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The Relationships Among Many Notions

of Largeness for Subsets of a Semigroup

Neil Hindman ∗ Lakeshia Legette Jones † Dona Strauss ‡

Abstract

We deal with 26 notions of largeness in a semigroup. These notions
have their origins in topological dynamics and the algebraic theory of
Stone-Čech compactifications, mostly as applied to Ramsey Theory. We
establish exactly the patterns of implications that must hold among 24 of
these. We also note which of them are partition regular in the sense that
whenever the union of two sets is large, one of them must be large.

1 Introduction

There are several natural notions of size of subsets in a semigroup that are
defined and motivated by topics in topological dynamics. Many of them have
strong combinatorial properties and applications in Ramsey Theory. A few such
notions are thick, syndetic, and AP. We mention these particularly because
they can be defined more simply and possess straightforward examples and
consequences in N, the set of positive integers. A set A in (N,+) is thick if and
only if it has arbitrarily long integer intervals. Further, A ⊆ N is syndetic if and
only if it has bounded gaps, and an AP set if and only if it contains arbitrarily
long arithmetic progressions.

Of great significance is the notion of central , first introduced by Furstenberg
in [7]. His original version defined central sets in N using the notions of proximal
and uniformly recurrent points from topological dynamics. For a set X, we write
Pf (X) for the set of finite nonempty subsets of X.
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Theorem 1.1 (Central Sets Theorem). Let l ∈ N and for each i ∈ {1, 2, . . . , l},
let 〈yi,n〉∞n=1 be a sequence in Z. Let A be a central subset of N. Then there
exist sequences 〈an〉∞n=1 in N and 〈Hn〉∞n=1 in Pf (N) such that

1. for all n,max Hn < min Hn+1 and

2. for all F ∈ Pf (N) and all i ∈ {1, 2, . . . , l},
∑
n∈F (an +

∑
t∈Hn

yi,t) ∈ A.

Proof. [7, Proposition 8.21]

For the statement of the Central Sets Theorem for an arbitrary semigroup,
the reader is referred to [11, §14.4].

Central sets have a nice characterization that can be given in terms of the
algebraic structure of βS, where βS is the Stone-Čech compactification of the
discrete semigroup S. Before providing this characterization, we present neces-
sary details and background information. One can find much greater detail in
[11].

Let (S, ·) be any discrete semigroup and denote its Stone-Čech compactifica-
tion as βS. βS is the set of all ultrafilters on S, where the points of S are iden-
tified with the principal ultrafilters. The basis for the topology is {A : A ⊆ S},
where A = {p ∈ βS : A ∈ p}. The operation of S can be extended to βS
making (βS, ·) a compact, right topological semigroup with S contained in its
topological center. That is, for all p ∈ βS the function ρp : βS → βS is con-
tinuous, where ρp(q) = q · p and for all x ∈ S, the function λx : βS → βS is
continuous, where λx(q) = x · q. For p, q ∈ βS and A ⊆ S, A ∈ p · q if and only
if {x ∈ S : x−1A ∈ q} ∈ p, where x−1A = {y ∈ S : x · y ∈ A}.

Since βS is a compact Hausdorff right topological semigroup, it has a small-
est two sided ideal denoted K(βS), which is the union of all of the minimal right
ideals of S, as well as the union of all of the minimal left ideals of S. Every left
ideal of βS contains a minimal left ideal and every right ideal of βS contains a
minimal right ideal. The intersection of any minimal left ideal and any minimal
right ideal is a group and any two such groups are isomorphic. Any idempotent
p in βS is said to be minimal if and only if p ∈ K(βS). A subset A of S is then
central if and only if there is some minimal idempotent p such that A ∈ p.

