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Separating Milliken-Taylor systems in Q
Neil Hindman∗ and Dona Strauss

A finite sequence ~a = 〈ai〉ki=1 in Q \ {0} is compressed provided
ai 6= ai+1 for i < k. Given a compressed sequence ~a = 〈ai〉ki=1

in Z \ {0} and given a sequence 〈xn〉∞n=1 in a commutative group
(G,+), the Milliken-Taylor system generated by ~a and 〈xn〉∞n=1

is MT (~a, 〈xn〉∞n=1) = {
∑k

i=1 ai ·
∑

n∈Fi
xn : F1, F2, . . . , Fk are fi-

nite nonempty subsets of N with maxFi < minFi+1 for i < k}.
It is an easy consequence of the Milliken-Taylor Theorem that
Milliken-Taylor systems are partition regular in the strong sense
that if 〈yn〉∞n=1 is any sequence in G, and MT (~a, 〈yn〉∞n=1) is par-
titioned into finitely many cells, there is a sequence 〈xn〉∞n=1 such
that MT (~a, 〈xn〉∞n=1) is contained in one of those cells.

It is known that if ~a and ~b are compressed sequences in Z \
{0} which are not rational multiples of each other, then there is
a partition of Z \ {0} into two cells, neither of which contains
MT (~a, 〈xn〉∞n=1) ∪MT (~b, 〈yn〉∞n=1) for any sequences 〈xn〉∞n=1 and
〈yn〉∞n=1. In this paper we establish the corresponding statement
for Milliken-Taylor systems in Q. (In fact, the entries of ~a and ~b
are allowed to come from Q \ {0}.)

1. Introduction

Given a set X, we write Pf (X) for the set of finite nonempty subsets of X.
If κ is a cardinal, then [X]κ is the set of subsets of X with κ elements. And
given F,H ∈ Pf (N), where N is the set of positive integers, we write F < H

to indicate that maxF < minH.
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Theorem 1.1 (Milliken-Taylor Theorem). Let k, r ∈ N and let

[Pf (N)]k =
⋃r
i=1Ai .

There exist i ∈ {1, 2, . . . , r} and a sequence 〈Fn〉∞n=1 in Pf (N) such that
Fn < Fn+1 for each n and whenever H1,H2, . . . ,Hk ∈ Pf (N) with Ht < Ht+1

for t < k, one has {
⋃
n∈H1

Fn,
⋃
n∈H2

Fn, . . . ,
⋃
n∈Hk

Fn} ∈ Ai.

Proof. [6, Theorem 2.2] or [7, Lemma 2.2].

Definition 1.2. Let (S,+) be a commutative semigroup and let 〈xn〉∞n=1

and 〈yn〉∞n=1 be sequences in S. Then 〈xn〉∞n=1 is a sum subsystem of 〈yn〉∞n=1

if and only if there is a sequence 〈Fn〉∞n=1 in Pf (N) such that Fn < Fn+1 for
each n and xn =

∑
t∈Fn

yt for each n.

As we remarked in the abstract, it is an immediate consequence of the
Milliken-Taylor Theorem that Milliken-Taylor systems are partition regular.

Theorem 1.3. Let k, r ∈ N, let ~a = 〈a1, . . . , ak〉 be a compressed sequence
in Z \ {0}, let (G,+) be a commutative group, and let 〈yn〉∞n=1 be a sequence
in G. If MT (~a, 〈yn〉∞n=1) =

⋃r
i=1Ai, then there exist i ∈ {1, 2, . . . , r} and a

sum subsystem 〈xn〉∞n=1 of 〈yn〉∞n=1 such that MT (~a, 〈xn〉∞n=1) ⊆ Ai.

Proof. For i ∈ {1, 2, . . . , r}, let

Ai =
{
{K1,K2, . . . ,Kk} ∈ [Pf (N)]k : K1 < K2 < . . . < Kk and∑k

j=1 aj ·
∑
n∈Kj

yn ∈ Ai
}

and let A0 = [Pf (N)]k \
⋃r
i=1Ai. By Theorem 1.1, pick i ∈ {0, 1, . . . , r} and

a sequence 〈Fn〉∞n=1 in Pf (N) such that Fn < Fn+1 for each n and whenever
H1,H2, . . . ,Hk ∈ Pf (N) with Ht < Ht+1 for t < k, one has

{
⋃
n∈H1

Fn,
⋃
n∈H2

Fn, . . . ,
⋃
n∈Hk

Fn} ∈ Ai .

Notice that i > 0. For each n ∈ N, let xn =
∑
t∈Fn

yt.

Given a compressed sequence ~a in Z \ {0}, there is a matrix M such

that MT (~a, 〈xn〉∞n=1) is the set of entries of M~x, where ~x =

 x1

x2
...

. These

matrices are examples of image partition regular matrices and were some of
the first known examples of infinite image partition regular matrices. Finite
image partition regular matrices with rational entries have the property that
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given any finite partition of N, there is one cell which contains an image of
all of these matrices. (See [5, Theorem 15.24].) By way of contrast, there is
the following theorem.

Theorem 1.4. Let ~a and ~b be compressed sequences in Z \ {0} such that ~b
is not a rational multiple of ~a. There exist a partition {A1, A2} of Z \ {0}
such that there do not exist i ∈ {1, 2} and sequences 〈xn〉∞n=1 and 〈yn〉∞n=1

with MT (~a, 〈xn〉∞n=1) ∪MT (~b, 〈yn〉∞n=1) ⊆ Ai.

Proof. [3, Corollary 3.9].

Theorem 1.4 extended a similar result in [2] in which the entries of ~a and
~b were assumed to be positive. The proof of Theorem1.4 was constructed by
defining a partition of Z\{0} into a very large number of cells, none of which
contained MT (~a, 〈xn〉∞n=1) ∪MT (~b, 〈yn〉∞n=1). The number of cells was then
reduced to two by invoking Theorem 1.3.

Notice that, if ~b is a rational multiple of ~a, then given any sequence
〈xn〉∞n=1 in Z there is a sequence 〈yn〉∞n=1 in Z such that MT (~b, 〈yn〉∞n=1) ⊆
MT (~a, 〈xn〉∞n=1). To see this, say ~b = m

n · ~a. Choose a sum subsystem
〈zn〉∞n=1 of 〈xn〉∞n=1 such that every term of 〈zn〉∞n=1 is divisible by m, and
let 〈yn〉∞n=1 = n

m · 〈zn〉∞n=1.
In Section 4 we establish the analogue of Theorem 1.4 for Q. That is,

we show that Milliken-Taylor systems can be separated in Q.
We utilize the algebraic structure of βS, the Stone-Čech compactification

of S, where (S,+) is a discrete semigroup. (The reader should be cautioned
that whenever we use βS, we are taking S to have the discrete topology. In
particular, βQ refers to the Stone-Čech compactification of Qd, the set Q
with the discrete topology.) We take the points of βS to be the ultrafilters
on S, with the points of S being identified with the principal ultrafilters.
Given A ⊆ S, A = {p ∈ βS : A ∈ p}. The operation + on S extends to an
operation on βS, also denoted by +, so that (βS,+) is a right topological
semigroup (meaning that for each p ∈ βS, the function ρp : βS → βS is
continuous, where ρp(q) = q + p) with S contained in its topological center
(meaning that for each x ∈ S, the function λx : βS → βS is continuous,
where λx(q) = x + q). Given p and q in βS and A ⊆ S, A ∈ p + q if and
only if {x ∈ S : −x+A ∈ q} ∈ p. (Here −x+A = {y ∈ S : x+ y ∈ A}. If S
is a group, then this agrees with the usual definition as {−x + z : z ∈ A}.)
As does any compact right topological semigroup, βS has idempotents. See
[5, Part I] for an elementary introduction to the algebraic structure of βS.

The reader should be cautioned that, even though we denote the op-
eration on βS by +, it is not commutative by [5, Theorem 6.54] if S is
cancellative.
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Given a ∈ N, a commutative semigroup (S,+), and x ∈ S, we let ax
have its usual meaning – that is the sum of x with itself a times. If a ∈ N
and p ∈ S∗ = βS \ S, we define ap = l̃a(p) where la : S → S is defined as
la(x) = ax and l̃a : βS → βS is its continuous extension. Thus, for example,
2p does not mean p + p. (In βZ, by [5, Theorem 13.18], there is no p ∈ Z∗

such that 2p = p+ p.)
Given a group G, a ∈ N, and x ∈ G we also let −ax have its usual

meaning and define −ap for p ∈ G∗ as above. In either case, if p ∈ βS and
a ∈ N or a ∈ Z \ {0} as appropriate, then for each A ⊆ S, A ∈ ap if and
only if a−1A ∈ p, where a−1A = {x ∈ S : ax ∈ A}.

We will use coloring terminology throughout. By a finite coloring of a
set X we mean a function from X to a finite set. It is said to be a k-coloring
if its range has cardinality k. A set A ⊆ X is said to be monochromatic with
respect to a coloring ψ provided ψ is constant on A. In this terminology,
Theorem 1.4 says that if ~a and ~b are compressed sequences in Z \ {0} such
that ~b is not a rational multiple of ~a, then there is a 2-coloring of Z\{0} such
that there do not exist sequences 〈xn〉∞n=1 and 〈yn〉∞n=1 withMT (~a, 〈xn〉∞n=1)∪
MT (~b, 〈yn〉∞n=1) monochromatic. If ψ is a coloring of X, then D is a color
class of ψ if and only if there is some i in the range of ψ such that D =
ψ−1[{i}].

Our coloring of Q \ {0} is based on the negative factorial representation
of rational numbers introduced by Budak, Işic, and Pym in [1]. Section
2 consists of several results about the arithmetic of this representation and
construction of two colorings, one of initial segments of the negative factorial
representation and the other of terminal segments. In Section 3 we use those
two colorings to obtain a coloring of Q which separates expressions of the
form a1p + a2p + . . . + amp and b1q + b2q + . . . bkq where 〈a1, a2, . . . , am〉
and 〈b1, b2, . . . , bk〉 are compressed sequences in Z\{0} that are not rational
multiples of each other and p and q are idempotents in

⋂
ε>0 c`βQ

(
(−ε, ε) ∩

Q
)
\ {0}. Section 4 then consists of the proof of our main results.
A connection between Milliken-Taylor systems and linear expressions

in βG is provided by the following theorem. This result is well known by
aficionados, but we cannot find an explicit statement in the literature.

