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Abstract. Given a finite sequence ~a = 〈ai〉ni=1 in N and a sequence 〈xt〉∞t=1 in N,
the Milliken-Taylor system generated by ~a and 〈xt〉∞t=1 is MT (~a, 〈xt〉∞t=1) =
{Σn

i=1ai · Σt∈Fi
xt : F1, F2, . . . , Fn are finite nonempty subsets of N with max Fi <

min Fi+1 for i < n}. It is known that Milliken-Taylor systems are partition regular

but not consistent. More precisely if ~a and ~b are finite sequences in N, then except
in trivial cases, there is a partition of N into two cells, neither of which contains

MT (~a, 〈xt〉∞t=1) ∪ MT (~b, 〈yt〉∞t=1) for any sequences 〈xt〉∞t=1 and 〈yt〉∞t=1.
Our aim in this paper is to extend the above result to allow negative entries in

~a and ~b. We do so with a proof which is significantly shorter and simpler than the
original proof which applied only to positive coefficients. We also derive some results
concerning the existence of solutions of certain linear equations in βZ. In particular we

show that the ability to guarantee the existence of MT (~a, 〈xt〉∞t=1) ∪ MT (~b, 〈yt〉∞t=1)
in one cell of a partition is equivalent to the ability to find idempotents p and q in βN
such that a1 · p + a2 · p + . . . + an · p = b1 · q + b2 · q + . . . + bm · q, and thus determine
exactly when the latter has a solution.

1. Introduction

There are striking differences between finite and infinite partition regular systems of
linear expressions. To make this assertion precise, we remind the reader of the notion of
an image partition regular matrix. (We are taking N to be the set of positive integers.)

1.1 Definition. Let A be a (finite or infinite) matrix with entries from Z and only
finitely many nonzero entries on each row. Then A is image partition regular if and
only if whenever Z is partitioned into finitely many classes (or finitely colored) there
exists a vector ~x of the appropriate size with entries from N such that all entries of A~x
are in the same class (or monochrome).
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2 This author acknowledges support received from the National Science Foundation (USA) via

grant DMS-0070593.
Mathematics Subject Classifications: Primary 05D10; Secondary 22A15, 54H13.
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Image partition regular matrices arise naturally in Ramsey Theory. For example,
van der Waerden’s Theorem and Schur’s Theorem are naturally stated as the assertion
that certain matrices are image partition regular. See [5], [6], or [8, Chapter 15] for more
extensive discussions of image partition regular matrices. (One of the major differences
between finite and infinite image partition regular matrices is that the former have
been completely characterized [5], while the characterization of infinite image partition
regular matrices is a vexing open problem. It is not this difference with which we are
concerned in this paper, however.)

It is a consequence of a result of Deuber [2] and some results from [5] that whenever

A and B are finite image partition regular matrices, then so is the matrix
(
A O
O B

)
.

That is, whenever Z is finitely colored, there must exist vectors ~x and ~y of the appro-
priate size with entries from N such that all entries of A~x and B~y have the same color.
This is far from the case with infinite image partition regular matrices. To further
this discussion, we introduce the notion of Milliken-Taylor systems. Given a set A, we
denote the set of finite nonempty subsets of A by Pf (A).

1.2 Definition. Let ~a = 〈ai〉ni=1 be a finite sequence in Z\{0} and let 〈xt〉∞t=1 be a
sequence in N. The Milliken-Taylor system MT (~a, 〈xt〉∞t=1) generated by ~a and 〈xt〉∞t=1

is {
∑n

i=1 ai ·
∑

t∈Fi
xt : F1, F2, . . . , Fn ∈ Pf (N) and maxFi < minFi+1 for i < n}.

Milliken-Taylor systems are so named because their partition regularity follows
immediately from the Milliken-Taylor Theorem ([10, Theorem 2.2], [11, Lemma 2.2]).

1.3 Definition. Let 〈yn〉∞n=1 and 〈xn〉∞n=1 be sequences in N. The sequence 〈xn〉∞n=1 is
a sum subsystem of 〈yn〉∞n=1 if and only if there is a sequence 〈Hn〉∞n=1 in Pf (N) with
maxHn < minHn+1 for each n ∈ N and xn =

∑
`∈Hn

y` for each n ∈ N.

Notice that if 〈xn〉∞n=1 is a sum subsystem of 〈yn〉∞n=1, then FS(〈xn〉∞n=1) ⊆
FS(〈yn〉∞n=1), where FS(〈xn〉∞n=1) = {

∑
n∈F xn : F ∈ Pf (N)} = MT (〈1〉, 〈xn〉∞n=1).

Not only are Milliken-Taylor systems partition regular, but in fact the following
stronger result is true.

1.4 Theorem. Let ~a be a finite sequence in N and let 〈yn〉∞n=1 be a sequence in N. Let
r ∈ N and let N =

⋃r
i=1Bi. Then there exist i ∈ {1, 2, . . . , r} and a sum subsystem

〈xn〉∞n=1 of 〈yn〉∞n=1 with MT (~a, 〈xn〉∞n=1) ⊆ Bi.

Proof. [3, Theorem 2.5].

We can now describe the striking difference between finite and infinite image parti-
tion regular matrices with which we are concerned. Consider for example the matrix A
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whose rows consist of all rows with entries from {0, 1, 2} with only finitely many nonzero
entries, at least one 1, at least one 2, and all occurrences of 1 before any ocurrences of
2. Consider also the matrix B whose rows consist of all rows with entries from {0, 1, 2}
with only finitely many nonzero entries, at least one 1, at least one 2, and all occurrences
of 2 before any ocurrences of 1. Then given a sequence ~x = 〈xn〉∞n=1, the set of entries
of A~x is MT (〈1, 2〉, 〈xn〉∞n=1) and the set of entries of B~x is MT (〈2, 1〉, 〈xn〉∞n=1). Thus,
by Theorem 1.3, the matrices A and B are image partition regular. On the other hand,

it was shown in [3, Theorem 3.3] that
(
A O
O B

)
is not image partition regular. And

we can say more. We know exactly when such matrices can be combined to yield an
image partition regular matrix.

1.5 Definition. Let ~a = 〈ai〉ni=1 be a finite sequence. Then ~a is a compressed sequence
if and only if ~a has no adjacent repeated terms.

We note that, as far as partition regularity is concerned, we lose no generality by
restricting our attention to compressed sequences ~a. In the following lemma, if we had
~a = 〈2,−3,−3, 1, 1, 1, 1, 2〉, then we would have ~c = 〈2,−3, 1, 2〉.

1.6 Lemma. Let ~a be a finite sequence in Z\{0} and let ~c be the compressed se-
quence obtained by deleting adjacent repetitions of terms. Let 〈yn〉∞n=1 be a sequence
in N. Then there is a sum subsystem 〈xn〉∞n=1 of 〈yn〉∞n=1 such that MT (~c, 〈xn〉∞n=1) ⊆
MT (~a, 〈yn〉∞n=1).