We defined the operation in (βS, ·) so that βS is right topological with
S contained in its topological center. We could equally well have defined the
operation so that βS is left topological with S contained in its topological center.
(In fact, that used to be the customary choice of the first named author of this
paper.) We shall denote this operation by �. Then for x, y ∈ S, x� y = x · y,
for all p ∈ βS the function λp : βS → βS is continuous, where λp(q) = p � q,
and for all x ∈ S, the function ρx : βS → βS is continuous, where ρx(q) = q�x.
For p, q ∈ βS and A ⊆ S, A ∈ p � q if and only if {x ∈ S : Ax−1 ∈ p} ∈ q,
where Ax−1 = {y ∈ S : y � x ∈ A}.

If S is commutative, then for any p, q ∈ βS, p�q = q·p, so a minimal left ideal
in (βS, ·) is a minimal right ideal in (βS,�). Consequently, if S is commutative,
then K(βS, ·) = K(βS,�) and the minimal idempotents of (βS, ·) are the same
as the minimal idempotents of (βS,�).
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If S is not commutative, the situation can be vastly different. El-Mabhouh,
Pym, and Strauss [6] showed that if S is the free semigroup on countably many
generators, then there is a subsemigroup H of (βS, ·) such that for all p and
q in H, p � q /∈ H. Anthony [1] showed that for any semigroup S, K(βS, ·) ∩
c`K(βS,�) 6= ∅. On the other hand, Burns [5] showed that if S is the free
semigroup on two generators, then K(βS, ·) ∩ K(βS,�) = ∅. In fact, Burns
showed that any element in c`(K(βS, ·)) ∪ c`(K(βS,�)) is right cancelable in
(βS, ·) or left cancelable in (βS,�). This raised the possibility that members of
minimal idempotents in (βS, ·) might not be members of minimal idempotents
in (βS,�). Thus we are, at least potentially, dealing with two notions of central .
We shall refer to a member of a minimal idempotent in (βS, ·) as “right central”
and a member of a minimal idempotent in (βS,�) as “left central”

We shall deal in this paper with a total of 14 notions of size in a semigroup,
all but one of which have been introduced in other papers and studied because of
their Ramsey Theoretic properties. Of these 14, all but two have distinct right
and left versions. (The exceptions are Prog sets and weak Prog sets, notions
generalizing AP sets in N.)

In Section 2 we introduce the notions and provide a combinatorial and an
algebraic characterization for all but one of them. In Section 3 we derive some
basic facts and establish implications that must hold among the notions. In
Section 4 we show that most of the missing implications are not valid in general.
In Section 5 we establish which of the notions are partition regular.

2 The notions

We start this section by introducing some notation.

Definition 2.1. Let (S, ·) be a semigroup.

(1) NS is the set of sequences in S.

(2) For m ∈ N, Jm =
{(
t(1), t(2), . . . , t(m)

)
∈ Nm : t(1) < t(2) < · · · <

t(m)
}

.

(3) For 〈xn〉∞n=1 ∈ NS, FP (〈xn〉∞n=1) = {
∏
n∈F xn : F ∈ Pf (N)} where∏

n∈F xn is computed in increasing order of indices.

(4) Given l ∈ N, a set B ⊆ S is a length l progression if and only if there exist
a ∈ S2 and d ∈ S such that B =

{
a(1)dta(2) : t ∈ {1, 2, . . . , l}

}
.

(5) Given l ∈ N, a set B ⊆ S is a length l weak progression if and only if there
exist m ∈ N, a ∈ Sm+1, and d ∈ S such that

B =
{
a(1)dta(2)dt · · · a(m)dta(m+ 1) : t ∈ {1, 2, . . . , l}

}
.

In (N,+) a length l progression is a length l arithmetic progression. The
converse is almost true. The set {1 + d, 1 + 2d, . . . , 1 + ld} is not a progression,
but if a > 1, then {a+ d, . . . , a+ ld} is.
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The first notions that we introduce are those that have simple combinatorial
definitions. We will only write out the “right” versions.

Definition 2.2. Let (S, ·) be a semigroup and let A ⊆ S.

(1) A is right thick if and only if
(
∀F ∈ Pf (S)

)
(∃x ∈ S)(Fx ⊆ A).