Theorem 1.5. Let G be a commutative group, let ~a = 〈a1, a2, . . . , am〉 be a
compressed sequence in Z \ {0}, and let A ⊆ G. There is a sequence 〈xn〉∞n=1

in G such that MT (~a, 〈xn〉∞n=1) ⊆ A if and only if there is an idempotent
p ∈ βG such that A ∈ a1p+ a2p+ . . .+ amp.

Proof. Necessity. Pick an idempotent p ∈
⋂∞
m=1 FS(〈xn〉∞n=m by [5, Lemma

5.11]. The proof that A ∈ a1p+a2p+ . . .+amp may then be taken verbatim
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from the proof of [5, Theorem 17.32] except that the one occurrence of
“x ∈ N” should be replaced by “x ∈ G”.

Sufficiency. Let S = T = G, let h :
⋃∞
k=1G

k → p be the function
constantly equal to G, and define f : Gm → G by f(x1, x2, . . . , xm) =
a1x1 + a2x2 + . . .+ amxm. Then apply [4, Theorem 3.3].

2. Arithmetic in the negative factorial representation

The following is the negative factorial representation of rationals due to
Budak, Işic, and Pym.

Theorem 2.1. Each x ∈ Q has a unique representation of the form

∑∞
t=2

a(x,t)
t! (−1)t +

∑∞
t=1 b(x, t) · t! · (−1)t+1

where each a(x, t) ∈ {0, 1, . . . , t− 1}, each b(x, t) ∈ {0, 1, . . . , t}, and all but
finitely many of each are zero.

Proof. This is [1, Theorem 4.2] except the expression given there represents
−x as we have written it.

The reason we take the negative of the Budak-Işic-Pym representation
is that we will be concerned only with numbers close to zero, and these
all have representations in the form

∑∞
t=2

a(x,t)
t! (−1)t. (We prefer to type an

exponent of t rather than t+ 1.)
The proof of the following lemma is a rather tedious computation which

we omit.

Lemma 2.2. Let k,m ∈ N with 2 ≤ k ≤ m and let

A = {
∑m
t=k

a(t)
t! (−1)t : (∀t ∈ {k, k + 1, . . . ,m})(a(t) ∈ {0, 1, . . . , t− 1})} .

Then A =
{
t
m! : t ∈ {a, a+ 1, . . . , b}

}
where

(a) if m = 2s and either k = 2r or k = 2r+1, then a = −m! ·
∑s−1
t=r

2t
(2t+1)! ;

(b) if m = 2s + 1 and either k = 2r or k = 2r + 1, then a = −m! ·∑s
t=r

2t
(2t+1)! ;

(c) if k = 2r and either m = 2s or m = 2s + 1, then b = m! ·
∑s
t=r

2t−1
(2t)! ;

and
(d) if k = 2r + 1 and either m = 2s or m = 2s + 1, then b = m! ·∑s

t=r+1
2t−1
(2t)! .
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If x =
∑∞
t=2

a(x,t)
t! (−1)t with each a(x, t) ∈ {0, 1, . . . , t − 1} and all but

finitely many equal to 0, we write supp(x) = {t : a(x, t) 6= 0}, and if
supp(x) 6= ∅, we let α(x) = min supp(x) and δ(x) = max supp(x). We
then say simply “x has a small negative factorial representation” and let
T = {x ∈ Q : x has a small negative factorial representation}.

Lemma 2.3. Let x ∈ Q and let k = 2r ∈ N. Then x ∈ T \{0} with α(x) ≥ k
if and only if

−
∑∞
t=r

2t
(2t+1)! < x <

∑∞
t=r

2t−1
(2t)! .

In particular x ∈ T \ {0} if and only if −
∑∞
t=1

2t
(2t+1)! < x <

∑∞
t=1

2t−1
(2t)! .

Proof. We will use the fact that for each m ∈ N,
∑∞
t=m+1

t−1
t! = 1

m! . (Prove
by induction on s that

∑s
t=m+1

t−1
t! = 1

m! −
1
s! .)

The necessity is immediate. So assume that

−
∑∞
t=r

2t
(2t+1)! < x <

∑∞
t=r

2t−1
(2t)!

If x = 0, the conclusion is trivial, so assume first that x > 0. Pick the first
m = 2s in N such that x = t

m! for some t ∈ Z. By Lemma 2.2, it suffices to
show that t ≤ m! ·

∑s
t=r

2t−1
(2t)! . So suppose instead that t ≥ m! ·

∑s
t=r

2t−1
(2t)! +1.

Then
t
m! ≥

∑s
t=r

2t−1
(2t)! + 1

m!

=
∑s
t=r

2t−1
(2t)! +

∑∞
t=m+1

t−1
t!

>
∑s
t=r

2t−1
(2t)! +

∑∞
t=s+1

2t−1
(2t)! ,

a contradiction.
The proof that if x < 0, then x > −

∑∞
t=r

2t
(2t+1)! is very similar.

We think of our numbers being written using ×∞
t=2{0, 1, . . . , t − 1} in

a fashion directly analogous to ordinary arithmetic. Thus, for example, if
y = 〈1, 2, 0, 3, 0, 0, . . .〉 and x =

∑∞
t=2

yt

t! (−1)t, then x = 1
2 −

2
6 −

3
120 = 17

120 .
We think of x as being written as .1203 and refer to 1 as the entry in column
2, 2 as the entry in column 3, 0 as the entry in column 4, and 3 as the entry in
column 5. The next lemma describes how to do addition using the negative
factorial representation.

Lemma 2.4. Let v, w ∈ ×∞
t=2{0, 1, . . . , t − 1} \ {0} with v2 = v3 = w2 =

w3 = 0, let x =
∑∞
t=2

vt

t! (−1)t, and let y =
∑∞
t=2

wt

t! (−1)t. Then x + y =∑∞
t=2

zt

t! (−1)t, where z ∈ ×∞
t=2{0, 1, . . . , t − 1} is obtained as follows. Let

m = max{t : vt 6= 0 or wt 6= 0}. For each t ∈ {2, 3, . . . ,m− 1} we will have
a “carry” ct ∈ {−1, 0, 1}. Starting in column m add vm and wm.
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(1) If vm + wm < m, let zm = vm + wm and set cm−1 = 0.
(2) If vm + wm ≥ m, let zm = vm + wm −m and set cm−1 = −1.

Assume we have added columns t+ 1 through m and have defined ct.

(1) If vt +wt + ct ∈ {0, 1, . . . , t− 1}, let zt = vt +wt + ct and let ct−1 = 0.
(2) If vt + wt + ct ≥ t, let zt = vt + wt + ct − t and let ct−1 = −1.
(3) If vt + wt + ct = −1, let zt = t− 1 and let ct−1 = 1.

Proof. This analysis is carried out on pages 106 and 107 of [1].

Notice, as was remarked in [1], getting a carry of 1 is relatively rare. For
this to happen one has to have vt = wt = 0 and ct = −1.

Lemma 2.5. Assume that x ∈ T \ {0} and let k = α(x).

(1) If k is even, then k+1
(k+2)! < x < k2

(k+1)! .

(2) If k is odd, then − k2

(k+1)! < x < − k+1
(k+2)! .

Proof. Assume k = 2r. We will show that x < k2

(k+1)! . The other three
conclusions are proved in a very similar fashion.

x =
∑∞
t=k

a(x,t)
t! (−1)t

≤ 2r−1
(2r)! +

∑∞
t=r+1

a(x,2t)
(2t)!

< 2r−1
(2r)! +

∑∞
t=2r+2

t−1
t!

= 2r−1
(2r)! + 1

(2r+1)!

= k2

(k+1)!

Note that, in particular, if α(x) is even, then x > 0, while if α(x) is odd,
then x < 0.

Lemma 2.6. Assume that x ∈ T \ {0}, let k = α(x), and let b ∈ Z.

(1) If 0 < 2b < k, then α(bx) = k or α(bx) = k − 2.
(2) If −k < 2b < 0, then α(bx) = k + 1 or α(bx) = k − 1.

Proof. (1) Assume first that x > 0. Then k = 2r and α(bx) = 2m for some
m, r ∈ N. If m > r, then b > 1 so, using Lemma 2.5,

4(r+1)2

(2r+3)! ≥
4m2

(2m+1)! > bx ≥ 2x > 2k+2
(k+2)! = 4r+2

(2r+2)!

so 4(r + 1)2 > (4r + 2)(2r + 3), a contradiction.
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Now assume that m < r − 1. Then

4br2

(2r+1)! > bx > 2m+1
(2m+2)! ≥

2r−3
(2r−2)!

so 4r3 > 4br2 > (2r − 3)(2r − 1)(2r)(2r + 1), a contradiction.
Now assume that x < 0. Then k = 2r + 1 and α(bx) = 2m+ 1 for some

m, r ∈ N. As above, we derive contradictions from the assumptions that
m > r or that m < r − 1, the latter using the fact that r ≥ b.

(2) Assume first that x > 0. Then k = 2r and α(bx) = 2m+ 1 for some
m, r ∈ N. We claim that m = r or m = r − 1. If m > r, then using Lemma
2.5,

− (2r+3)2

(2r+4)! ≤ − (2m+1)2

(2m+2)! < bx ≤ −x < − 2r+1
(2r+2)!

so (2r + 3)2 > (2r + 1)(2r + 3)(2r + 4), a contradiction.
Now assume that m < r − 1. Then x < 4r2

(2r+1)! so

4br2

(2r+1)! < bx < − 2m+2
(2m+3)! ≤ − 2r−2

(2r−1)!

so, since −b ≤ r − 1, 4(r − 1)r2 ≥ 4(−b)r2 > (2r − 2)(2r)(2r + 1), a contra-
diction.

Now assume that x < 0. Then k = 2r + 1 and α(bx) = 2m for some
m, r ∈ N. As above, we derive contradictions from the assumptions that
m > r + 1 or that m < r, the latter using the fact that r ≥ −b. We thus
conclude that m = r or m = r + 1.

Lemma 2.7. Assume that x ∈ T \ {0}, let k = α(x), and let b ∈ Z such
that |2b| < k and |b|+ 2 < k.

(1) If b > 0, then(
a(by, k − 2), a(by, k − 1)

)
∈ {(0, 0), (1, k − 2), (1, k − 3), . . . , (1, k − b)} .

(2) If b < 0, then(
a(by, k − 2), a(by, k − 1)

)
∈ {(0, 0), (0, 1), (0, 2), . . . , (0,−b)} .