Proof. Let m be the length of ~a and for k ∈ N, let Hk = {(k − 1)m + 1, (k − 1)m +
2, . . . , km} and let xk =

∑
t∈Hk

yt.

The main result of [3] determined precisely when one could guarantee Milliken-
Taylor systems for ~a and ~b in the same cell of an arbitrary partition of N, provided that
the entries of ~a and ~b are positive.

1.7 Theorem. Let ~a and ~b be finite compressed sequences with entries from N. The
following statements are equivalent.
(a) Whenever r ∈ N and N =

⋃r
i=1Bi, there exist i ∈ {1, 2, . . . , r} and sequences

〈xn〉∞n=1 and 〈yn〉∞n=1 with MT (~a, 〈xn〉∞n=1) ∪MT (~b, 〈yn〉∞n=1) ⊆ Bi.
(b) There is a positive rational number α such that ~b = α · ~a.

Proof. [3, Theorems 3.2 and 3.3].

In the definition of partition regularity of matrices, the requirement that the entries
of 〈xn〉∞n=1 be positive is there because that is desired in the typical classical Ramsey
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Theoretic applications. At the time that [3] was written, it did not occur to the authors
to ask what happens when the entries of ~a are allowed to be negative. Had it ocurred
to them, they could have presented the following result, which was first stated in [6,
Corollary 3.6].

1.8 Theorem. Let ~a be a finite sequence in Z\{0} and let 〈yn〉∞n=1 be a sequence in N.
Let r ∈ N and let Z =

⋃r
i=1Bi. Then there exist i ∈ {1, 2, . . . , r} and a sum subsystem

〈xn〉∞n=1 of 〈yn〉∞n=1 with MT (~a, 〈xn〉∞n=1) ⊆ Bi.

Proof. The proof of [3, Theorem 2.5] may be copied verbatim.

Further, if in Theorem 1.7 the entries of ~a and ~b are allowed to be negative, then
one may take the proof that (b) implies (a) directly from the proof of [3, Theorem 3.2].

The matter of the proof that (a) implies (b) in the revised Theorem 1.7 is consider-
ably more complicated. In the first place, the proof of [3, Theorem 3.3] is lengthy and at
least moderately intricate. In the second place, that proof does not easily accomodate
the inclusion of negative numbers. The reason has to do with the difference between the
addition and subtraction algorithms in our ordinary arithmetic (to a specified positive
base).

It is easy to see that, given p ∈ N and a sequence 〈yn〉∞n=1 in N, there is a sum
subsystem 〈xn〉∞n=1 of 〈yn〉∞n=1 with the property that for any t, n ∈ N, if xn ≤ pt, then
pt+1 divides xn+1, and consequently there is no carrying when xn and xn+1 are added
in base p arithmetic. This fact allowed a coloring of N based on patterns which occurred
in the base p expansion of members of N which could separate MT (~a, 〈xn〉∞n=1) from
MT (~b, 〈yn〉∞n=1) for any sequences 〈xn〉∞n=1 and 〈yn〉∞n=1, as long as one did not have
~b = α · ~a for any positive rational α.

However, even under these conditions, there is borrowing when xn is subtracted
from xn+1. The fact that the string of zeroes between the least significant digit of xn+1

and the most significant digit of xn is replaced by a string of (p−1)’s is not a serious
problem, but the change in the least significant digit of xn+1 caused by the borrowing
seriously disrupts the patterns of digits. This fact caused us significant problems. Then
we recalled a lecture that two of us heard at the University of Sheffield in 1996 at which
Behzad Bordbar discussed some joint research with John Pym [1] which utilized the
fact that any integer (positive, zero, or negative) has a unique expansion to the base −2
(using only the digits 0 and 1). A moment’s reflection will convince the reader that the
same statement is true with regard to base −p, using the digits {0, 1, . . . , p− 1}. There
are two important properties of this expansion. The first is that a number is divisible by
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pt if and only if the rightmost t digits are 0. The second is that, when t ∈ N, x, y ∈ Z,
|x| ≤ pt, and pt+1 divides y, then there is no carrying and no borrowing when x and y

are added in base −p. This fact allows us to modify the construction of [3] and establish
the analogue of Theorem 1.7 which allows entries of ~a and ~b to be negative.

In Section 2 of this paper we present some relevant facts about negative base arith-
metic and some special functions that we will use. In Section 3 we complete the proof of
the analogue of Theorem 1.7. In Section 4 we present additional equivalent conditions
dealing with the solution of certain linear equations in the Stone-Čech compactification
of Z.

2. Arithmetic in base -p

We begin with the description of the base −p expansion and some routine facts about
that expansion, whose proofs we omit. (We take ω = N ∪ {0}.)

2.1 Lemma. Let p ∈ N with p ≥ 2. For every x ∈ Z, there exists a unique function
γp,x : ω → {0, 1, . . . , p− 1} (with {t ∈ ω : γp,x(t) 6= 0} finite) such that

x =
∑∞

t=0
γp,x(t) · (−p)t .

If x > 0, then max{t ∈ ω : γp,x(t) 6= 0} is even and if x < 0, then max{t ∈ ω :
γp,x(t) 6= 0} is odd. For any x ∈ Z\{0} and any n ∈ N, pn divides x if and only if
min{t ∈ ω : γp,x(t) 6= 0} ≥ n.

Given x ∈ Z\{0} and p ∈ N\{1} if α = max{t ∈ ω : γp,x(t) 6= 0}, we refer to
γp,x(α) as the most significant digit of x in the base −p expansion and we refer to α
as the location of the most significant digit. Similarly, if δ = min{t ∈ ω : γp,x(t) 6= 0},
then γp,x(δ) is the least significant digit and δ is its location.

2.2 Lemma. Let p ∈ N\{1}, let t ∈ N, and let x ∈ Z \ {0}. If x is expressible in base
−p with most significant digit in location t, then

pt

p+ 1
< |x| < pt+2

p+ 1
.

Proof. If t is even, this follows easily from the inequalities:

pt − (p− 1)(pt−1 + pt−3 + · · ·+ p) ≤ x ≤ (p− 1)(pt + pt−2 + · · · p2 + 1).

If t is odd, our claim then follows from the inequalities:

pt+1

p+ 1
< −px = p|x| < pt+3

p+ 1
.
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2.3 Corollary. Let a, x ∈ Z\{0}, with |a| < p. If the most significant digits of x and ax
in their base −p expansions occur in positions t and u respectively, then t−1 ≤ u ≤ t+2.

Proof. This is immediate from the inequalities:

pt

p+ 1
< |x| ≤ |ax| < pt+3

p+ 1
and

pu

p+ 1
< |ax| < pu+2

p+ 1
.

We now introduce some special functions which we will use to define colorings of
Z.