(2) A is right syndetic if and only if
(
∃H ∈ Pf (S)

)
(S =

⋃
t∈H t

−1A).

(3) A is right piecewise syndetic if and only if(
∃H ∈ Pf (S)

)(
∀F ∈ Pf (S)

)
(∃x ∈ S)(Fx ⊆

⋃
t∈H t

−1A).

(4) A is right strongly piecewise syndetic if and only if(
∃H ∈ Pf (S)

)(
∀F ∈ Pf (S)

)
(∃x ∈ S)(Fx ⊆

⋃
t∈H At

−1).

(5) A is a right IP set if and only if there exists 〈xn〉∞n=1 ∈ NS such that
FP (〈xn〉∞n=1) ⊆ A.

(6) A is a right Q set if and only if there exists 〈xn〉∞n=1 ∈ NS such that
whenever n < m in N, xm ∈ xnA.

(7) A is a right weak Q set if and only if there exists 〈xn〉∞n=1 ∈ NA such that
for all n ∈ N, xnxn+1 ∈ A.

(8) A is a right J set if and only if
(
∀F ∈ Pf (NS)

)
(∃m ∈ N)(∃a ∈ Sm+1)

(∃t ∈ Jm)(∀f ∈ F )
(
a(1)f

(
t(1)

)
a(2)f

(
t(2)

)
· · · a(m)f

(
t(m)

)
a(m+1) ∈ A).

(9) A is a Prog set if and only if for each l ∈ N, A contains a length l progres-
sion.

(10) A is a weak Prog (wProg) set if and only if for each l ∈ N, A contains a
length l weak progression.

Notice that “Prog” and “weak Prog” are two sided notions. That is, if
for m ∈ N, a ∈ Sm+1, and d ∈ S, we let b(t) = a(m + 2 − t) for each t ∈
{1, 2, . . . ,m+ 1}, then

a(1)dta(2)dt · · · a(m)dta(m+ 1) = b(m+ 1)dtb(m)dt · · · dtb(1) .

The “Q” in “Q set” is intended to represent “quotient”; if S is a group, then
to say that xm ∈ xnA, says that x−1n xm ∈ A. (The “J” in “J set” and the “C”
in “C set” which will be defined below don’t stand for anything in particular.
They are names that have been used for several years.)

In most cases, the change necessary to define the “left” versions are obvious.
For example, A is left syndetic if and only if

(
∃H ∈ Pf (S)

)
(S =

⋃
t∈H At

−1).
For a left IP set, one demands that the products be in decreasing order of
indices.

The other four notions with which we will be concerned all have simple
characterizations in terms of βS, which we take as the definitions.
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Definition 2.3. Let (S, ·) be a semigroup. J(S, ·) = {p ∈ βS : (∀A ∈ p)(A is a
right J set)}.

By [11, Theorem 14.14.4], J(S, ·) is a compact two sided ideal of (βS, ·).
(Theorem 14.14.4 should have been preceded by Lemma 14.14.6 to show that
J(S, ·) 6= ∅.)

Definition 2.4. Let (S, ·) be a semigroup and let A ⊆ S.

(1) A is right central if and only if there is an idempotent p ∈ K(βS, ·) ∩A.

(2) A is a right C set if and only if there is an idempotent p ∈ J(S, ·) ∩A.

(3) A is right strongly central if and only if, for every minimal left ideal L of
(βS, ·), there is an idempotent p ∈ L ∩A.

(4) A is right thickly central if and only if there is some minimal left ideal L
of (βS, ·) such that {p ∈ L : p = p · p} ⊆ A.

We chose to define C sets as we did because that characterization is the
easiest for us to use. We should point out that the reason C sets are interesting
from the point of view of Ramsey Theory is that they are precisely the sets that
satisfy the conclusion of the Central Sets Theorem.

Most of the notions with which we are concerned have both algebraic and
combinatorial characterizations. Three of the algebraic characterizations refer
to the following subsets of βS.