Proof. We use the analysis of Lemma 2.4.
(1) We add x to itself b− 1 times. Since a(x, k) > 0, each such addition

results in a carry of 0 or −1 into column k− 1. The first instance of a carry
of −1 results in entries in columns k− 2 and k− 1 of (1, k− 2). The second
results in (1, k − 3), and so on.
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(2) We will add −x to itself −b−1 times. By Lemma 2.6, α(−x) = k+1
or α(−x) = k − 1. If α(−x) = k + 1, then the resulting entries in columns
k − 1 and k are in {(0, 0), (1, k − 2), (1, k − 3), . . . , (1, k + b)} by (1) and so
the entries in columns k − 2 and k − 1 are (0, 0) or (0, 1).

So assume that α(−x) = k − 1. In this case, a(−x, k − 1) = 1 and
a(−x, k) > 0 since all other possibilities lead to the conclusion that |x| =
|−x| > k2

(k−1)! , contradicting Lemma 2.5. Consequently, each addition of −x
results in a carry of 0 or −1 to column k − 1. Assume that

d ∈ {1, 2, . . . ,−b− 2} , a(−dx, k− 2) = 0, and a(−dx, k− 1) ∈ {1, 2, . . . , d} .

Let u = a(−dx, k−1). Then a(−(d+1)x, k−2) = 0, and a(−(d+1)x, k−1) ∈
{u, u+ 1} and thus a(bx, k − 2) = 0 and a(bx, k − 1) ∈ {1, 2, . . . ,−b}.

The next lemma will be used to produce a relevant coloring of initial
segments of negative factorial representations.

Lemma 2.8. Assume that x ∈ T \{0}. Let b, c ∈ Z, let m ∈ N, let r = α(x)
such that 1

r+1 ≤
(

m
m−1

)1/8 and 1
r+2 ≤

(
c
b

)−2. Pick i ∈ Z such that

(
c
b

)i/8 · 1
r! <

a(x,r)
r! − a(x,r+1)

(r+1)! + a(x,r+2)
(r+2)! − a(x,r+3)

(r+3)! <
(
c
b

)(i+1)/8 · 1
r! .

(1) If x > 0, then
(
c
b

)(i−1)/8 · 1
r! < x <

(
c
b

)(i+2)/8 · 1
r! .

(2) If x < 0, then −
(
c
b

)(i+2)/8 · 1
r! < x < −

(
c
b

)(i−1)/8 · 1
r! .

Proof. Note that

r+5
(r+3)(r+4)(r+6) ·

1
r! < r+4

(r+2)(r+3)(r+5) ·
1
r!

< 1
r! −

r
(r+1)! −

r+2
(r+3)!

≤ a(x,r)
r! − a(x,r+1)

(r+1)! + a(x,r+2)
(r+2)! − a(x,r+3)

(r+3)!

<
(
c
b

)(i+1)/8 · 1
r!

so r+5
(r+3)(r+4)(r+6) <

r+4
(r+2)(r+3)(r+5) <

(
c
b

)(i+1)/8. Consequently

(
c
b

)(i+1)/8 · 1
r! + (r+4)2

(r+5)! =
(
c
b

)(i+1)/8 · 1
r! + r+4

(r+2)(r+3)(r+5) ·
1
r+1 ·

1
r!

<
(
c
b

)(i+1)/8 · 1
r! +

(
c
b

)(i+1)/8 ·
((

c
b

)1/8 − 1
)
· 1
r!

=
(
c
b

)(i+2)/8 · 1
r! and(

c
b

)i/8 · 1
r! −

(r+5)2

(r+6)! =
(
c
b

)i/8 · 1
r! −

r+5
(r+3)(r+4)(r+6) ·

1
r+1 ·

1
r+2 ·

1
r!

>
(
c
b

)i/8 · 1
r! −

(
c
b

)(i+1)/8 ·
((

c
b

)1/8 − 1
)
·
(
c
b

)−2 · 1
r!

=
(
c
b

)(i−1)/8 · 1
r! .
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If x > 0, then x = a(x,r)
r! − a(x,r+1)

(r+1)! + a(x,r+2)
(r+2)! − a(x,r+3)

(r+3)! + z where α(z) ≥
r + 4. By Lemma 2.5, − (r+5)2

(r+6)! < z < (r+4)2

(r+5)! and so

(
c
b

)(i−1)/8 · 1
r! <

(
c
b

)i/8 · 1
r! −

(r+5)2

(r+6)!

< x

<
(
c
b

)(i+1)/8 · 1
r! + (r+4)2

(r+5)!

<
(
c
b

)(i+2)/8 · 1
r!

.
If x < 0, then x = −a(x,r)

r! + a(x,r+1)
(r+1)! − a(x,r+2)

(r+2)! + a(x,r+3)
(r+3)! + z where

α(z) ≥ r + 4. By Lemma 2.5, − (r+4)2

(r+5)! < z < (r+5)2

(r+6)! and so

−
(
c
b

)(i+2)/8 · 1
r! < −

(
c
b

)(i+1)/8 · 1
r! −

(r+4)2

(r+5)!

< x

< −
(
c
b

)i/8 · 1
r! + (r+5)2

(r+6)!

< −
(
c
b

)(i−1)/8 · 1
r!

.

Definition 2.9. Let F ∈ Pf (Z \ {0}) and let ξ = max({3} ∪ {|b| : b ∈ F}).

T =
{
〈r, t0, t1, t2, t3〉 : r ∈ N , 1

r <
( ξ
ξ−1

)1/8 − 1 , 1
r <

(
1
ξ

)2
,

t0 ∈ {1, 2, . . . , r − 1}, and for j ∈ {1, 2, 3} ,
tj ∈ {0, 1, . . . , r + j − 1}

}
If x ∈ T \ {0}, then α(x) = 〈α(x), a(x, α(x)), a(x, α(x) + 1), a(x, α(x) +
2), a(x, α(x) + 3)〉.

Note that if 1
α(x) <

( ξ
ξ−1

)1/8 − 1 and 1
α(x) <

(
1
ξ

)2, then α(x) ∈ T .

Theorem 2.10. Let F ∈ Pf (Z \ {0}) and let ξ = max({3} ∪ {|b| : b ∈ F}).
There is a finite coloring ψ of T such that, if x and y have small negative
factorial reprentations, 1

α(x)−2 <
( ξ
ξ−1

)1/8 − 1, 1
α(x)−2 <

(
1
ξ

)2, 2ξ < α(x),
1

α(y)−2 <
( ξ
ξ−1

)1/8 − 1, 1
α(y)−2 <

(
1
ξ

)2, 2ξ < α(y), ψ
(
α(x)

)
= ψ

(
α(y)

)
, and b

and c are distinct members of F , then ψ
(
α(bx)

)
6= ψ

(
α(cy)

)
.

Proof. Given 〈r, t0, t1, t2, t3〉 and 〈n, s0, s1, s2, s3〉 in T , agree that

ψ(〈r, t0, t1, t2, t3〉) = ψ(〈n, s0, s1, s2, s3〉)
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if and only if

(1) r ≡ n (mod 4) and
(2) if b, c ∈ F and either 0 < b < c or c < b < 0, then

(a) if i, j ∈ ω,
(
c
b

)i/8 ≤ r <
(
c
b

)(i+1)/8, and
(
c
b

)j/8 ≤ n <
(
c
b

)(j+1)/8,
then i ≡ j (mod 16);

(b) if i, j ∈ ω,
(
c
b

)i/8 ≤ r − 1 <
(
c
b

)(i+1)/8, and
(
c
b

)j/8 ≤ n − 1 <(
c
b

)(j+1)/8, then i ≡ j (mod 16);

(c) if i, j ∈ ω,
(
c
b

)i/8 ≤ r + 1 <
(
c
b

)(i+1)/8, and
(
c
b

)j/8 ≤ n + 1 <(
c
b

)(j+1)/8, then i ≡ j (mod 16); and

(d) if i, j ∈ Z,
(
c
b

)i/8 · 1
r! ≤

t0
r! −

t1
(r+1)! + t2

(r+2)! −
t3

(r+3)! <
(
c
b

)(i+1)/8 · 1
r!

and
(
c
b

)j/8 · 1
n! ≤

s0
n! −

s1
(n+1)! +

s2
(n+2)! −

s3
(n+3)! <

(
c
b

)(i+1)/8 · 1
n! , then

i ≡ j (mod 16).

Now suppose we have x, y, b, and c as in the statement of the theorem
except that ψ

(
α(bx)

)
= ψ

(
α(cy)

)
. Let r = α(x) and n = α(y). Since r ≡

n (mod 2), we have that x and y have the same sign. Also, since α(bx) ≡
α(cy) (mod 2) we have that b and c have the same sign. We assume without
loss of generality that either 0 < b < c or c < b < 0. And since α(bx) ≡
α(cy) (mod 4) we have by Lemma 2.6 that

(1) if 0 < b < c, then

(a) α(bx) = r and α(cy) = n or
(b) α(bx) = r − 2 and α(cy) = n− 2; and

(2) if c < b < 0, then

(a) α(bx) = r + 1 and α(cy) = n+ 1 or
(b) α(bx) = r − 1 and α(cy) = n− 1.

Pick i and j in Z such that(
c
b

)i/8 · 1
r! <

a(x,r)
r! − a(x,r+1)

(r+1)! + a(x,r+2)
(r+2)! − a(x,r+3)

(r+3)! <
(
c
b

)(i+1)/8 · 1
r!

and (
c
b

)j/8 · 1
n! <

a(y,n)
n! − a(y,n+1)

(n+1)! + a(y,n+2)
(n+2)! − a(y,n+3)

(n+3)! <
(
c
b

)(j+1)/8 · 1
n! .

By Lemma 2.8,(
c
b

)(i−1)/8 · 1
r! < |x| <

(
c
b

)(i+2)/8 · 1
r! and

(
c
b

)(j−1)/8 · 1
n! < |y| <

(
c
b

)(j+2)/8 · 1
n!
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so

(∗)
(
c
b

)(i−j−3)/8 · n!
r! <

x
y <

(
c
b

)(i−j+3)/8 · n!
r! .

We consider four cases.
Case 1a. 0 < b < c, α(bx) = r, and α(cy) = n.
Pick p and q in Z such that

(
c
b

)p/8 · 1
r! <

a(bx,r)
r! − a(bx,r+1)

(r+1)! + a(bx,r+2)
(r+2)! − a(bx,r+3)

(r+3)! <
(
c
b

)(p+1)/8 · 1
r!

and(
c
b

)q/8 · 1
n! <

a(cy,n)
n! − a(cy,n+1)

(n+1)! + a(cy,n+2)
(n+2)! − a(cy,n+3)

(n+3)! <
(
c
b

)(q+1)/8 · 1
n! .

