) for every sequence 〈xn〉∞n=1 in S, where AA−1 = {x ∈ S :
(∃y ∈ A)(xy ∈ A)} and A−1A = {x ∈ S : (∃y ∈ A)(yx ∈ A)}.

6. Partial Semigroups

The study of algebraic operations defined for only some members of S × S has
a long history. (See the book Evseef and Ljapin [1997].) Its relationship to
algebra in the Stone-Čech compactification is of much more recent origin. In 1987
Pym [1987] introduced the concept of an “oid”. He showed that the oid structure
of N, in which the sum of two numbers is defined as usual but only when they have
disjoint binary supports, already induces all of the semigroup structure of the set
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H =
⋂

n∈N c`βN(2nN). This approach was extended in Bergelson, Blass, and
Hindman [1994].

6.1. Definition. A partial semigroup is a pair (S, ·) where S is a set and there
is some set D ⊆ S × S such that · : D → S and the operation is associative
where it is defined (in the sense that for any x, y, z ∈ S, if either of (x · y) · z
or x · (y · z) is defined, then so is the other and they are equal). Given x ∈ S,
ϕ(x) = {y ∈ S : (x, y) ∈ D}. The partial semigroup (S, ·) is adequate if and only
if for every finite nonempty set F ⊆ S,

⋂
x∈F

ϕ(x) 6= ∅. If S is adequate, then
δS =

⋂
x∈S

ϕ(x).

Notice that the requirement that S be adequate is exactly what is needed to
have δS 6= ∅. From our point of view, the most important thing about adequate
partial semigroups is that δS is a (compact right topological) semigroup, with all
of the structure known for such objects. In Bergelson, Blass and Hindman
[1994] several Ramsey Theoretic results related to the Hales-Jewett Theorem were
obtained.

In 1992, W. Gowers established a Ramsey Theoretic result as a tool to solve
a problem about Banach spaces. While he did not state it this way, his result is
naturally stated in terms of partial semigroups. Let k ∈ N and let Y = {f :
f : N → {0, 1, . . . , k} and {x ∈ N : f(x) 6= 0} is finite}. Given f ∈ Y , let
supp(f) = {x ∈ N : f(x) 6= 0} and for f, g ∈ Y , define f + g pointwise, but
only when supp(f) ∩ supp(g) = ∅. Then (Y,+) is an adequate partial semigroup.
Let Yk = {f ∈ Y : max(f [N]) = k}. Define σ : Y → Y by

σ(f)(x) =
{

f(x)− 1 if f(x) > 0
0 if f(x) = 0 .

Notice that σ is a partial semigroup homomorphism in the sense that σ(f + g) =
σ(f) + σ(g) whenever f + g is defined.

6.2. Theorem (Gowers). Let k, Y , Yk and σ be as defined above, let r ∈ N,
and let Y =

⋃r
i=1 Ci. Then there exist i ∈ {1, 2, . . . , r} and a sequence 〈fn〉∞n=1

in Yk such that supp(fn) ∩ supp(fm) = ∅ for all m,n ∈ N and {
∑

n∈F σt(n)(fn) :
F ∈ Pf (N) , t : F → {0, 1, . . . , k − 1} , and t−1[{0}] 6= ∅} ⊆ Ci.

tu Gowers [1992, Theorem 1]. tu

Farah, Hindman, and McLeod derived a simultaneous generalization of The-
orem 6.2 and one of the results of Bergelson, Blass, and Hindman [1994]. This
generalization is quite complicated to state in its entirety, but we shall describe a
reasonably simple corollary.

6.3. Theorem (Farah, Hindman, and McLeod). Let S, T , and R be the free
semigroups with identity e on the alphabets {a, b, c}, {a, b}, and {a} respectively.
Given x, y, z ∈ {a, b, c, e}, let fxyz be the endomorphism of S determined by f(a) =
x, f(b) = y, and f(c) = z. For every r ∈ N and every partition S =

⋃r
j=1 Cj

there exist an infinite 〈xn〉∞n=1 in S \ T and γ: {a, b, c} → {1, 2, . . . , r} such that
if σ ∈ {feab, faeb, faab} and F = {fabc, fabb, faba, fabe, σ} ∪

{
fxyz|x, y, z ∈ {a, e}

}
,
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then we have

{
∏

n∈F gn(xn) : F ∈ Pf (N) , and for each n ∈ F , gn ∈ F}
∩ (S \ T ) ⊆ Cγ(a)

{
∏

n∈F gn(xn) : F ∈ Pf (N) , and for each n ∈ F , gn ∈ F}
∩ (T \R) ⊆ Cγ(b)