Definition 2.5. Let (S, ·) be a semigroup.

(1) Prog(S) = {p ∈ βS : (∀A ∈ p)(A is a Prog set)}.

(2) wProg(S) = {p ∈ βS : (∀A ∈ p)(A is a weak Prog set)}.

(3) Given p ∈ βS, D(p, ·) = {q ∈ βS : (∀A ∈ q)({x ∈ S : xA ∈ p} ∈ p)}.

We shall show in the next section that Prog(S) and wProg(S) are compact
two sided ideals of both (βS, ·) and (βS,�)

We remark that, if S is commutative, then the right and left versions of all of
our notions are equivalent. We invite the reader to work through the verification
of this fact for the notions of left strongly central and right strongly central.

We present now those notions for which we have both algebraic and combi-
natorial characterizations. We do not have a purely algebraic characterization
for right strongly piecewise syndetic, and present there a hybrid description.
We do not know of any algebraic characterization of right weak Q sets.

The reader is referred to [11, Definition 14.19] for the definition of right
collectionwise piecewise syndetic mentioned in Theorem 2.6(10) below.

Theorem 2.6. Let (S, ·) be a semigroup and let A ⊆ S. For each of the
following notions, statements (a), (b), and (c) are equivalent.
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(1) (a) A is right thick.

(b)
(
∀F ∈ Pf (S)

)
(∃x ∈ S)(Fx ⊆ A).

(c) There is a minimal left ideal L of (βS, ·) such that L ⊆ A.

(2) (a) A is right syndetic.

(b)
(
∃H ∈ Pf (S)

)
(S =

⋃
t∈H t

−1A).

(c) For every minimal left ideal L of (βS, ·), L ∩A 6= ∅.

(3) (a) A is right piecewise syndetic.

(b)
(
∃H ∈ Pf (S)

)(
∀F ∈ Pf (S)

)
(∃x ∈ S)(Fx ⊆

⋃
t∈H t

−1A).

(c) K(βS, ·) ∩A 6= ∅.

(4) (a) A is right strongly piecewise syndetic.

(b)
(
∃H ∈ Pf (S)

)(
∀F ∈ Pf (S)

)
(∃x ∈ S)(Fx ⊆

⋃
t∈H At

−1).

(c) There exist a minimal left ideal L of (βS, ·) and H ∈ Pf (S) such that

L ⊆
⋃
t∈H At

−1.

(5) (a) A is a right IP set.

(b) There exists 〈xn〉∞n=1 ∈ NS such that FP (〈xn〉∞n=1) ⊆ A.

(c) There exists an idempotent p in (βS, ·) such that A ∈ p.

(6) (a) A is a right Q set.

(b) There exists 〈xn〉∞n=1 ∈ NS such that whenever n < m in N, xm ∈
xnA.

(c) There exists p ∈ βS such that A ∩D(p, ·) 6= ∅.

(7) (a) A is a right J set.

(b)
(
∀F ∈ Pf (NS)

)
(∃m ∈ N)(∃a ∈ Sm+1)(∃t ∈ Jm)(∀f ∈ F )(

a(1)f
(
t(1)

)
a(2)f

(
t(2)

)
· · · a(m)f

(
t(m)

)
a(m+ 1) ∈ A).

(c) J(S, ·) ∩A 6= ∅.

(8) (a) A is a Prog set.

(b) For each l ∈ N, A contains a length l progression.

(c) A ∩ Prog(S) 6= ∅.

(9) (a) A is a wProg set.

(b) For each l ∈ N, A contains a length l weak progression.

(c) A ∩ wProg(S) 6= ∅.

(10) (a) A is a right central set.

(b) There is a downward directed family 〈CF 〉F∈I of subsets of A such
that
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(i) for each F ∈ I and each x ∈ CF there exists G ∈ I with CG ⊆
x−1CF and

(ii) {CF : F ∈ I} is right collectionwise piecewise syndetic.

(c) There is an idempotent p ∈ K(βS, ·) ∩A.