By Lemma 2.8,

(
c
b

)(p−1)/8 · 1
r! < |bx| <

(
c
b

)(p+2)/8 · 1
r! and(

c
b

)(q−1)/8 · 1
n! < |cy| <

(
c
b

)(q+2)/8 · 1
n!

so (
c
b

)(p−q−3)/8 · n!
r! <

bx
cy <

(
c
b

)(p−q+3)/8 · n!
r!

and thus (
c
b

)(p−q+5)/8 · n!
r! <

x
y <

(
c
b

)(p−q+11)/8 · n!
r! .

Combining the last inequalities with (∗) we get that i− j − 3 < p− q + 11
and p − q + 5 < i − j + 3 so −14 < (p − q) − (i − j) < −2, which is a
contradiction since (p− q)− (i− j) ≡ 0 (mod 16).

Case 1b. 0 < b < c, α(bx) = r − 2, and α(cy) = n− 2.
Pick p and q in Z such that

(
c
b

)p/8 · 1
(r−2)! <

a(bx,r−2)
(r−2)! − a(bx,r−1)

(r−1)! + a(bx,r)
r! − a(bx,r+1)

(r+1)! <
(
c
b

)(p+1)/8 · 1
(r−2)!

and(
c
b

)q/8 · 1
(n−2)! <

a(cy,n−2)
(n−2)! − a(cy,n−1)

(n−1)! + a(cy,n)
n! − a(cy,n+1)

(n+1)! <
(
c
b

)(q+1)/8 · 1
(n−2)!

By Lemma 2.8,

(
c
b

)(p−1)/8 · 1
(r−2)! < |bx| <

(
c
b

)(p+2)/8 · 1
(r−2)! and(

c
b

)(q−1)/8 · 1
(n−2)! < |cy| <

(
c
b

)(q+2)/8 · 1
(n−2)!
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so (
c
b

)(p−q−3)/8 · (n−2)!
(r−2)! <

bx
cy <

(
c
b

)(p−q+3)/8 · (n−2)!
(r−2)!

and thus

(∗∗)
(
c
b

)(p−q+5)/8 · (n−2)!
(r−2)! <

x
y <

(
c
b

)(p−q+11)/8 · (n−2)!
(r−2)! .

Pick u, v, w, and z in ω such that
(
c
b

)u/8 ≤ n ≤
(
c
b

)(u+1)/8,
(
c
b

)v/8 ≤ r ≤(
c
b

)(v+1)/8,
(
c
b

)w/8 ≤ n−1 ≤
(
c
b

)(w+1)/8, and
(
c
b

)z/8 ≤ r−1 ≤
(
c
b

)(z+1)/8. Then(
c
b

)(u−v−1)/8
< n

r <
(
c
b

)(u−v+1)/8 and
(
c
b

)(w−z−1)/8
< n−1

r−1 <
(
c
b

)(w−z+1)/8.
Combining (∗) and (∗∗) we have

(
c
b

)(p−q+11)/8 · (n−2)!
(r−2)! > x

y

>
(
c
b

)(i−j−3)/8 · (n−2)!
(r−2)! ·

n−1
r−1 ·

n
r

>
(
c
b

)(i−j−3)/8 ·
(
c
b

)(w−z−1)/8 ·
(
c
b

)(u−v−1)/8 · (n−2)!
(r−2)!

and(
c
b

)(p−q+5)/8 · (n−2)!
(r−2)! < x

y

<
(
c
b

)(i−j+3)/8 · (n−2)!
(r−2)! ·

n−1
r−1 ·

n
r

<
(
c
b

)(i−j+3)/8 ·
(
c
b

)(w−z+1)/8 ·
(
c
b

)(u−v+1)/8 · (n−2)!
(r−2)! .

So we deduce that 0 < (i − j) + (w − z) + (u − v) − (p − q) < 16, while
(i− j) + (w − z) + (u− v)− (p− q) ≡ 0 (mod 16), a contradiction.

The proofs of Case 2a (namely c < b < 0, α(bx) = r + 1, and α(cy) =
n+1) and Case 2b (namely c < b < 0, α(bx) = r−1, and α(cy) = n−1) are
very similar to the proof of Case 1b. We leave the details to the reader.

We now turn our attention to coloring based on the least significant
digits using the small negative factorial expansions.

Lemma 2.11. Let x ∈ T \ {0}. Then δ(x) is the smallest positive integer
m such that m!x ∈ Z.

Proof. Trivially δ(x)!x ∈ Z. Also, (δ(x)−1)!x = k+ a(x,δ(x))
δ(x) for some integer

k.

Lemma 2.12. Let x 6= 0 and let b ∈ Z \ {0}. If x and bx both have small
negative factorial representations, then δ(x) ≥ δ(bx) ≥ δ(x)− |b|.
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Proof. Let m = δ(bx). By Lemma 2.11, m!bx ∈ Z. Now

(m+ 1)(m+ 2) . . . (m+ |b|) = br

for some r ∈ Z so (m + |b|)!x = m!brx ∈ Z and thus by Lemma 2.11,
δ(x) ≤ m+ |b|.

Definition 2.13. Let F ∈ Pf (Z\{0}) and let ξ = max({3}∪{|b| : b ∈ F}).

S =
{
〈l, s0, s1, . . . , sξ〉 : l ∈ N , l > 2ξ, for i ∈ {0, 1, . . . , ξ − 1} ,

si ∈ {0, 1, . . . , l − ξ + i− 1} ,
and sξ ∈ {1, 2, . . . , l − 1}

}
.

If x ∈ T \ {0} and δ(x) > 2ξ, then

δ(x) = 〈δ(x), a(x, δ(x)− ξ), a(x, δ(x)− ξ + 1), . . . , a(x, δ(x))〉 .

Note that δ(x) ∈ S.

Lemma 2.14. Let F ∈ Pf (Z \ {0}) and let ξ = max({3} ∪ {|b| : b ∈ F}).
Assume that b and c are in F with b < c (not necessarily |b| < |c|). There
is a coloring τ of S in |b| + |c| + 3 colors such that, if x, bx, and cx have
small negative factorial representations, δ(bx) > ξ, and δ(cx) > ξ, then
τ
(
δ(bx)

)
6= τ

(
δ(cx)

)
.

Proof. We define a directed graph on S such that, given ~s = 〈l, s0, s1, . . . , sξ〉
and ~r = 〈n, r0, r1, . . . , rξ〉 in S, there is an edge from ~s to ~r if and only if n = l
and there is some x such that x, bx, and cx have small negative factorial
representations with δ(bx) > 2ξ and δ(cx) > 2ξ, δ(bx) = ~s, and δ(cx) = ~r.

We will show that this graph has no loops and given a vertex ~s, the out
degree is at most |b|+ 1 and the in degree is at most |c|+ 1. One can then
color the vertices one at a time giving each vertex a color which no adjacent
vertex has.

So suppose first we have an edge from ~s = 〈l, s0, s1, . . . , sξ〉 to itself.
Pick x such that δ(bx) = δ(cx) = l and for t ∈ {l − ξ, l − ξ + 1, . . . , l},
st−l+ξ = a(bx, t) = a(cx, t). Let w =

∑l
t=l−ξ

st−l+ξ

t! (−1)t. Then

bx =
∑l−ξ−1
t=2

a(bx,t)
t! (−1)t + w and cx =

∑l−ξ−1
t=2

a(cx,t)
t! (−1)t + w

so bx = u
(l−ξ−1)! + w and cx = v

(l−ξ−1)! + w for some u and v in Z. Then
(c− b)x = v−u

(l−ξ−1)! and thus

x =
(v − u)(l − ξ)(l − ξ + 1) · · · (l − ξ + c− b− 1)

(c− b)(l − ξ + c− b− 1)!
.
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So, since c− b divides l− ξ+ i for some i ∈ {0, 1, . . . , c− b− 1}, we have x =
z

(l−ξ+c−b−1)! for some z ∈ Z. Therefore by Lemma 2.11, δ(x) ≤ l−ξ+c−b−1.
Also, l = δ(bx) ≤ δ(x) ≤ l − ξ + c− b− 1 so ξ ≤ c− b− 1, a contradiction.

The proofs that the out degree of ~s is at most |b|+1 and the in degree of
~s is at most |c|+1 are identical, so we will do only the first. Suppose instead
we have x1, x2, . . . , x|b|+2, each with small negative factorial representations
such that

(1) for each j ∈ {1, 2, . . . , |b|+ 2}, δ(bxj) = ~s and
(2) if j and n are distinct members of {1, 2, . . . , |b| + 2}, then δ(cxj) 6=

δ(cxn).

Let s =
∑ξ
i=0

si

(l−ξ+i)!(−1)l−ξ+i. Then for each j ∈ {1, 2, . . . , |b| + 2},
bxj =

∑l−ξ−1
t=2

a(bxj ,t)
t! (−1)t + s.

For j ∈ {1, 2, . . . , |b| + 2}, let yj = xj −
∑l−ξ−1
t=2

a(xj ,t)
t! (−1)t. Then

byj = bxj − b ·
∑l−ξ−1
t=2

a(xj ,t)
t! (−1)t =

∑l−ξ−1
t=2

a(bxj ,t)−a(xj ,t)
t! (−1)t + s. Let

z =
∑l−ξ−1
t=2

a(bxj ,t)−a(xj ,t)
t! (−1)t. Since (l − ξ − 1)!z ∈ Z we have by Lemma

2.11 that δ(z) ≤ l − ξ − 1. Therefore δ(byj) = ~s = δ(bxj). Similarly
δ(cyj) = δ(cxj) for each j ∈ {1, 2, . . . , |b|+ 2}.

Let j ∈ {1, 2, . . . , |b|+2}. By Lemma 2.6, α(byj) ≥ α(yj)− 2 ≥ l− ξ− 2.
If b > 0 and α(yj) = l − ξ, then(

a(byj , l − ξ − 2), a(byj , l − ξ − 1)
)
∈

{(0, 0), (1, l − ξ − 2), (1, l − ξ − 3), . . . , (1, l − ξ − b)}

by Lemma 2.7. If α(yj) = l − ξ + 1, then by the same lemma,

(
a(byj , l − ξ − 2), a(byj , l − ξ − 1)

)
∈ {(0, 0), (0, 1)} ,

while if α(yj) ≥ l − ξ + 2, then
(
a(byj , l − ξ − 2), a(byj , l − ξ − 1)

)
= (0, 0).

There are thus a total of |b| + 1 possibilities for
(
a(byj , l − ξ − 2),

a(byj , l − ξ − 1)
)
.