2.4 Definition. Let p ∈ N\{1}.
(a) For each x ∈ Z \ {0}, we define ρp(x) ∈ {1, 2, . . . , p− 1} to be the least significant

digit in the base −p expansion of x.
(b) If x ∈ Z with |x| > p11, we define λp(x) ∈ {0, 1, 2, . . . , p − 1}11 by λp(x) =

(v1, v2, . . . , v11), where v1v2 · · · v11 occurs in the base −p expansion of x with v1

at a location t which is a multiple of 6, and the most significant digit of the expan-
sion occurs at location s with t− 5 ≤ s ≤ t.

Notice that if λp(x) = λp(y), then the most significant digits of x and y occur in
positions that are congruent mod 6 (hence mod 2) and thus x and y have the same sign.

2.5 Lemma. Let p ≥ 3 be a prime. Let x, y ∈ Z \ {0} and let a, b, c ∈ Z \ {0} satisfy
|a|, |b|, |c|, |a− b| < p.
(i) If ρp(ax) = ρp(bx), then a = b.
(ii) If |x|, |y| > p11 and if λp(cx) = λp(cy) and λp(ax) = λp(by), then a = b.

Proof. (i). If ρp(x) = ρp(y) = u, then au ≡ bu (mod p) and so a = b.
(ii). Let t, t′, u, u′, v, v′ denote the locations of the most significant digits of x, y, ax,

by, cx, cy respectively in their base −p expansions.
We may suppose that u = u′. If u′ > u, we can replace x by (−p)u′−ux. Since

u ≡ u′ (mod 6), this does not alter λp(ax) or λp(cx). If u′ < u, we can replace y by
(−p)u−u′

y.
We claim that v = v′. We suppose that t′ ≥ t, the other case being similar. By

Corollary 2.3, t′ − 1 ≤ u′ = u ≤ t + 2. So t′ ≤ t + 3. However, x and y have the same
sign, because cx and cy have the same sign, and therefore t and t′ have the same parity.
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Thus t′ ≤ t+ 2. Now t− 1 ≤ v ≤ t+ 2 and t− 1 ≤ t′ − 1 ≤ v′ ≤ t′ + 2 ≤ t+ 4. Since
v ≡ v′ (mod 6), v = v′.

We have

ax = w1(−p)u + w2(−p)u−1 + . . .+ w6(−p)u−5 + z and

by = w1(−p)u + w2(−p)u−1 + . . .+ w6(−p)u−5 + z′ ,

where w1, w2, w3, w4, w5, w6 ∈ {0, 1, 2, . . . , p − 1} and |z|, |z′| < pu−4

p+ 1
≤ pt−2

p+ 1
. So

|ax− by| < 2
pt−2

p+ 1
. Similarly, |x− y| ≤ |c(x− y)| < 2

pt−2

p+ 1
and so |bx− by| < 2

pt−1

p+ 1
.

Thus |(b− a)x| ≤ 2
pt−1

p+ 1
+ 2

pt−2

p+ 1
<

pt

p+ 1
< |x| so b = a.

We remark that it is the above proof which forces us to require 11 digits in λp(x).
If λp(ax) = λp(bx) = (v1, v2, . . . , v11), then one could have u = v6, in which case
(w1, w2, . . . , w6) = (v6, v7, . . . , v11).

3. Separating MT(→a ,〈xn〉∞n=1) from MT(→b ,〈yn〉∞n=1)

We shall be concerned in this section with establishing the generalization of Theorem
1.7 which allows entries of ~a and ~b to be negative. The proof that we present of the
generalization turns out to be significantly simpler and shorter than the original proof.

3.1 Theorem. Let ~a and ~b be finite compressed sequences with entries from Z\{0}.
The following statements are equivalent.
(a) Whenever r ∈ N and Z =

⋃r
i=1Bi, there exist i ∈ {1, 2, . . . , r} and sequences

〈xt〉∞t=1 and 〈yt〉∞t=1 in N with MT (~a, 〈xt〉∞t=1) ∪MT (~b, 〈yt〉∞t=1) ⊆ Bi.
(b) There is a positive rational number α such that ~b = α · ~a.

Proof. (b) implies (a). Pick positive integers m and n such that α = m
n and let

~d = m~a. Assume that r ∈ N and Z =
⋃r

i=1Bi. Pick by Theorem 1.8 i ∈ {1, 2, . . . , r}
and a sequence 〈zt〉∞t=1 in N such that MT (~d, 〈zt〉∞t=1) ⊆ Bi. For each t ∈ N, let xt = mzt

and let yt = nzt. Then MT (~a, 〈xt〉∞t=1) = MT (~b, 〈yt〉∞t=1) = MT (~d, 〈zt〉∞t=1).

The proof that (a) implies (b) will include several definitions and lemmas. We
assume that we have compressed sequences ~a = 〈a1, a2, . . . , an〉 and ~b = 〈b1, b2, . . . , bm〉
with entries from Z\{0} such that whenever Z is finitely colored there exist sequences
〈xt〉∞t=1 and 〈yt〉∞t=1 in N with MT (~a, 〈xt〉∞t=1) ∪MT (~b, 〈yt〉∞t=1) monochrome.

We choose a prime number p such that p > 2|ai|+ 2|bj | for every i ∈ {1, 2, . . . , n}
and every j ∈ {1, 2, . . . ,m}. We also choose an even positive integer k such that
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k > 2m + 2n. We use π : Z → Zk for the canonical homomorphism, and we represent
Zk as {0, 1, . . . , k − 1}.

3.2 Definition. Let x ∈ N. Then supp(x) = {t ∈ ω : γp,x(t) 6= 0}.

In the above definition we suppress the dependence of supp(x) on p, because p will
remain fixed throughout the remainder of this section. Similarly, we shall write ρ(x)
and λ(x) instead of ρp(x) and λp(x)

3.3 Lemma. Let 〈xt〉∞t=1 be an arbitrary sequence in N.
(a) Given any b ∈ N, there is a sum subsytem 〈ut〉∞t=1 of 〈xt〉∞t=1 such that

FS(〈ut〉∞t=1) ⊆ bN.
(b) There is a sum subsystem 〈yt〉∞t=1 of 〈xt〉∞t=1 such that for each t ∈ N,

min
(
supp(yt+1)

)
≥ 13 + max

(
supp(yt)

)
.

(c) Given any finite coloring of N and any b ∈ N, there is a sum subsystem 〈zt〉∞t=1

of 〈xt〉∞t=1 such that FS(〈zt〉∞t=1) ⊆ bN, FS(〈zt〉∞t=1) is monchrome, and for
each t ∈ N, min

(
supp(zt+1)

)
≥ 13 + max

(
supp(yt)

)
.