{
∏

n∈F gn(xn) : F ∈ Pf (N) , and for each n ∈ F , gn ∈ F}
∩ R \ {e}) ⊆ Cγ(c) .

tu Farah, Hindman, and McLeod [20∞, Corollary 3.14]. tu

As we have previously mentioned, several dynamical notions of largeness in a
semigroup S, including “syndetic”, “thick”, and “piecewise syndetic” have simple
characterizations in terms of the algebra of βS. These notions (for a discrete semi-
group) also have simple combinatorial characterizations. For example, a subset A
of S is syndetic if and only if there is a finite nonempty subset H of S such that
S =

⋃
t∈H t−1A, where t−1A = {s ∈ S : ts ∈ A}. Each of these notions has

a completely obvious analogue for partial semigroups in terms of the algebra of
δS. (So that, for example, a subset A of the partial semigroup S is syndetic if
and only if for every left ideal of δS, A ∩ S 6= ∅.) There are also natural, though
somewhat less obvious, analogues of the combinatorial characterizations. For ex-
ample A is č-syndetic if and only if there exists finite nonempty H ⊆ S such that⋂

t∈H
ϕ(t) ⊆

⋃
t∈H t−1A.

McLeod [2001] and [20∞], showed that for each of these (and other) notions
of largeness, the natural algebraic and the natural combinatorial versions (the ones
preceeded by č) need not be equivalent. She also showed that in each case one
of the notions implies the others. (For example “syndetic” implies “č-syndetic”,
while “č-thick” implies “thick”.)

A VIP system is a polynomial type generalization of the notion of an IP system,
i.e., a set of finite sums. Hindman and McCutcheon [2001], extended the notion
of VIP system to commutative partial semigroups and obtained an analogue of
the Central Sets Theorem for these systems which extends the polynomial Hales-
Jewett Theorem of Bergelson and Leibman [1996]. Several Ramsey Theoretic
consequences, including the Central Sets Theorem itself, were then derived from
these results.
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continuous structures in the Stone-Čech compactification of a semigroup.
Ph.D. Dissertation, Howard University.

[2001] The existence of disjoint smallest ideals in the two natural products on βS.
Semigroup Forum, 63, 191–201.

Carlson, T.
[1988] Some unifying principles in Ramsey Theory. Discrete Math., 68, 117–169.

Carlson, T. and S. Simpson.
[1984] A dual form of Ramsey’s Theorem. Advances in Math., 53, 265–290.

Clifford, A. and G. Preston.
[1961] The algebraic theory of semigroups. American Mathematical Society,

Providence.

Comfort, W., K. Hofmann, and D. Remus.
[1992] Topological groups and semigroups. In Hušek and van Mill [1992], pages

59–144.

Davenport, D., N. Hindman, I. Leader, and D. Strauss.
[2000] Continuous homomorphisms on βN and Ramsey Theory. New York J. Math.,

6, 73–86.

Deuber, W., D. Gunderson, N. Hindman, and D. Strauss.
[1997] Independent finite sums for Km-free graphs. J. Comb. Theory (Series A), 78,

171–198.

Deuber, W., N. Hindman, I. Leader, and H. Lefmann.
[1995] Infinite partition regular matrices. Combinatorica, 15, 333–355.

van Douwen, E.
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Garćıa-Ferreira, S.
[1993] Three orderings on β(ω)\ω. Topology and its Applications, 50, 199–216.
[1994] Comfort types of ultrafilters. Proc. Amer. Math. Soc. 120 (1994), 1251–1260.
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Kunzi, H., J. Maŕın, and S. Romaguera.
[2001] Quasi-uniformities on topological semigroups and bicompletion. Semigroup

Forum, 62, 403–422.

Lau, A., P. Milnes, and J. Pym.
[1997] Locally compact groups, invariant means and the centres of compactifications.

J. London Math. Soc., 56, 77–90.
[1999] On the structure of minimal left ideals in the largest compactification of a

locally compact group. J. London Math. Soc., 59, 133-152.

Lau, A., A. Medghalchi, and J. Pym.
[1993] On the spectrum of L∞(G). J. London Math. Soc., 48, 152–166.

Lawson, J.
[1992] Historical links to a Lie theory of semigroups. J. of Lie Theory, 2, 263–278.
[1996] The earliest semigroup paper. Semigroup Forum, 52, 55–60.

Malykhin, V.
[1975] Extremally disconnected and similar groups. Soviet Math. Dokl., 16, 21–25.

A. Maleki and D. Strauss.
[1996] Homomorphisms, ideals and commutativity in the Stone-Čech
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