If b < 0, then by Lemma 2.7,

(
a(byj , l − ξ − 2), a(byj , l − ξ − 1)

)
∈ {(0, 0), (0, 1), . . . , (0,−b)}

so there are again a total of |b|+ 1 possibilities.
Therefore there exist j and n, distinct members of {1, 2, . . . , |b|+2}, such

that
(
a(byj , l− ξ− 2), a(byj , l− ξ− 1)

)
=

(
a(byn, l− ξ− 2), a(byn, l− ξ− 1)

)
.
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Now

byj =
l−ξ−1∑
t=l−ξ−2

a(byj , t)
t!

(−1)t + s =
l−ξ−1∑
t=l−ξ−2

a(byn, t)
t!

(−1)t + s = byn

so yj = yn and thus

δ(cxj) = δ(cyj) = δ(cyn) = δ(cxn) ,

a contradiction.

Theorem 2.15. Let F ∈ Pf (Z \ {0}) and let ξ = max({3} ∪ {|b| : b ∈ F}).
There is a finite coloring τ of S such that, for any distinct b and c in F and
any x such that x, bx, and cx have small negative factorial representations,
δ(bx) > ξ, and δ(cx) > ξ, one has τ

(
δ(bx)

)
6= τ

(
δ(cx)

)
.

Proof. For each pair of distinct elements b and c of F with b < c, pick a
finite coloring τb,c of S as guaranteed by Lemma 2.14. Define a coloring τ
of S by for ~s and ~t in S, τ(~s ) = τ(~t ) if and only if for each pair of distinct
elements b and c of F with b < c, τb,c(~s ) = τb,c(~t ).

3. Separating linear expressions in βQ

This section is devoted to a proof of Theorem 3.3 below. We will assume
throughout that we have m and k in N and compressed sequences ~a =
〈a1, a2, . . . , am〉 and ~b = 〈b1, b2, . . . , bk〉 in Z \ {0}. We let A = {a1, . . . , am},
B = {b1, . . . , bk}, and ξ = max({3} ∪ {|b| : b ∈ A ∪B}). Recall that

T = {x ∈ Q : x has a small negative factorial representation} .

For x, y ∈ T \ {0}, we write x � y if and only if δ(x) + ξ < α(y). (Note
that if x� y, then x > y. We write x� y because in the constructions y is
chosen after x.)

Definition 3.1. S0 =
⋂
ε>0 c`βQ

(
(−ε, ε) ∩ Q

)
\ {0}. For x ∈ T \ {0}, Cx =

{y ∈ T \ {0} : x� y}.

Lemma 3.2. S0 is a compact subsemigroup of (βQ,+). If c ∈ Z \ {0} and
r ∈ S0, then cr ∈ S0 and cr is an idempotent if r is an idempotent. If
x ∈ T \ {0} and r ∈ S0, then Cx ∈ r.
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Proof. Given p, q ∈ S0 and 0 < ε < 1
4 ,

(− ε
2 ,

ε
2) ∩Q ⊆ {x ∈ T : −x+

(
(−ε, ε) ∩Q

)
∈ q}

so (−ε, ε)∩Q ∈ p+ q. Given c ∈ Z \ {0}, r ∈ S0, and 0 < ε < 1
4 , (− ε

|c| ,
ε
|c|) ⊆

c−1(−ε, ε) so (−ε, ε)∩Q ∈ cr. It is routine to verify that cr is an idempotent
when r is an idempotent.

For the final conclusion let x ∈ T \ {0}, pick n ∈ N such that 2n >
δ(x)+ξ, and let ε =

∑∞
t=n

2t
(2t+1)! . Then by Lemma 2.3, (−ε, ε)∩Q ⊆ Cx.

Recall that we have defined (with F = A ∪B) ξ,

T =
{
〈r, t0, t1, t2, t3〉 : r ∈ N , 1

r <
( ξ
ξ−1

)1/8 − 1 , 1
r <

(
1
ξ

)2
,

t0 ∈ {1, 2, . . . , r − 1}, and for j ∈ {1, 2, 3} ,
tj ∈ {0, 1, . . . , r + j − 1}

}
,

and

S =
{
〈l, s0, s1, . . . , sξ〉 : l ∈ N , l > 2ξ, for i ∈ {0, 1, . . . , ξ − 1} ,

si ∈ {0, 1, . . . , l − ξ + i− 1} ,
and sξ ∈ {1, 2, . . . , l − 1}

}
.

The proof of the following theorem uses a gap counting technique based
on that in [3].

Theorem 3.3. Assume that~b is not a rational multiple of ~a. There is a finite
coloring Γ of T \{0} such that there do not exist idempotents p, q ∈ S0 and a
color class D such that D ∈ a1p+a2p+. . .+amp and D ∈ b1q+b2q+. . .+bkq.

Proof. Assume without loss of generality that m ≤ k. Note also that if m =
k = 1, then ~b is a rational multiple of ~a, so we may assume that k > 1. Let ψ
and τ be the colorings guaranteed by Theorems 2.10 and 2.15 respectively.
We may assume that we have w ∈ N such that ψ : T → {1, 2, . . . , w} and
τ : S → {1, 2, . . . , w}

Given r ∈ S0 and c ∈ A ∪B, pick i(r, c) and j(r, c) in {1, 2, . . . , w} such
that

{x ∈ T \ {0} : ψ
(
α(cx)

)
= i(r, c) and τ

(
δ(cx)

)
= j(r, c)} ∈ r

and note that

{x ∈ T \ {0} : ψ
(
α(x)

)
= i(r, c) and τ

(
δ(x)

)
= j(r, c)} ∈ cr .
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Note also that if c, d ∈ A ∪ B and c 6= d, then i(r, c) 6= i(r, d) and j(r, c) 6=
j(r, d).

Definition 3.4. For x ∈ T \ {0}, let G(x) =

{(t, u, v) : t ∈ supp(x) \ {δ(x)} and if s = min{η ∈ supp(x) : η > t} ,
then τ(〈t, a(x, t− ξ), a(x, t− ξ + 1), . . . , a(x, t)〉) = u, and
ψ(〈s, a(x, s), a(x, s+ 1), a(x, s+ 2), a(x, s+ 3)〉) = v} .

For x ∈ T \ {0} and (u, v) ∈ {1, 2, . . . , w}2, let Gu,v(x) = {t ∈ N :
(t, u, v) ∈ G(x)} and let ϕu,v ∈ {−k,−k+1, . . . , k−1, k} such that ϕu,v(x) ≡
|Gu,v(x)| (mod 2k + 1). Let ϕ̃u,v : β(T \ {0}) → {−k,−k + 1, . . . , k − 1, k}
be the continuous extension of ϕu,v.

We embark on a sequence of lemmas that will allow us to compute ϕ̃u,v
at certain points.

Lemma 3.5. Let x, y ∈ T \ {0}, let u, v ∈ {1, 2, . . . , w}, and assume that
x� y. Then ϕu,v(x+ y) ≡ ϕu,v(x) + ϕu,v(y) + h (mod 2k + 1), where

h =

{
1 if u = τ

(
δ(x)

)
and v = ψ

(
α(y)

)
;

0 otherwise.

Proof. Gu,v(x+ y) = Gu,v(x) ∪Gu,v(y) ∪H where

H =

{
{δ(x)} if u = τ

(
δ(x)

)
and v = ψ

(
α(y)

)
;

∅ otherwise.

Lemma 3.6. Let r be an idempotent in S0, let u, v ∈ {1, 2, . . . , w}, and let
c ∈ A∪B. If u = j(r, c) and v = i(r, c), then ϕ̃u,v(cr) = −1 and ϕ̃u,v(cr) = 0
otherwise.

Proof. Let g = ϕ̃u,v(cr) and let E = {x ∈ T \ {0} : ϕu,v(x) = g}. Then
E ∈ cr so, since cr is an idempotent, E? = {z ∈ E : −z + E ∈ cr} ∈ cr.
Pick x ∈ E? such that τ

(
δ(x)

)
= j(r, c). Pick y ∈ E ∩ (−x + E) ∩ Cx such

that ψ
(
α(y)

)
= i(r, c). By Lemma 3.5, g = ϕu,v(x+y) ≡ ϕu,v(x)+ϕu,v(y)+

h (mod 2k + 1), where

h =

{
1 if u = τ

(
δ(x)

)
and v = ψ

(
α(y)

)
;

0 otherwise.

Thus g ≡ −h (mod 2k + 1) as required.
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Lemma 3.7. Let z ∈ T , let c ∈ A ∪ B, and let r ∈ S0. Then
{x ∈ T \ {0} : τ

(
δ(x)

)
= j(r, c)} ∈ z + cr.

Proof. Let E = {x ∈ T \ {0} : τ
(
δ(x)

)
= j(r, c)}. Then E ∈ cr. We claim

that for all x ∈ T , −x + E ∈ cr. So let x ∈ T . If x = 0, the conclusion is
immediate so assume that x 6= 0. Then Cx ∩ E ⊆ −x+ E.

Lemma 3.8. Let t ∈ {1, 2, . . . , k}, let ~c = 〈c1, c2, . . . , ct〉 be a compressed
sequence in A ∪ B, and let r be an idempotent in S0. For d ∈ A ∪ B, let
µ(~c, d) = |{s ∈ {1, 2, . . . , t} : cs = d}| and for d, f ∈ A ∪ B, let ν(~c, d, f) =
|{s ∈ {1, 2, . . . , t− 1} : cs = d and cs+1 = f}|. Let u, v ∈ {1, 2, . . . , w}.

(1) If d ∈ A ∪B and (u, v) =
(
j(r, d), i(r, d)

)
, then ϕ̃u,v(c1r+ . . .+ ctr) =

−µ(~c, d).
(2) If d, f ∈ A ∪B, d 6= f , and (u, v) =

(
j(r, d), i(r, f)

)
, then

ϕ̃u,v(c1r + . . .+ ctr) = ν(~c, d, f).
(3) In all other cases ϕ̃u,v(c1r + . . .+ ctr) = 0.

Proof. We proceed by induction on t. Assume first that t = 1. If d, f ∈ A∪B
and d 6= f , then ν(~c, d, f) = 0 so all conclusions follow from Lemma 3.6.

Now assume that t > 1 and the conclusions hold for t − 1. Let ~c ′ =
〈c1, c2, . . . , ct−1〉 and let E1 = {x ∈ T \ {0} : τ

(
δ(x)

)
= j(r, ct−1)}. By

Lemma 3.7, E1 ∈ c1r + . . .+ ct−1r. Let

E2 = {x ∈ T \ {0} : ϕu,v(x) = ϕ̃(c1r + . . .+ ct−1r)} .