Proof. (a). By thinning, we may presume that xt ≡ xs (mod b) for all t, s ∈ N. For
each s ∈ N, let Hs = {sb, sb+ 1, sb+ 2, . . . , (s+ 1)b− 1} and let us =

∑
t∈Hs

xt.
(b). Let H1 = {1} and let y1 = x1. Inductively, given s ∈ N, assume that we have

chosen Hs and ys =
∑

t∈Hs
xt. Let r = 13 + max

(
supp(ys)

)
. Choose Hs+1 ⊆ {i ∈ N :

i > max(Hs)} such that |Hs+1| = pr and xi ≡ xj (mod pr) for all i, j ∈ Hs+1. Let
ys+1 =

∑
t∈Hs+1

xt. Then pr divides ys+1, so min
(
supp(ys+1)

)
≥ r.

(c). Using (a), choose a sum subsytem 〈ut〉∞t=1 of 〈xt〉∞t=1 such that FS(〈ut〉∞t=1) ⊆
bN. Using (b), choose a sum subsystem 〈yt〉∞t=1 of 〈ut〉∞t=1 such that for each t ∈ N,
min

(
supp(yt+1)

)
≥ 13 + max

(
supp(yt)

)
. Using [8, Corollary 5.15], choose a sum sub-

system 〈zt〉∞t=1 of 〈yt〉∞t=1 such that FS(〈zt〉∞t=1) is monchrome.

3.4 Definition.
(a) V = {~v ∈ {0, 1, 2, . . . , p− 1}11 : (v1, v2, . . . , v6) 6= ~0}.
(b) If x ∈ Z\{0}, thenG(x) = {(t, u,~v) ∈ N×{1, 2, . . . , p−1}×V : u00 · · · 0v1v2v3 · · · v11

occurs in the base −p expansion of x, with u in location t, v1 in a location which
is a multiple of 6 and at least one zero occurring between u and v1}.

A gap of x is any member of G(x). We shall refer to (t, u,~v) ∈ G(x) as a (u,~v)-gap
of x. The following simple lemma is the key to our counting of gaps.

3.5 Lemma. Let |x1| > p11 and assume that max
(
supp(x1)

)
+ 11 ≤ s =

min
(
supp(x2)

)
, then G(x1 + x2) = G(x1) ∪G(x2) ∪

{(
s, ρ(x2), λ(x1)

)}
.
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Proof. We leave most of the details to the reader, only pointing out the two places
where we use the assumption that max

(
supp(x1)

)
+ 11 ≤ min

(
supp(x2)

)
. Let r =

max
(
supp(x1)

)
. If (t, u,~v) is a gap of x2 so that u00 · · · 0v1v2v3 · · · v11 occurs in the

base −p expansion of x2, with u in location t and v1 in location j, then j ≥ s ≥ r + 11
so u00 · · · 0v1v2v3 · · · v11 occurs in the expansion of x1 + x2, with u in location t.

Similarly, if (t, u,~v) is a gap of x1 + x2 with t > s, so that u00 · · · 0v1v2v3 · · · v11
occurs in the expansion of x1 + x2, with u in location t, and v1 occurs in location j,
then j ≥ s ≥ r + 11 so none of the digits of ~v come from x1 and thus (t, u,~v) is a gap
of x2.

3.6 Definition. Let x ∈ Z\{0}.
(a) For (u,~v) ∈ {1, 2, . . . , p− 1} × V , G(u,~v)(x) = {t ∈ N : (t, u,~v) ∈ G(x)}.
(b) For (u,~v) ∈ {1, 2, . . . , p− 1} × V , g(u,~v)(x) = |G(u,~v)(x)|.
(c) P (x) =

{
(u,~v) ∈ {1, 2, . . . , p− 1} × V : π

(
g(u,~v)(x)

)
∈ {1, 2, . . . , k

2}
}
.

Thus G(u,~v)(x) is the set of locations of (u,~v)-gaps of x and g(u,~v)(x) is the number
of (u,~v)-gaps of x. We shall only be concerned with (u,~v)-gaps of x for (u,~v) ∈ P (x).
We pause to give an informal description of the procedure we shall follow to prove that
(a) implies (b) in Theorem 3.1.

Let x = anwn + . . . + a2w2 + a1w1, where 〈wt〉∞t=1 is a suitable sum subsystem of
〈xt〉∞t=1. One counts gaps in the expansion of x. What is a bit confusing is that one has
to do this more than once.
(1) Firstly, for a given (u,~v), one counts the number of corresponding gaps in order to

decide whether (u,~v) is in P (x) (i.e. whether the number of (u,~v)-gaps is less than
or equal to k

2 (mod k)).
(2) Then, for each gap (t, u,~v) ∈ G(x), with (u,~v) in P (x), one counts the number of

gaps in P (x) which occur to the right of the given one.
(3) Then, keeping (u,~v) fixed, for each i ∈ {0, 1, . . . , n− 2}, one counts the number of

values of t for which the number obtained in (2) is equal to i (mod k).
(4) Finally, one asks whether the number obtained in (3) is equal to 1 (mod k). If it

is, the gap which occurs between ai+2wi+2 and ai+1wi+1 is a (u,~v)-gap.
To indicate why this works:

Firstly, (u,~v) is in P (x) if and only if it occurs between ai+1wi+1 and aiwi for some
i. If one looks at the expansion of x and makes the simple minded assumption that the
gaps in P (x) occur only in this way, and never occur internally inside the expansion
of some aiwi, then the gap between ai+2wi+2 and ai+1wi+1 is distinguished from the
others because it is the only one in P (x) with i gaps of P (x) to its right. Of course,
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this assumption is likely to be false. However, one gets the same answer in (4) as one
would if it were true. The reason is that, for the gap between ai+1wi+1 and aiwi, the
number of internal gaps in P (x) to its right is congruent to 0 (mod k). So whether
this gap is counted in (3) or not is unaffected by the internal gaps. Furthermore, the
number of internal gaps counted in (3) is congruent to 0 (mod k). So the answer in (4)
is unaffected by the internal gaps.

3.7 Lemma. Let 〈xt〉∞t=1 be a sequence in Z\{0} such that |x1| > p11 and
max

(
supp(xt)

)
+ 11 ≤ min

(
supp(xt+1)

)
for every t ∈ N. Suppose that there ex-

ist u ∈ {1, 2, . . . , p − 1} and ~v ∈ V such that ρ(x) = u and λ(x) = ~v for every
x ∈ FS(〈xt〉∞t=1). Let w ∈ {1, 2, . . . , p − 1}, let ~z ∈ V , let r ∈ {0, 1, . . . , k − 1}, and
assume that g(w,~z)(x) ≡ r (mod k) for each x ∈ FS(〈xt〉∞t=1).

(a) If (w,~z) 6= (u,~v), then r = 0.

(b) If (w,~z) = (u,~v), then r = k − 1.