(11) (a) A is a right C set.

(b) There is a downward directed family 〈CF 〉F∈I of subsets of A such
that

(i) for each F ∈ I and each x ∈ CF there exists G ∈ I with CG ⊆
x−1CF and

(ii) for each F ∈ Pf (I),
⋂
F∈F CF is a J set.

(c) There is an idempotent p ∈ J(S, ·) ∩A.

(12) (a) A is right strongly central.

(b) Whenever A is a family of subsets of S such that every finite inter-
section of members of A is right thick, there is a downward directed
family 〈CF 〉F∈I of subsets of A such that

(i) for each F ∈ I and each x ∈ CF there exists G ∈ I with CG ⊆
x−1CF and

(ii) A ∪ {CF : F ∈ I} has the finite intersection property.

(c) For every minimal left ideal L of (βS, ·), there is an idempotent p ∈
L ∩A.

(13) (a) A is right thickly central.

(b) There is a family A of subsets of S such that every finite intersection
of members of A is right thick and whenever 〈CF 〉F∈I is a downward
directed family of subsets of S \A such that for each F ∈ I and each
x ∈ CF there exists G ∈ I with CG ⊆ x−1CF , one has A∪{CF : F ∈
I} does not have the finite intersection property.

(c) There is some minimal left ideal L of (βS, ·) such that {p ∈ L : p =
p · p} ⊆ A.

Proof. In each case, either (b) or (c) is the definition of (a). We need to show
that (b) and (c) are equivalent. When the proof is available in [11] we will cite
that, referring the reader to the notes at the end of the chapters for the origins
of the proof.

(1) The equivalence follows from [11, Theorem 4.48(a)] and the fact that
every left ideal contains a minimal left ideal.

(2) The equivalence follows from [11, Theorem 4.48(b)] and the fact that
every left ideal contains a minimal left ideal.

(3) [11, Theorem 4.40]

(4) This is an immediate consequence of (1).

(5) [11, Theorem 5.12]
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(6) [2, Lemma 1.9(a)]

(7) [11, Theorem 14.14.7]

(8) In the proof of (9) below, replace m by 1.

(9) That (c) implies (b) is trivial. To see that (b) implies (c), it suffices by
[11, Theorem 5.7] to show that if B1 ∪ B2 is a wProg set in S, then either B1

is a wProg set or B2 is a wProg set. Suppose instead there is some l ∈ N such
that neither B1 nor B2 contains a length l weak progression. Pick by van der
Waerden’s Theorem some n ∈ N such that whenever {1, 2, . . . , n} = C1 ∪ C2,
there exist i ∈ {1, 2} and b, c ∈ N such that {b, b + c, b + 2c, . . . , b + lc} ⊆ Ci.
(See [11, Exercise 14.1.1] for this version of van der Waerden’s Theorem.) Now
B1 ∪ B2 contains a length n weak progression, so pick m ∈ N, a ∈ Sm+1, and
d ∈ S such that

{
a(1)dta(2)dt · · · a(m)dta(m+1) : t ∈ {1, 2, . . . , n}

}
⊆ B1∪B2.

For i ∈ {1, 2} let Ci = {t ∈ {1, 2, . . . , n} : a(1)dta(2)dt · · · a(m)dta(m+ 1) ∈ Bi.
Pick i ∈ {1, 2} and b, c ∈ N such that {b, b + c, b + 2c, . . . , b + lc} ⊆ Ci. For
j ∈ {1, 2, . . . ,m}, let f(j) = a(j)db and let f(m + 1) = a(m + 1). Let e = dc.
Then for each t ∈ {1, 2, . . . , l}, f(1)etf(2)et · · · f(m)etf(m + 1) ∈ Bi, so BI
contains a length l progression.

(10) [11, Theorem 14.25]

(11) [11, Theorems 14.15.1 and 14.27]

(12) To see that (b) implies (c), let L be a minimal left ideal of (βS, ·) and let
A = {B ⊆ S : L ⊆ B}, noting that L =

⋂
B∈AB. Given F ∈ Pf (A), L ⊆

⋂
F

so
⋂
F is right thick. Pick 〈CF 〉F∈I as guaranteed by (b). Let M =

⋂
F∈I CF .