Then E2 ∈ c1r + . . .+ ct−1r.
If (u, v) =

(
j(r, d), i(r, d)

)
for some d ∈ A ∪ B, let g = −µ(~c, d). If

(u, v) =
(
j(r, d), i(r, f)

)
, for some d 6= f in A ∪ B, let g = ν(~c, d, f). In all

other cases let g = 0. Let E3 = {x ∈ T \ {0} : ϕu,v(x) = g}. We shall show
that E1 ∩ E2 ⊆ {x ∈ T : −x + E3 ∈ ctr} so that E3 ∈ c1r + . . . + ctr as
required.

Let x ∈ E1 ∩ E2. Let

E4 = Cx ∩ {y ∈ T \ {0} : ψ
(
α(y)

)
= i(r, ct) and ϕu,v(y) = ϕ̃u,v(ctr)} .

Then E4 ∈ ctr so it suffices to show that E4 ⊆ −x+E3. So let y ∈ E4. Then
x� y so by Lemma 3.5, ϕu,v(x+ y) ≡ ϕu,v(x) + ϕu,v(y) + h (mod 2k + 1),
where

h =

{
1 if u = τ

(
δ(x)

)
and v = ψ

(
α(y)

)
;

0 otherwise.
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First assume that (u, v) =
(
j(r, d), i(r, d)

)
for some d ∈ A ∪ B. Then

ϕu,v(x) = ϕ̃u,v(c1r + . . .+ ct−1r) = −µ(~c ′, d). Also τ
(
δ(x)

)
= j(r, ct−1) and

ψ
(
α(y)

)
= i(r, ct) so one cannot have τ

(
δ(x)

)
= u and ψ

(
α(y)

)
= v since

that would imply that ct−1 = d = ct, while ~c is a compressed sequence.
Thus h = 0. If (u, v) =

(
j(r, ct), i(r, ct)

)
, then µ(~c, ct) = µ(~c ′, ct) + 1 and

by Lemma 3.6, ϕu,v(y) = ϕ̃u,v(ctr) = −1. If (u, v) 6=
(
j(r, ct), i(r, ct)

)
, then

µ(~c, ct) = µ(~c ′, ct) and by Lemma 3.6, ϕu,v(y) = ϕ̃u,v(ctr) = 0. In either
case ϕu,v(x+ y) = g as required.

Next assume that (u, v) =
(
j(r, d), i(r, f)

)
for some d 6= f in A∪B. Then

ϕu,v(x) = ϕ̃u,v(c1r + . . .+ ct−1r) = ν(~c ′, d, f). Also τ
(
δ(x)

)
= j(r, ct−1) and

ψ
(
α(y)

)
= i(r, ct) so one cannot have (u, v) =

(
j(r, ct), i(r, ct)

)
since that

would imply that d = f . Consequently, ϕu,v(y) = ϕ̃u,v(ctr) = 0. If d = ct−1

and f = ct, then ν(~c, d, f) = ν(~c ′, d, f) + 1 and h = 1. If (d, f) 6= (ct−1, ct),
then ν(~c, d, f) = ν(~c ′, d, f) and h = 0. In either case ϕu,v(x + y) = g as
required.

Finally assume that for all d ∈ A∪B, (u, v) 6=
(
j(r, d), i(r, d)

)
and for all

distinct d and f in A∪B, (u, v) 6=
(
j(r, d), i(r, f)

)
. Then ϕu,v(x) = ϕu,v(y) =

h = 0.

Lemma 3.9. Assume that p and q are idempotents in S0 and for all u, v ∈
{1, 2, . . . , w}, ϕ̃u,v(a1p+ . . .+ amp) = ϕ̃u,v(b1q+ . . .+ bkq). Let µ be defined
as in Lemma 3.8. There is a function γ : A 1-1−→onto B such that

(1) for all c ∈ A, µ(~a, c) = µ
(~b, γ(c)) and

(2) for all c ∈ A and all d ∈ B, the following statements are equivalent.

(a) γ(c) = d;

(b) j(p, c) = j(q, d);

(c) i(p, c) = i(q, d);

(d) i(p, c) = i(q, d) and j(p, c) = j(q, d).

Proof. Let c ∈ A. We claim there is exactly one d ∈ B such that i(p, c) =
i(q, d) and j(p, c) = j(q, d). There is at most one such d since if j(q, d) =
j(q, f), then d = f . Let u = j(p, c) and v = i(p, c). By Lemma 3.8,

ϕu,v(a1p+ . . .+ amp) = −µ(~a, c) so ϕu,v(b1q + . . .+ bkq) = −µ(~a, c) .

Now −µ(~a, c) ∈ {−m,−m + 1, . . . ,−1} ⊆ {−k,−k + 1, . . . ,−1} while for
any d 6= f in B, ν(~b, d, f) ∈ {0, 1, . . . , k}. Therefore, by Lemma 3.8, there is
some d ∈ A∪B such that (u, v) =

(
j(q, d), i(q, d)

)
and ϕu,v(b1q+ . . .+bkq) =

−µ(~b, d). Since µ(~a, c) > 0, we must have d ∈ B.
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We define γ(c) to be the unique d ∈ B such that i(p, c) = i(q, d)
and j(p, c) = j(q, d). Notice that the argument above also establishes that
µ(~a, c) = µ

(~b, γ(c)).
Trivially γ is injective. The argument above starting with d ∈ B shows

that γ is surjective.
Now we establish (2). The only nontrivial implications are that (b) im-

plies (a) and that (c) implies (a), and these proofs are essentially the same.
If i(p, c) = i(q, d), then, since we also know i(p, c) = i

(
q, γ(c)

)
we conclude

that d = γ(c).

Lemma 3.10. Assume that p and q are idempotents in S0 and for all u, v ∈
{1, 2, . . . , w}, ϕ̃u,v(a1p+ . . .+ amp) = ϕ̃u,v(b1q + . . .+ bkq). Then m = k.

Proof. Let µ be defined as in Lemma 3.8. Then

m =
∑
c∈A µ(~a, c) =

∑
c∈A µ

(~b, γ(c)) =
∑
d∈B µ(~b, d) = k .

We now introduce some notation to assist us in our counting of gaps.

Definition 3.11. Let x ∈ T \ {0}.

(a) P (x) =
{
(u, v) ∈ {1, 2, . . . , w}2 : ϕu,v(x) ∈ {1, 2, . . . , k}

}
.

(b) GP (x) = {(t, u, v) ∈ G(x) : (u, v) ∈ P (x)}.
(c) For t ∈ N, Rt(x) = {(t′, u′, v′) ∈ GP (x) : t′ < t}.
(d) For l ∈ {0, 1, . . . , k − 1}, Sl(x) = {(t, u, v) ∈ GP (x) : |Rt(x)| ≡

l (mod 2k + 1)}.
(e) For l ∈ {0, 1, . . . , k − 1}, Tl(x) = {(u, v) ∈ {1, 2, . . . , w}2 :

|{t ∈ N : (t, u, v) ∈ Sl(x)}| ≡ 1 (mod 2k + 1)}.

We now define a finite coloring Γ of T \{0} by agreeing that Γ(x) = Γ(y)
if and only if

(1) τ
(
δ(x)

)
= τ

(
δ(y)

)
,

(2) ψ
(
α(x)

)
= ψ

(
α(y)

)
,

(3) ϕu,v(x) = ϕu,v(y) for all (u, v) ∈ {1, 2, . . . , w}2, and
(4) Tl(x) = Tl(y) for all l ∈ {0, 1, . . . , k − 1}.

We claim that Γ is as required for Theorem 3.3. So suppose instead
that we have a color class D of Γ and idempotents p, q ∈ S0 such that
D ∈ a1p+ a2p+ . . .+ amp and D ∈ b1q + b2q + . . .+ bkq. Then ϕ̃u,v(a1p+
a2p+ . . .+ amp) = ϕ̃u,v(b1q + b2q + . . .+ bkq) for all (u, v) ∈ {1, 2, . . . , w}2

so by Lemma 3.10, we have that m = k.
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Lemma 3.12. For all x ∈ D,

P (x) =
{(
j(p, al), i(p, al+1)

)
: l ∈ {1, 2, . . . , k − 1}

}
=

{(
j(q, bl), i(q, bl+1)

)
: l ∈ {1, 2, . . . , k − 1}

}
.

Proof. Let x ∈ D. It suffices to establish the first equality. Let (u, v) ∈
{1, 2, . . . , w}2 and let g = ϕu,v(x). Since ϕu,v is constant on D, ϕ̃u,v(a1p +
a2p + . . . + akp) = g. By Lemma 3.8, ϕu,v(x) ∈ {1, 2, . . . , k} if and only if
(u, v) =

(
j(p, al), i(p, al+1)

)
for some l ∈ {1, 2, . . . , k − 1}.

Definition 3.13. Let z ∈ T .

(a) Q =
{(
j(p, al), i(p, al+1)

)
: l ∈ {1, 2, . . . , k − 1}

}
.

(b) For (u, v) ∈ {1, 2, . . . , w}2 and l ∈ {−k,−k + 1, . . . , k − 1, k},
γl,u,v(z) = {t ∈ N : (t, u, v) ∈ G(z) and |Rt(z)| ≡ l (mod 2k + 1)}.

Note that Q =
{(
j(q, bl), i(q, bl+1)

)
: l ∈ {1, 2, . . . , k − 1}

}
by Lemma

3.12.

Lemma 3.14. Let s ∈ {1, 2, . . . , k}.

(1)
(
j(p, as), i(p, as)

)
/∈ Q.

(2) If (u, v) ∈ Q, then ϕ̃u,v(asp) = 0.

Proof. (1) Suppose
(
j(p, as), i(p, as) ∈ Q so for some l ∈ {1, 2, . . . , k},(

j(p, as), i(p, as)
)

=
(
j(p, al), i(p, al+1)

)
. But then al = as = al+1 while ~a

is a compressed sequence.
(2) This follows immediately from (1) and Lemma 3.6.

Lemma 3.15. There exists P ∈ p such that for all (u, v) ∈ Q, all s ∈
{1, 2, . . . , k}, all l ∈ {−k,−k+1, . . . , k−1, k}, and all ν ∈ P , |γl,u,v(asν)| ≡
0 (mod 2k + 1).

Proof. Pick P ∈ p such that for all (u, v) ∈ Q, all s ∈ {1, 2, . . . , k}, all
l ∈ {−k,−k + 1, . . . , k − 1, k}, and all ν, ν ′ ∈ P ,

|γl,u,v(asν)| ≡ |γl,u,v(asν ′)| (mod 2k + 1) .