Proof. If (w,~z) 6= (u,~v), then G(w,~z)(x1 + x2) = G(w,~z)(x1) ∪ G(w,~z)(x2) and so
g(w,~z)(x1 +x2) = g(w,~z)(x1)+g(w,~z)(x2). If (w,~z) = (u,~v) and min

(
supp(x2)

)
= s, then

G(w,~z)(x1 + x2) = G(w,~z)(x1) ∪ G(w,~z)(x2) ∪ {s} and so g(w,~z)(x1 + x2) = g(w,~z)(x1) +
g(w,~z)(x2) + 1.

3.8 Lemma. Let 〈xt〉∞t=1 be a sequence in N such that x1 > p11 and max
(
supp(xt)

)
+

13 ≤ min
(
supp(xt+1)

)
for each t ∈ N. Suppose that ρ(aix) = ρ(aix

′) and λ(aix) =
λ(aix

′) for all x, x′ ∈ FS(〈xt〉∞t=1) and all i ∈ {1, 2, . . . , n}. Suppose also that
g(w,~z)(aix) ≡ g(w,~z)(aix

′) (mod k) for all x, x′ ∈ FS(〈xt〉∞t=1), all i ∈ {1, 2, . . . , n}, and
all (w,~z) ∈ {1, 2, . . . , p−1}×V . If x ∈ FS(〈xt〉∞t=1), j ∈ {1, 2, . . . , n−1}, w = ρ(aj+1x),
and ~z = λ(ajx), then g(w,~z)(aix) ≡ 0 (mod k) for all i ∈ {1, 2, . . . , n}.

Proof. Let i ∈ {1, 2, . . . , n} and notice that the sequence 〈aixt〉∞t=1 satisfies the hypothe-
ses of Lemma 3.7. (Given t ∈ N, by Corollary 2.3 we have that max

(
supp(aixt)

)
+11 ≤

max
(
supp(xt)

)
+ 13 ≤ min

(
supp(xt+1)

)
= min

(
supp(aixt+1)

)
.)

Let j ∈ {1, 2, . . . , n − 1}, let w = ρ(aj+1x1), and let ~z = λ(ajx1). By Lemma 3.7
it suffices to show that (w,~z) 6=

(
ρ(aix1), λ(aix1)

)
. Suppose instead that ρ(aj+1x1) =

ρ(aix1) and λ(ajx1) = λ(aix1). Then by Lemma 2.5(i) we have immediately that
aj+1 = ai. By Lemma 2.5(ii), with x = y = x1 and c = 1, we have that aj = ai. This
contradicts the fact that ~a is a compressed sequence.

We are now in a position to complete the proof of Theorem 3.1 by showing that
(a) implies (b).
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Proof that (a) implies (b).

Recall that we have been assuming that we have compressed sequences ~a =
〈a1, a2, . . . , an〉 and ~b = 〈b1, b2, . . . , bm〉 with entries from Z\{0} such that whenever Z
is finitely colored there exist sequences 〈xt〉∞t=1 and 〈yt〉∞t=1 in N with MT (~a, 〈xt〉∞t=1) ∪
MT (~b, 〈yt〉∞t=1) monochrome. We show first that we may assume that an = bm ∈ N (and
then show that ~a = ~b). To see this note that an and bm have the same sign. (If 〈xt〉∞t=1

is a sequence in N and F ∈ Pf (N) such that minF ≥ n and
∑

t∈F xt > |
∑n−1

i=1 aixi|,
then an

∑
t∈F xt +

∑n−1
i=1 aixi has the same sign as an.) Also, if Z =

⋃r
i=1Bi then

Z =
⋃r

i=1(−Bi) so statement (a) holds for ~a and ~b if and only if it holds for −~a and −~b.
Thus we may assume that an and bm are positive.

Let ~c = bm~a and let ~d = an
~b. We claim that ~c and ~d satisfy statement (a). To see

this, let r ∈ N and let Z =
⋃r

i=1Bi. Pick i ∈ {1, 2, . . . , r} and sequences 〈xt〉∞t=1 and
〈yt〉∞t=1 in N with MT (~a, 〈xt〉∞t=1)∪MT (~b, 〈yt〉∞t=1) ⊆ Bi. By passing to sum subsystems
we may presume (using Lemma 3.3) that FS(〈xt〉∞t=1) ⊆ bmN and FS(〈yt〉∞t=1) ⊆ anN.
For t ∈ N, let ut = xt

bm
and vt = yt

an
Then MT (~c, 〈ut〉∞t=1) = MT (~a, 〈xt〉∞t=1) and

MT (~d, 〈vt〉∞t=1) = MT (~b, 〈yt〉∞t=1). Therefore we may assume that an = bm ∈ N as
claimed.

Now for x ∈ Z\{0}, let GP (x) = {(t, u,~v) ∈ G(x) : (u,~v) ∈ P (x)}. For x ∈ Z\{0}
and t ∈ N, let Rt(x) = {(t′, u′, ~v ′) ∈ GP (x) : t′ < t}. For x ∈ Z\{0} and i ∈ {0, 1, . . . ,
k − 1}, let

Si(x) ={(t, u,~v) ∈ GP (x) : π(|Rt(x)|) = i} and

Ti(x) ={(u,~v} ∈ {1, 2, · · · , p− 1} × V : π(|{t ∈ N : (t, u,~v) ∈ Si(x)}|) = 1}.

We define a coloring ϕ of Z as follows. For x, y ∈ Z, ϕ(x) = ϕ(y) if and only if
either x = y = 0 or λ(x) = λ(y), ρ(x) = ρ(y), π

(
g(u,~v)(x)

)
= π

(
g(u,~v)(y)

)
for every

(u,~v) ∈ {1, 2, . . . , p − 1} × V , and Ti(x) = Ti(y) for every i ∈ {0, 1, . . . , k − 1}. Notice
that ϕ is a finite coloring of Z. Pick sequences 〈xt〉∞t=1 and 〈yt〉∞t=1 in N such that
ϕ(x) = ϕ(y) for every x ∈MT (~a, 〈xt〉∞t=1) and every y ∈MT (~b, 〈yt〉∞t=1).

Now define a coloring ψ of Z as follows. For x, y ∈ Z, ψ(x) = ψ(y) if and only if
either x = y = 0 or

(1) ρ(x) = ρ(y) and λ(x) = λ(y);

(2) for all i ∈ {1, 2, . . . , n}, ρ(aix) = ρ(aiy) and λ(aix) = λ(aiy);

(3) for all i ∈ {1, 2, . . . ,m}, ρ(bix) = ρ(biy) and λ(bix) = λ(biy);

(4) for all (u,~v) ∈ {1, 2, . . . , p−1}×V and all i ∈ {1, 2, . . . , n}, g(u,~v)(aix) ≡ g(u,~v)(aiy)
(mod k); and
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(5) for all (u,~v) ∈ {1, 2, . . . , p−1}×V and all i ∈ {1, 2, . . . ,m}, g(u,~v)(bix) ≡ g(u,~v)(biy)
(mod k).
Using Lemma 3.3 and passing to sum subsystems, we may presume that
(a) x1 > p11 and y1 > p11;
(b) for each t ∈ N, min

(
supp(xt+1)

)
≥ 13+max

(
supp(xt)

)
and min

(
supp(yt+1)

)
≥ 13 + max

(
supp(yt)

)
; and

(c) for all x, x′ ∈ FS(〈xt〉∞t=1) and all y, y′ ∈ FS(〈yt〉∞t=1), one has ψ(x) = ψ(x′)
and ψ(y) = ψ(y′).