By [11, Theorem 4.20] M is a subsemigroup of (βS, ·). By (ii), L ∩M 6= ∅, so
L∩M is a compact right topological semigroup, and therefore has an idempotent
which is in A since M ⊆ A.

To see that (c) implies (b), let A be a family of subsets of S such that every
finite intersection of members of A is right thick. By [4, Lemma 2.7] pick a
left ideal L of (βS, ·) with L ⊆

⋂
B∈AB. We may assume that L is minimal.

Pick an idempotent p ∈ L ∩ A. By [11, Lemmas 14.24 and 14.23.1], pick a
tree T in A such that for each f ∈ T , Bf = {x ∈ A : f_x ∈ T} ∈ p and
for each f ∈ T and each x ∈ Bf , Bf_x ⊆ x−1Bf . (For the definition of tree
that we are using, see [11, Definition 14.22].) Let I = Pf (T ) and for F ∈ I,
let CF =

⋂
f∈F Bf . Direct I by inclusion. Given F,G ∈ I, CF∪G ⊆ CF ∩ CG

so 〈CF 〉F∈I is downward directed. To see that (i) holds, let F ∈ I and let
x ∈ CF . Let G = {f_x : f ∈ F}. Then CG ⊆ x−1CF . To verify (ii) note that
A ∪ {CF : F ∈ I} ⊆ p.

(13) This equivalence follows from (12) and the fact that A is thickly central
if and only if S \A is not strongly central.

3 The implications

We show in this section that all of the implications displayed in Figure 1 hold.

We shall need some lemmas for some of the implications. The first of these,
while very easy, allows us to answer [9, Question 3.10]. It had not occurred
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Figure 1: Implications among all of the notions.
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to the authors of [9] to answer the question algebraically, since the question
involved both operations · and �.

Lemma 3.1. J(S, ·) is a two-sided ideal of (βS,�).

Proof. J(S, ·) 6= ∅ by [11, Lemma 14.14.7 and Theorem 3.11]. Let p ∈ J(S, ·)
and q ∈ βS. To see that p � q ∈ J(S, ·), let A ∈ p � q and let K ∈ Pf (NS).
Then {x ∈ S : Ax−1 ∈ p} ∈ q. So pick x ∈ S such that Ax−1 ∈ p. Pick
m ∈ N, b ∈ Sm+1 and t ∈ Jm such that for each f ∈ K,

b(1)f
(
t(1)

)
b(2) · · · b(m)f

(
t(m)

)
b(m+ 1) ∈ Ax−1.

Let c(i) = b(i) for each i ∈ {1, 2, . . . ,m} and c(m + 1) = b(m + 1)x. Then for
each f ∈ K, c(1)f

(
t(1)

)
c(2) · · · c(m)f

(
t(m)

)
c(m+ 1) ∈ A.

Now to see that q � p ∈ J(S, ·), let A ∈ q � p and let K ∈ Pf (NS) be given.
Let B = {x ∈ S : Ax−1 ∈ q}. Then B ∈ p. So pick m ∈ N, b ∈ Sm+1, and
t ∈ Jm such that for each f ∈ K,

xf = b(1)f
(
t(1)

)
b(2) · · · b(m)f

(
t(m)

)
b(m+ 1) ∈ B.

Pick y ∈
⋂
f∈K Ax

−1
f Let c(1) = yb(1) and for j ∈ {2, 3, . . . ,m + 1}, let c(j) =

b(j). Then for each f ∈ K, c(1)f
(
t(1)

)
c(2) · · · c(m)f

(
t(m)

)
c(m+ 1) ∈ A.

The next lemma provides motivation for our definition of progressions and
weak progressions. That is, if we had defined a length l progression as

{
adt :

t ∈ {1, 2, . . . , l}
}

we could not even conclude that Prog(S) is even a semigroup.