We may presume that for all s ∈ {1, 2, . . . , k},

P ⊆ {ν ∈ T \ {0} : ψ
(
α(asν)

)
= i(p, as) and τ

(
δ(asν)

)
= j(p, as)} .

And by Lemma 3.14 we may presume that for all (u, v) ∈ Q and all s ∈
{1, 2, . . . , k}, P ⊆ {ν ∈ T \ {0} : ϕu,v(asν) = 0}.
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Let (u, v) ∈ Q, let s ∈ {1, 2, . . . , k}, and let l ∈ {−k,−k+1, . . . , k−1, k}.
Let z ∈ {−k,−k + 1, . . . , k − 1, k} such that for all ν ∈ P , |γl,u,v(asν)| ≡
z (mod 2k + 1). Since p is an idempotent in S0 we may choose ν � ν ′ in P
such that α(ν) > 2|as| and ν + ν ′ ∈ P .

We claim that γl,u,v(asν) ∩ γl,u,v(asν ′) = ∅. Indeed, if t ∈ γl,u,v(asν) ∩
γl,u,v(asν ′), then t ∈ supp(asν)∩ supp(asν ′), while by Lemmas 2.6 and 2.12,
α(asν ′) > δ(asν). Consequently, it suffices to show that

γl,u,v(asν + asν
′) = γl,u,v(asν) ∪ γl,u,v(asν ′) ,

since then z ≡ z + z (mod 2k + 1). Now

G(asν + asν
′) = G(asν) ∪G(asν ′) ∪

{(
δ(asν), τ(δ(asν)), ψ(α(asν ′))

)}
and

(
δ(asν), τ(δ(asν)), ψ(α(asν ′))

)
=

(
δ(asν), j(p, as), i(p, as)

)
. By Lemma

3.14,
(
j(p, as), i(p, as)

)
/∈ Q. Therefore there is no t such that (t, u, v) =(

δ(asν), j(p, as), i(p, as)
)
. Consequently we have that

γl,u,v(asν + asν
′) =

{t ∈ N : (t, u, v) ∈ G(asν) and |Rt(asν + asν
′)| ≡ l (mod 2k + 1)}

∪{t ∈ N : (t, u, v) ∈ G(asν ′) and |Rt(asν + asν
′)| ≡ l (mod 2k + 1)} .

If (t, u, v) ∈ G(asν), then Rt(asν + asν
′) = Rt(asν) since ν � ν ′. There-

fore, it suffices to show that for (t, u, v) ∈ G(asν ′), |Rt(asν + asν
′)| ≡

|Rt(asν ′)| (mod 2k + 1).
Let (t, u, v) ∈ G(asν ′) be given. By Lemma 3.14

(
j(p, as), i(p, as)

)
/∈ Q

so Rt(asν+asν ′) = Rt(asν)∪Rt(asν ′) so it suffices to show that |Rt(asν)| ≡
0 (mod 2k + 1). We have that

Rt(asν) =
⋃

(u′,v′)∈Q{(t′, u′, v′) : (t′, u′, v′) ∈ G(asν)}
=

⋃
(u′,v′)∈Q{(t′, u′, v′) : t′ ∈ Gu′,v′(asν)} .

Given (u′, v′) ∈ Q, |{(t′, u′, v′) : t′ ∈ Gu′,v′(asν)}| ≡ ϕu′,v′(asν) (mod 2k+1)
and since ν ∈ P , for (u′, v′) ∈ Q, ϕu′,v′(asν) = 0.

We shall complete the proof by showing that there is some x ∈ D such
that for all l ∈ {0, 1, . . . , k − 2},

(†) Tl(x) =
{(
j(p, al+1), i(p, al+2)

)}
Assume that we have done this. Then similarly there exists y ∈ D such

that for all l ∈ {0, 1, . . . , k − 2}, Tl(y) =
{(
j(q, bl+1), i(q, bl+2)

)}
. Since x
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and y are in D, we have for each l ∈ {0, 1, . . . , k − 2}, j(p, al+1) = j(q, bl+1)
and i(p, al+2) = i(q, bl+2). Therefore by Lemma 3.9, for all l ∈ {1, 2, . . . , k},
i(p, al) = i(q, bl).

Pick g ∈ T \ {0} such that for all l ∈ {1, 2, . . . , k}, ψ
(
α(alg)

)
= i(p, al)

and pick z ∈ T \ {0} such that for all l ∈ {1, 2, . . . , k}, ψ
(
α(blz)

)
= i(q, bl).

We are assuming that ~b is not a rational multiple of ~a, so pick the first
s ∈ {2, 3, . . . , k} such that bs/as 6= b1/a1. Now ψ

(
α(a1g)

)
= i(p, a1) =

i(q, b1) = ψ
(
α(b1z)

)
and as/a1 6= bs/b1 so

i(p, as) = ψ
(
α(asg)

)
= ψ

(
α(as

a1
a1g)

)
6= ψ

(
α( bs

b1
b1z)

)
= ψ

(
α(bsz)

)
= i(q, bs) .

This is a contradiction.
To establish (†), pick P ∈ p as guaranteed by Lemma 3.15. We may

presume that for all s ∈ {1, 2, . . . , k},

P ⊆ {ν ∈ T \ {0} : ψ
(
α(asν)

)
= i(p, as) and τ

(
δ(asν)

)
= j(p, as)} .

And by Lemma 3.14 we may presume that for all (u, v) ∈ Q and all s ∈
{1, 2, . . . , k}, P ⊆ {ν ∈ T \ {0} : ϕu,v(asν) = 0}.

Since D ∈ a1p + a2p + . . . + akp and p is an idempotent in S0, pick
ν1 � ν2 � . . . � νk in P such that a1ν1 + a2ν2 + . . . + akνk ∈ D and
let x = a1ν1 + a2ν2 + . . . + akνk. It then suffices to show that for all l ∈
{0, 1, . . . , k − 2}, Tl(x) =

{(
τ(δ(al+1νl+1)), ψ(α(al+2νl+2))

)}
.

Note that if l ∈ {0, 1, . . . , k − 2} and (u, v) ∈ Tl(x), then {t ∈ N :
(t, u, v) ∈ Sl(x)} 6= ∅. Picking t such that (t, u, v) ∈ Sl(x), we have (t, u, v) ∈
GP (x) so (u, v) ∈ P (x) so by Lemma 3.12, (u, v) ∈ Q. Therefore, for l ∈
{0, 1, . . . , k − 2}, Tl(x) = {(u, v) ∈ Q : |{t ∈ N : (t, u, v) ∈ Sl(x)}| ≡
1 (mod 2k + 1)}.

Lemma 3.16. Let l ∈ {0, 1, . . . , k − 2} and let

(t, u, v) =
(
δ(al+1νl+1), τ(δ(al+1νl+1)), ψ(α(al+2νl+2))

)
.

Then (t, u, v) ∈ Sl(x).

Proof. We have by Lemma 3.12 that (u, v) ∈ P (x) so (t, u, v) ∈ GP (x). We
need to show that |Rt(x)| ≡ l (mod 2k + 1). Now

Rt(x) = {(t′, u′, v′) ∈ G(x) : (u′, v′) ∈ Q and t′ < t}
=

{(
δ(asνs), τ(δ(asνs)), ψ(α(as+1νs+1))

)
: s ∈ {1, 2, . . . , l}

}
∪⋃l+1

s=1{(t′, u′, v′) ∈ G(asνs) : (u′, v′) ∈ Q} .
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Given (u′, v′) ∈ Q and s ∈ {1, 2, . . . , l + 1} we have

|{(t′, u′, v′) : (t′, u′, v′) ∈ G(asνs)}| ≡ ϕu′,v′(asνs) (mod 2k + 1)

and ϕu′,v′(asνs) = 0, so |Rt(x)| ≡ l (mod 2k + 1) as required.

Lemma 3.17. Let s ∈ {1, 2, . . . , k}, let (t, u, v) ∈ GP (asνs), and let l ∈
{0, 1, . . . , k − 2}. Then (t, u, v) ∈ Sl(x) if and only if t ∈ γc,u,v(asνs) where
c ∈ {−k, k + 1, . . . , k − 1, k} and c ≡ l − s+ 1 (mod 2k + 1).

Proof. We use the fact from Lemma 3.12 that P (x) = Q. Since (t, u, v) ∈
GP (x), we have that (t, u, v) ∈ Sl(x) if and only if |Rt(x)| ≡ l (mod 2k + 1)
and for any c ∈ {−k, k + 1, . . . , k − 1, k}, t ∈ γc,u,v(asνs) if and only if
|Rt(asνs)| ≡ c (mod 2k + 1).

Also Rt(x) = {(t′, u′, v′) ∈ G(x) : t′ < t and (u′, v′) ∈ Q}. If s = 1, then
Rt(x) = Rt(a1ν1) so |Rt(x)| ≡ l (mod 2k + 1) if and only if |Rt(a1ν1)| ≡
l (mod 2k+ 1). Since l = l− s+ 1, we are done in this case, so assume that
s > 1. Then

Rt(x) = {(t′, u′, v′) ∈ G(x) : t′ < α(asνs) and (u′, v′) ∈ Q}
∪ {(t′, u′, v′) ∈ G(asνs) : t′ < t and (u′, v′) ∈ Q}

= Rδ(as−1νs−1)(x) ∪Rt(asνs)
∪

{(
δ(as−1νs−1), τ(δ(as−1νs−1)), ψ(α(asνs)

)}
.

By Lemma 3.16, |Rδ(as−1νs−1)(x)| ≡ s − 2 (mod 2k + 1), so |Rt(x)| ≡
l (mod 2k + 1) if and only if (s − 2) + 1 + |Rt(asνs)| ≡ l (mod 2k + 1) as
required.

Let l ∈ {0, 1, . . . , k−2} and let (u, v) =
(
τ(δ(al+1νl+1)), ψ(α(al+2νl+2))

)
.

To see that (u, v) ∈ Tl(x), let X = {t ∈ N : (t, u, v) ∈ Sl(x)}. We need to
show that |X| ≡ 1 (mod 2k + 1). By Lemma 3.16, δ(al+1νl+1) ∈ X and
for s ∈ {0, 1, . . . , k − 2} \ {l}, δ(as+1νs+1) /∈ X. For s ∈ {1, 2, . . . , k}, pick
cs ∈ {−k,−k + 1, . . . , k − 1, k} such that cs ≡ l− s+ 1 (mod 2k + 1). Then
by Lemma 3.17, X = {δ(al+1νl+1)} ∪

⋃k
s=1

γcs,u,v(asνs) so by the choice
of P , |X| ≡ 1 (mod 2k + 1) as required. We have thus established that{(
j(p, al+1), i(p, al+2)

)}
⊆ Tl.