We have some P ⊆ {1, 2, . . . , p − 1} × V such that for all x ∈ MT (~a, 〈xt〉∞t=1) and
all y ∈ MT (~b, 〈yt〉∞t=1), P (x) = P (y) = P , because π

(
g(u,~v)(x)

)
= π

(
g(u,~v)(y)

)
for all

(u,~v) ∈ {1, 2, . . . , p− 1} × V . Let Q =
{(
ρ(aj+1xj+1), λ(ajxj)

)
: j ∈ {1, 2, . . . , n− 1}

}
.

We claim that P = Q. To see this, note that by Lemma 3.7 and conditions (2) and (4)
of the definition of ψ, π

(
g(u,~v)(aixi)

)
∈ {0, k − 1} for all (u,~v) ∈ {1, 2, . . . , p − 1} × V

and all i ∈ {1, 2, . . . , n}. By Lemma 3.8, if (u,~v) ∈ Q, then π
(
g(u,~v)(aixi)

)
= 0 for all

i ∈ {1, 2, . . . , n}.
Now let x = anxn+an−1xn−1+. . .+a1x1, so that P (x) = P . For any (u,~v) ∈ {1, 2,

. . . , p− 1} × V , we have g(u,~v)(x) =∑n
i=1 g(u,~v)(aixi) +

∣∣{j ∈ {1, 2, . . . , n− 1} : (u,~v) =
(
ρ(aj+1xj+1), λ(aj , xj)

)}∣∣ .
Thus

(*) if (u,~v) ∈ Q, then
π
(
g(u,~v)(x)

)
=

∣∣{j ∈ {1, 2, . . . , n− 1} : (u,~v) =
(
ρ(aj+1xj+1), λ(aj , xj)

)}∣∣ .
On the other hand, if (u,~v) /∈ Q, then g(u,~v)(x) =

∑n
i=1 g(u,~v)(aixi) so either π

(
g(u,~v)(x)

)
= 0 or π

(
g(u,~v)(x)

)
∈ {k − n, k − n + 1, . . . , k − 1} so that (u,~v) /∈ P . Thus P = Q as

claimed. Similarly, P =
{(
ρ(bj+1yj+1), λ(bjyj)

)
: j ∈ {1, 2, . . . ,m− 1}

}
.

Now using (*) and the corresponding assertion for y = b1y1 + b2y2 + . . . + bmym,
we have

n− 1 =
∑

(u,~v)∈P (x)

π
(
g(u,~v)(x)

)
=

∑
(u,~v)∈P (y)

π
(
g(u,~v)(y)

)
= m− 1

so n = m

For t ∈ N and z ∈ Z \ {0}, let

δt(z) = {(t′, u′, ~v ′) ∈ G(z) : t′ < t and (u′, ~v ′) ∈ Q}.

Given (u,~v) ∈ Q, i ∈ {0, 1, . . . , k − 1}, and z ∈ Z\{0}, let

γ(i,u,~v)(z) = {t ∈ N : (t, u,~v) ∈ G(z) and π(|δt(z)|) = i} .
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Using Lemma 3.3, choose a sum subsystem 〈wt〉∞t=1 of 〈xt〉∞t=1 such that for all w,w′ ∈
FS(〈wt〉∞t=1), all (u,~v) ∈ Q, all s ∈ {1, 2, . . . , n}, and all i ∈ {0, 1, . . . , k − 1},
|γ(i,u,~v)(asw)| ≡ |γ(i,u,~v)(asw

′)| (mod k).
Let (u,~v) ∈ Q, let s ∈ {1, 2, . . . , n}, and let i ∈ {0, 1, . . . , k − 1}. We claim that

|γ(i,u,~v)(asw)| ≡ 0 (mod k) for all w ∈ FS(〈wt〉∞t=1). For this it suffices to show that
γ(i,u,~v)(asw2 + asw1) = γ(i,u,~v)(asw2) ∪ γ(i,u,~v)(asw1).

We note that
(
ρ(asw2), λ(asw1)

)
/∈ Q. To see this, suppose instead that(

ρ(asw2), λ(asw1)
)

=
(
ρ(aj+1xj+1), λ(ajxj)

)
for some j ∈ {1, 2, . . . , n − 1}. Since

w1, w2 ∈ FS(〈xt〉∞t=1), we have that ρ(aj+1xj+1) = ρ(asw2) = ρ(asxj+1) and λ(ajxj) =
λ(asw1) = λ(asxj). But then by Lemma 2.5, aj+1 = as = aj contradicting the fact
that ~a is a compressed sequence. Thus since

(
ρ(asw2), λ(asw1)

)
/∈ Q,

γ(i,u,~v)(asw2 + asw1) = {t ∈ N : (t, u,~v) ∈ G(asw2) and π(|δt(asw2 + asw1)|) = i} ∪
{t ∈ N : (t, u,~v) ∈ G(asw1) and π(|δt(asw2 + asw1)|) = i} .

Now, if (t, u,~v) ∈ G(asw1), then δt(asw2 +asw1) = δt(asw1). If (t, u,~v) ∈ G(asw2),
then (again using the fact that

(
ρ(asw2), λ(asw1)

)
/∈ Q) we have δt(asw2 + asw1) =

δt(asw2) ∪ δt(asw1). Also for (t, u,~v) ∈ G(asw2),

δt(asw1) =
⋃

(u′,~v ′)∈Q {(t′, u′, ~v ′) : t′ ∈ G(u′,~v ′)(asw1)}

and so |δt(asw1)| =
∑

(u′,~v ′)∈Q g(u,~v ′)(asw1) ≡ 0 (mod k). Thus if (t, u,~v) ∈ G(asw2)
we have π(|δt(asw2 + asw1)|) = π(|δt(asw2)|). Therefore γ(i,u,~v)(asw2 + asw1) =
γ(i,u,~v)(asw2) ∪ γ(i,u,~v)(asw1) as required.

We shall complete the proof by showing that for any x ∈ MT (~a, 〈xt〉∞t=1), any
z ∈ FS(〈xt〉∞t=1), and any i ∈ {0, 1, . . . , n− 2},

(†) Ti(x) =
{(
ρ(ai+2z), λ(ai+1z)

)}
.