Lemma 3.2. Prog(S) and wProg(S) are both two sided ideals of (βS, ·) and of
(βS,�).

Proof. All four conclusions are easy exercises.

We shall establish the implications whose hypotheses involve the right no-
tions. We take care of the trivial implications first.

Theorem 3.3. Let (S, ·) be a semigroup and let A ⊆ S.

(1) If A is right strongly central, then A is right syndetic.

(2) If A is right strongly central, then A is right central.

(3) If A is right thick, then A is right thickly central.

(4) If A is right thickly central, then A is right central.

(5) If A is right syndetic, then A is right piecewise syndetic.

(6) If A is right central, then A is right piecewise syndetic.

(7) If A is a right C set, then A is a right J set.

10



Proof. All of these statements are immediate consequences of the algebraic
charaterizations, that is the statements labelled (c), in Theorem 2.6.

Theorem 3.4. Let (S, ·) be a semigroup and let A ⊆ S.

(1) If A is right syndetic, then A is left strongly piecewise syndetic.

(2) If A is a right C set, then A is a right IP set.

(3) If A is a right IP set, then A is a right Q set.

(4) If A is a right IP set, then A is a right weak Q set.

(5) If A is a Prog set, then A is a wProg set.

Proof. Statements (1), (2), and (5) are immediate consequences of the combi-
natorial characterizations, that is the statements labelled (b), in Theorem 2.6
and statement (4) is an immediate consequence of the combinatorial character-
ization of IP sets and the definition of weak Q set. To verify statement (3), let
〈xn〉∞n=1 be a sequence with FP (〈xn〉∞n=1) ⊆ A. For n ∈ N, let yn =

∏n
t=1 xt. If

n < m, then ym = yn(
∏m
t=n+1 yt).

Theorem 3.5. Let (S, ·) be a semigroup and let A ⊆ S.

(1) If A is right central, then A is a right C set.

(2) If A is right piecewise syndetic, then A is a right J set.

(3) If A is right piecewise syndetic, then A is a left J set.

(4) If A is right piecewise syndetic, then A is a Prog set.

(5) If A is right strongly piecewise syndetic, then A is right piecewise syndetic.

(6) If A is a right J set, then A is a wProg set.

Proof. As we have noted, by [11, Theorem 14.14.4], J(S, ·) is a two sided ideal
of (βS, ·) so K(βS, ·) ⊆ J(S, ·) and thus (1) and (2) follow from the algebraic
characterizations. By the left-right switch of Lemma 3.1, J(S,�) is a two sided
ideal of (βS, ·), so K(βS, ·) ⊆ J(S,�) and thus (3) follows. By Lemma 3.2,
Prog(S) is a two sided ideal of (βS, ·) so (4) follows.

To verify (5), pick a minimal left ideal L of (βS, ·) and H ∈ Pf (S) such

that L ⊆
⋃
t∈H At

−1. Pick p ∈ L and pick t ∈ H such that At−1 ∈ p. Since

p ∈ K(βS, ·), pt ∈ K(βS, ·) ∩A.

To verify (6), let l ∈ N be given. Pick any d ∈ S and for k ∈ {1, 2, . . . , l} and
n ∈ N, let fk(n) = dk. Let F = {f1, f2, . . . , fl}. Pick m ∈ N, a ∈ Sm+1, and
t ∈ Jm such that for each f ∈ F , a(1)f

(
t(1)

)
a(2) · · · a(m)f

(
t(m)

)
a(m + 1) ∈

A.

Theorem 3.6. Let (S, ·) be a left cancellative semigroup and let A ⊆ S. If A
is a right Q set, then A is a right weak Q set.
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Proof. Pick a sequence 〈xn〉∞n=1 in S such that whenever n < m, xm ∈ xnA. For
each pair (n,m) ∈ N × N with n < m, pick yn,m ∈ A such that xm = xnyn,m.
It suffices to show that for each n ∈ N, yn,n+1yn+1,n+2 ∈ A, so let n ∈ N. Then
xnyn,n+2 = xn+2 = xn+1yn+1,n+2 = xnyn,n+1yn+1,n+2 so by left cancellation,
yn,n+1yn+1,n+2 = yn,n+2.