To establish the reverse inclusion (thereby completing the proof of (†)
and consequently completing the proof of the theorem), let

(u, v) ∈ Q \
{(
j(p, al+1), i(p, al+2)

)}
.

To see that (u, v) /∈ Tl(x), let X = {t ∈ N : (t, u, v) ∈ Sl(x)}. As before,
for s ∈ {1, 2, . . . , k}, pick cs ∈ {−k,−k + 1, . . . , k − 1, k} such that cs ≡
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l − s + 1 (mod 2k + 1). If (t, u, v) ∈
⋃k
s=1G(asνs), then by Lemma 3.17,

(t, u, v) ∈ X if and only if t ∈
⋃k
s=1

γcs,u,v(asνs). The only other possibility
for (t, u, v) ∈ Sl(x) is

(t, u, v) =
(
δ(as+1νs+1), τ(δ(as+1νs+1)), ψ(α(as+2νs+2))

)
for some s ∈ {0, 1, . . . , k − 2}. But since (u, v) /∈

{(
j(p, al+1), i(p, al+2)

)}
,

s 6= l so by Lemma 3.16, (t, u, v) ∈ Ss 6= Sl. Therefore, by Lemma 3.15,
|X| ≡ 0 (mod 2k + 1) so (u, v) /∈ Tl(x).

4. Separating Milliken-Taylor systems in Q

We begin by showing that it is sufficient to separate Milliken-Taylor sytems
in Q near zero. We will represent the circle group T = R/Z by the points in
[−1

2 ,
1
2).

Lemma 4.1. Let ψ : Q → Z be the nearest integer function defined by
ψ(x) = bx + 1

2c and let ψ̃ : βQ → βZ be its continuous extension. Let
π : Q → T be the natural projection and let π̃ : βQ → T be its continuous
extension. Let S = {p ∈ βQ : π̃(p) = 0}. Then S is a subsemigroup of βQ
which contains the idempotents, −p ∈ S whenever p ∈ S, and the restriction
of ψ̃ to S is a homomorphism.

Proof. Note that, given our representation of T, for x ∈ Q, π(x) = x−ψ(x).
Since π is a homomorphism, we have by [5, Corollary 4.22] that π̃ is a homo-
morphism, so S is a subsemigroup of βQ which contains the idempotents,
and it is immediate that −p ∈ S whenever p ∈ S.

To see that the restriction of ψ̃ to S is a homomorphism, let p, q ∈ S. We
need to show that ψ̃(p + q) = ψ̃(p) + ψ̃(q). Let A = π−1[(−1

4 ,
1
4)] and note

that A ∈ p ∩ q. Since ψ̃(p + q) = ψ̃ ◦ ρq(p) and ψ̃(p) + ψ̃(q) = ρψ̃(q) ◦ ψ̃(p),

it suffices to show that ψ̃ ◦ ρq and ρψ̃(q) ◦ ψ̃ agree on A so let x ∈ A. Since

ψ̃(x+ q) = ψ̃ ◦ λx(q) and ψ̃(x) + ψ̃(q) = λψ̃(x) ◦ ψ̃(q) it suffices to show that

ψ̃ ◦ λx and λψ̃(x) ◦ ψ̃ agree on A, so let y ∈ A. Then ψ(x+ y) = ψ(x) +ψ(y)
as required.

Note that, since −p ∈ S whenever p ∈ S, as a consequence of Lemma
4.1, if a1, a2, . . . , am ∈ Z, p is an idempotent in βQ, and p′ = ψ̃(p), then
ψ̃(a1p+ a2p+ . . .+ amp) = a1p

′ + a2p
′ + . . .+ amp

′.

Theorem 4.2. Let m, k in N and let

~a = 〈a1, a2, . . . , am〉 and ~b = 〈b1, b2, . . . , bk〉
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be compressed sequences in Z \ {0} such that ~b is not a rational multiple of
~a. Let ε > 0 and assume that there is a finite coloring µ of (−ε, ε)∩Q \ {0}
such that there do not exist a color class D of µ and idempotents p and q in
βQ with D ∈ a1p+a2p+ . . .+amp and D ∈ b1q+ b2q+ . . .+ bkq. Then there
is a finite coloring γ of Q \ {0} such that there do not exist a color class D
of γ and idempotents p and q in βQ with D ∈ a1p + a2p + . . . + amp and
D ∈ b1q + b2q + . . .+ bkq.

Proof. Pick by Theorem 1.4 a finite coloring τ of Z \ {0} such that there
do not exist a color class D of τ and sequences 〈xn〉∞n=1 and 〈yn〉∞n=1 with
MT (~a, 〈xn〉∞n=1)∪MT (~b, 〈yn〉∞n=1) ⊆ D. By Theorem 1.5, there do not exist
a color class D of τ and idempotents p and q in βZ with D ∈ a1p + a2p +
. . .+ amp and D ∈ b1q + b2q + . . .+ bkq.

Let ψ be the nearest integer function as in Lemma 4.1. Define a finite
coloring γ of Q \ {0} so that, for x, y ∈ Q \ {0}, γ(x) = γ(y) if and only if
one of

(1) ε ≤ |x| ≤ 1
2 and ε ≤ |y| ≤ 1

2 ;
(2) |x| < ε, |y| < ε, and µ(x) = µ(y); or
(3) |x| > 1

2 , |y| > 1
2 , and τ

(
ψ(x)

)
= τ

(
ψ(y)

)
.

Suppose we have a color class D of γ and idempotents p and q in βQ
with D ∈ a1p+a2p+ . . .+amp and D ∈ b1q+b2q+ . . .+bkq. That color class
cannot be [ε, 1

2 ]∪ [−1
2 ,−ε] since this set does not contain any Milliken-Taylor

systems, which it would have to by virtue of Theorem 1.5. And that color
class cannot be a color class of µ by assumption.

Therefore we have some t in the range of τ such that D = (τ ◦ψ)−1[{t}].
Let p′ = ψ̃(p) and q′ = ψ̃(q). By Lemma 4.1, p′ and q′ are idempotents in βZ
and τ−1[{t}] ∈ a1p

′+a2p
′+. . .+amp′ and τ−1[{t}] ∈ b1q′+b2q′+. . .+bkq′.

Theorem 4.3. Let ~a and ~b be compressed sequences in Z \ {0} such that ~b
is not a rational multiple of ~a. There exists a finite coloring of Q \ {0} such
that there do not exist a color class D and sequences 〈xn〉∞n=1 and 〈yn〉∞n=1

in Q with MT (~a, 〈xn〉∞n=1) ∪MT (~b, 〈yn〉∞n=1) ⊆ D.

Proof. Pick by Theorem 3.3 a finite coloring Γ of T \ {0} such that there
do not exist idempotents p, q ∈ S0 and a color class D such that D ∈ a1p+
a2p+. . .+amp and D ∈ b1q+b2q+. . .+bkq. Let ε =

∑∞
t=1

2t
(2t+1)! . By Lemma

2.3, (−ε, ε)∩Q\{0} ⊆ T \{0} so by Theorem 4.2, there is a finite coloring γ
of Q \ {0} such that there do not exist a color class D of γ and idempotents
p and q in βQ with D ∈ a1p+a2p+ . . .+amp and D ∈ b1q+ b2q+ . . .+ bkq.
By Theorem 1.5, there do not exist a color class D and sequences 〈xn〉∞n=1

and 〈yn〉∞n=1 in Q with MT (~a, 〈xn〉∞n=1) ∪MT (~b, 〈yn〉∞n=1) ⊆ D.
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Corollary 4.4. Let ~a and ~b be compressed sequences in Z \ {0} such that ~b
is not a rational multiple of ~a. There exist a partition {A1, A2} of Q \ {0}
such that there do not exist i ∈ {1, 2} and sequences 〈xn〉∞n=1 and 〈yn〉∞n=1

with MT (~a, 〈xn〉∞n=1) ∪MT (~b, 〈yn〉∞n=1) ⊆ Ai.

Proof. By Theorem 4.3 pick r ∈ N and a partition {D1, D2, . . . , Dr} of
Q \ {0} such that there do not exist i ∈ {1, 2, . . . , r} and sequences 〈xn〉∞n=1

and 〈yn〉∞n=1 in Q with MT (~a, 〈xn〉∞n=1) ∪MT (~b, 〈yn〉∞n=1) ⊆ Di. Let J =
{i ∈ {1, 2, . . . , r} : (∃〈xn〉∞n=1)(MT (~a, 〈xn〉∞n=1) ⊆ Di)}, let A1 =

⋃
i∈J Di,

and let A2 = Q \ (A1 ∪ {0}). Suppose there is a sequence 〈xn〉∞n=1 with
MT (~a, 〈xn〉∞n=1) ⊆ A2. Pick by Theorem 1.3 some i ∈ {1, 2, . . . , r} \ J and
a sum subsystem 〈zn〉∞n=1 of 〈xn〉∞n=1 with MT (~a, 〈zn〉∞n=1) ⊆ Ai. But then,
i ∈ J , a contradiction. Similarly, if there is some sequence 〈yn〉∞n=1 with
MT (~b, 〈yn〉∞n=1) ⊆ A1, there will be some i ∈ J and a sum subsystem 〈zn〉∞n=1

of 〈yn〉∞n=1 with MT (~b, 〈zn〉∞n=1) ⊆ Ai.

As promised in the abstract, we observe that we can allow the entries of
our compressed sequences to be rational.

Corollary 4.5. Let ~a and ~b be compressed sequences in Q \ {0} such that
~b is not a multiple of ~a. There exist a partition {A1, A2} of Q \ {0} such
that there do not exist i ∈ {1, 2} and sequences 〈xn〉∞n=1 and 〈yn〉∞n=1 with
MT (~a, 〈xn〉∞n=1) ∪MT (~b, 〈yn〉∞n=1) ⊆ Ai.

Proof. Pick M ∈ N such that the entries of M~a and M~b are integers.
Pick A1 and A2 as guaranteed by Corollary 4.4 for the compressed se-
quences M~a and M~b. Suppose we have sequences i ∈ {1, 2} and sequences
〈xn〉∞n=1 and 〈yn〉∞n=1 with MT (~a, 〈xn〉∞n=1) ∪ MT (~b, 〈yn〉∞n=1) ⊆ Ai. Then
MT (M~a, 1

M 〈xn〉∞n=1) ∪MT (M~b, 1
M 〈yn〉∞n=1) ⊆ Ai.
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