Assume for now that we have done this. It will then follow similarly that for any
y ∈ MT (~a, 〈yt〉∞t=1), any q ∈ FS(〈yt〉∞t=1), and any i ∈ {0, 1, . . . , n − 2}, Ti(y) ={(
ρ(bi+2q), λ(bi+1q)

)}
. Since for such x, y, and i, we have Ti(x) = Ti(y), we then

must have in particular that λ(ai+1xn) = λ(bi+1yn). We also have that

λ(anxn) = λ(anxn + an−1xn−1 + . . .+ a1x1)

= λ(bnyn + bn−1yn−1 + . . .+ b1y1) = λ(bnyn) = λ(anyn) .

Thus by Lemma 2.5(ii), we will have that ai+1 = bi+1 for each i ∈ {0, 1, . . . , n − 2}.
Since we already know that an = bn, we will then have ~a = ~b.

To establish (†), let x = anwn + an−1wn−1 + . . . + a1w1. We show that Ti(x) ={(
ρ(ai+2wi+2), λ(ai+1wi+1)

)}
for each i ∈ {0, 1, . . . , n− 2}. Notice that if i ∈ {0, 1, . . . ,
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n− 2} and (u,~v) ∈ Ti(x), then {t ∈ N : (t, u,~v) ∈ Si(x)} 6= ∅ and so (u,~v) ∈ P (x) = Q.
Consequently, for each i ∈ {0, 1, . . . , n− 2},

Ti(x) = {(u,~v) ∈ Q : π(|{t ∈ N : (t, u,~v) ∈ Si(x)}|) = 1} .

Let (u,~v) =
(
ρ(ai+2wi+2), λ(ai+1wi+1)

)
, where i ∈ {0, 1, . . . , n − 2}. We consider

{t ∈ N : (t, u,~v) ∈ Si(x)}. If t = min
(
supp(ai+2wi+2)

)
, then (t, u,~v) ∈ Si(x), because

it follows from Lemma 3.8 that g(u,~v)(asws) ≡ 0 (mod k) for every s ∈ {1, 2, . . . , n}.
If (t, u,~v) ∈ G(x) and t = min

(
supp(aj+2wj+2)

)
, with j ∈ {0, 1, . . . , n − 2} \ {i},

then (t, u,~v) ∈ Sj(x) and thus (t, u,~v) /∈ Si(x). If (t, u,~v) ∈ G(asws) for some s ∈
{1, 2, · · · , n}, then (t, u,~v) ∈ Si(x) if and only if t ∈ γ(j,u,~v)(asws), where j + s − 1 ≡
i (mod k). We have seen that |γ(j,u,~v)(asws)| ≡ 0 (mod k). So |{t ∈ N : (t, u,~v) ∈
Si(x)}| ∈ 1 + kω; i.e. (u,~v) ∈ Ti(x).

Now let (w,~z) ∈ P (x) \ {(u,~v)}. Then (t, w, ~z) ∈ Si(x) if and only if t ∈
γ(j,w,~z)(asws) for some s ∈ {1, 2, · · · , n}, where j + s − 1 ≡ i (mod k). Since
|γ(j,w,~z)(asws)| ≡ 0 (mod k), |{t ∈ N : (t, w, ~z) ∈ Si(x)}| ∈ kω and so (w,~z) /∈ Ti(x).

Thus Ti(x) = {(u,~v)}, and we have established that (†) holds.

In the proof of Theorem 3.1 we used a large number of colors. We observe now
that in fact two colors suffice.

3.9 Corollary. Let ~a and ~b be finite compressed sequences with entries from Z\{0}
and assume that there is no positive rational number α such that ~b = α · ~a. Then
there exist sets A and B such that Z = A ∪ B and there is no sequence 〈xi〉∞i=1 with
MT (~a, 〈xi〉∞i=1) ⊆ B and there is no sequence 〈yi〉∞i=1 with MT (~b, 〈yi〉∞i=1) ⊆ A.

Proof. Pick by Theorem 3.1 r ∈ N and sets 〈Cj〉rj=1 such that Z =
⋃r

j=1 Cj and for
no j ∈ {1, 2, . . . , r} do there exist sequences 〈xi〉∞i=1 and 〈yi〉∞i=1 with MT (~a, 〈xi〉∞i=1) ∪
MT (~b, 〈yi〉∞i=1) ⊆ Cj . Let A =

⋃
{Cj : there exists 〈xi〉∞i=1 with MT (~a, 〈xi〉∞i=1) ⊆ Cj}

and let B = N \A. By Theorem 1.8 the sets A and B are as required.

4. Equations in βZ

The results of this paper are intimately related with the algebra in the Stone-Čech
compactification βZ of Z. Given any discrete semigroup (S, ·), the operation extends
to βS making (βS, ·) a compact right topological semigroup with S contained in the
topological center of βS. We take the points of βS to be the ultrafilters on S. See [8]
for an elementary introduction to this structure, and for the meaning of any unfamiliar
terms used here.
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In particular, the operations + and · on Z both extend to βZ making (βZ,+) and
(βZ, ·) right topological semigroups. The following theorem easily implies our Theorem
1.8. In this result it is important to note that, for example 2 · p refers to the operation
in (βZ, ·) and does not mean p+ p.

4.1 Theorem. Let 〈at〉nt=1 be a sequence in Z\{0}, let p be an idempotent in (βN,+),
and let q = a1 · p+ a2 · p+ . . .+ an · p. Let A ∈ p and B ∈ q. There exists a sequence
〈xi〉∞i=1 in N with FS(〈xi〉∞i=1) ⊆ A and MT (~a, 〈xi〉∞i=1) ⊆ B.

Proof. [6, Lemma 3.4].

To derive Theorem 1.8 from Theorem 4.1, let a sequence 〈yi〉∞i=1 in N be given,
let r ∈ N and let Z =

⋃r
j=1Bj . By passing to a sum subsystem if necessary, we may

presume that for each i, yi+1 > 4 ·
∑i

t=0 yt. Pick by [8, Lemma 5.11] an idempotent
p with FS(〈yi〉∞i=1) ∈ p and let q = a1 · p + a2 · p + . . . + an · p. Pick j ∈ {1, 2, . . . , r}
such that Bj ∈ q and pick a sequence 〈xi〉∞i=1 with FS(〈xi〉∞i=1) ⊆ FS(〈yi〉∞i=1) and
MT (~a, 〈yi〉∞i=1) ⊆ Bj . Since we had for each i, yi+1 > 4 ·

∑i
t=0 yt, one easily sees (using

[6, Lemma 3.5], for example) that 〈xi〉∞i=1 is in fact a sum subsystem of 〈yi〉∞i=1.

Amir Maleki observed in [10, Theorem 2.19] that the results of [3] implied that
if 〈a1, a2, . . . , an〉 and 〈b1, b2, . . . , bm〉 are distinct compressed sequences in N, then the
equation a1 · p+ a2 · p+ . . .+ an · p = b1 · p+ b2 · p+ . . .+ bm · p has no solutions with p
an idempotent in (βN,+). (He also showed in [10, Theorem 2.7] that this equation also
has no solutions if p is right cancellable in (βN,+).) We see now that the corresponding
assertion holds where the entries of ~a and ~b are allowed to be negative.

4.2 Corollary. Let 〈a1,a2, · · · , an〉 and 〈b1, b2, · · · , bm〉 be compressed sequences in Z \
{0}, let p+p = p ∈ βN, and assume that a1 ·p+a2 ·p+ · · · an ·p = b1 ·p+b2 ·p+ · · · bm ·p.
then ~a = ~b.

Proof. We show first that it suffices to show that there is some positive rational number
α such that ~b = α ·~a. Let α = r

s where r, s ∈ N. Then by [8, Lemma 13.1] (which is the
only nontrivial instance of the distributive law known to hold in βZ), we have that

r · (a1 · p+ a2 · p+ . . .+ an · p) = s · (b1 · p+ b2 · p+ . . .+ bm · p) .

Since also s · (a1 · p+ a2 · p+ . . .+ an · p) = s · (b1 · p+ b2 · p+ . . .+ bm · p), we have
by [8, Lemma 6.28] that r = s.

Therefore, by Theorem 3.1, it suffices to show that whenever r ∈ N and Z =⋃r
j=1Bj , there exist j ∈ {1, 2, . . . , r} and sequences 〈xi〉∞i=1 and 〈yi〉∞i=1 with
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MT (~a, 〈xi〉∞i=1) ∪ MT (~b, 〈yi〉∞i=1) ⊆ Bi. To this end pick j ∈ {1, 2, . . . , r} such that
Bj ∈ a1 · p+ a2 · p+ . . .+ an · p and apply Theorem 4.1.

We shall see in Theorem 4.4 that one can expand the list of equivalent conditions
in Theorem 3.1. One of the added conditions involves idempotents in the smallest ideal
K(βN,+) of (βN,+), the so called minimal idempotents. These are combinatorially
significant because the members of minimal idempotents are central sets and are guar-
anteed to have rich combinatorial structure. (See [8, Chapter 14].)

The following lemma is not new, but does not seem to be in [8].

4.3 Lemma. Let r be an idempotent in K(βN,+) and let k ∈ N. Then k · r is an
idempotent in K(βN,+).

Proof. The function p 7→ k ·p from βN onto k ·βN is a continuous homomorphism. (It is
continuous because λk is continuous in (βN, ·) and it is a homomorphism by [8, Lemma
13.1].) It maps K(βN,+) onto K(k · βN,+). Now k · βN contains all the idempotents
of βN by [8, Lemma 6.6], and therefore meets K(βN,+). It follows from [8, Theorem
1.65] that K(k · βN,+) ⊆ K(βN,+).

4.4 Theorem. Let ~a = 〈a1, a2, . . . , an〉 and ~b = 〈b1, b2, . . . , bm〉 be finite compressed
sequences with entries from Z\{0}. The following statements are equivalent.
(a) Whenever r ∈ N and Z =

⋃r
i=1Bi, there exist i ∈ {1, 2, . . . , r} and sequences

〈xt〉∞t=1 and 〈yt〉∞t=1 in N with MT (~a, 〈xt〉∞t=1) ∪MT (~b, 〈yt〉∞t=1) ⊆ Bi.
(b) There is a positive rational number α such that ~b = α · ~a.
(c) There exist idempotents p and q in K(βN,+) such that a1 ·p+a2 ·p+ . . .+an ·p =

b1 · q + b2 · q + . . .+ bm · q.
(d) There exist idempotents p and q in (βN,+) such that a1 · p+ a2 · p+ . . .+ an · p =

b1 · q + b2 · q + . . .+ bm · q.

Proof. We have by Theorem 3.1 that (a) and (b) are equivalent and (c) trivially
implies (d). By Theorem 4.1 (d) implies (a) (by choosing i ∈ {1, 2, . . . , r} such that
Bi ∈ a1 · p+ a2 · p+ . . .+ an · p = b1 · q + b2 · q + . . .+ bm · q).

To see that (b) implies (c), pick k, l ∈ N such that ~b = k
l · ~a. Pick any idempotent

r ∈ K(βN). Let p = k · r and q = l · r. By Lemma 4.3 p and q are idempotents in
K(βN,+). Then a1 · p + a2 · p + . . . + an · p = a1 · k · r + a2 · k · r + . . . + an · k · r =
b1 · l · r + b2 · l · r + . . .+ bn · l · r = b1 · q + b2 · q + . . .+ bm · q.

We remark that Corollary 3.9 is equivalent to the following statement: if ~a and ~b
satisfy the hypotheses of this corollary, there exists sets A and B such that Z = A ∪B
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and there is no idempotent p ∈ βN for which B ∈ a1 · p + a2 · p + · · · + an · p and no
idempotent q ∈ βN for which A ∈ b1 · q + b2 · q + · · ·+ bm · q. This is a property which
distinguishes idempotents from other elements of N?. Suppose that ~a = 〈a1, a2, · · · , an〉
and ~b = 〈b1, b2, · · · , bm〉 are arbitrary finite sequences in Z \ {0}, with an, bm ∈ N and∑n

i=1 ai,
∑m

i=1 bi 6= 0. Then it follows from results in [6] that, in any finite colouring of
N, there exist p, q ∈ N∗ such that a1 ·p+a2 ·p+· · ·+an ·p and b1 ·q+b2 ·q+· · ·+bm ·q have
the same monochrome set as a member. We can even require that p and q have rapidly
increasing sets as members, where we call a subset {tn : n ∈ N} of N rapidly increasing
if tn+1 − tn → ∞. However, if p and q have rapidly increasing sets as members, it is
quite easy to prove that the equation a1 ·p+a2 ·p+ · · ·+an ·p = b1 ·q+b2 ·q+ · · ·+bm ·q
can only hold if ~b is a positive rational multiple of ~a.

We conclude by modifying [7, Question 1.5] (which remains unanswered) to allow
for negative entries.

4.5 Question. Let 〈a1, a2, . . . , an〉 and 〈b1, b2, . . . , bm〉 be compressed sequences in
Z\{0}. Suppose that there exists some p ∈ N∗ such that

a1 · p+ a2 · p+ . . .+ an · p = b1 · p+ b2 · p+ . . .+ bm · p .

Must it then be true that ~a = ~b?

We note that it can be shown that this equation implies that a1 = b1 and an = bm.
The implication an = bm was shown in [7] in the case in which an, bm > 0, and it is
easy to see that we can assume this. The implication a1 = b1 was also shown in [7] in
the case in which a1, b1 > 0, and the proof in [7] extends easily to the general case.
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