We shall see in the next section that the left cancellativity assumption cannot
be replaced by weakly left cancellative, even if right cancellativity is assumed.

We now show that, if S is a countably infinite cancellative semigroup, then
any central subset of S is a member of 2c idempotents which belong to the same
minimal right ideal, but to distinct minimal left ideals of βS. The proof of the
following theorem is essentially contained in that of [10, Theorem 2.12], in which
a stronger theorem is proved for the case in which S = N.

Theorem 3.7. Let S be a countably infinite cancellative semigroup and let p be
a minimal idempotent in (βS, ·). Let R denote the minimal right ideal of (βS, ·)
which contains p, and let C ∈ p. Then there are 2c minimal idempotents of
(βS, ·) in R ∩ C.

Proof. Let C? = {x ∈ S : x−1C ∈ p}. By [11, Lemma 4.14], C? ∈ p and, for
each x ∈ C?, x−1C? ∈ p. For each F ∈ Pf (C?), we put VF = C?∩

⋂
x∈F x

−1C?

and V =
⋂
{VF : F ∈ Pf (C?)}. Since VF ∈ p for every F ∈ Pf (C?), p ∈ V .

If F ∈ Pf (C?) and y ∈ VF , then G = {y} ∪ Fy ⊆ C? and, if z ∈ VG, z ∈
y−1C? ∩

⋂
x∈F y

−1x−1C?. So yz ∈ VF . It follows from [11, Theorem 4.20] that
V is a subsemigroup of (βS, ·).

Now V contains a copy of H =
⋂∞
n=1 2nN, by [11, Theorem 6.32]. By [11,

Theorem 6.9], (βN,+) has 2c minimal left ideals. Each of these contains an
idempotent, and by [11, Lemma 6.6] every idempotent of (βN,+) is in H. So V
contains a set W of idempotents with the property that uv 6= u whenever u and
v are distinct elements of W , because H contains a set of this kind, since uv is
in the same minimal left ideal as v. We claim that βSu ∩ βSv = ∅ for every
distinct u and v in W . To see this, assume the contrary. We may then assume
that su = yv for some s ∈ S and some y ∈ βS, by [11, Theorem 6.19]. This
implies that suv = yvv = yv = su and hence, by [11, Lemma 8.1], that uv = u,
a contradiction.

For every u ∈ W , the left ideal V u of V contains a minimal left ideal of V ,
by [11, Corollary 2.6]. By [11, Theorem 2.7], the intersection of this minimal left
ideal with the right ideal pV of V , contains an idempotent which is minimal in
V and is therefore minimal in βS, by [11, Theorem 1.65]. We have thus shown
that there are 2c minimal idempotents of βS in R ∩ C.

4 Examples

We show in this section that none of the missing implications in Figure 2 are
valid in general, and show which implications involving the notion of strongly
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central that we know do not hold. Most of the counterexamples involve known
results. We begin with the new results that we will need.

Definition 4.1. For n ∈ N, let θ(n) = min supp(n), where supp(n) ⊆ ω =
N ∪ {0} and n =

∑
t∈ supp(n) 2t.

Lemma 4.2. Let B be an infinite subset of N and let A = {n ∈ N : θ(n) ∈ B}.
Then A is a (right) strongly central subset of (N,+).

Proof. Let θ̃ : βN → βω be the continuous extension of θ. Let H =
⋂∞
n=1 2nN.

By [11, Lemma 6.8], H is a compact subsemigroup of (βN,+) which contains all

the idempotents of (βN,+) and whenever p ∈ βN and q ∈ H, θ̃(p + q) = θ̃(p).

Pick p ∈ N∗ = βN \ N such that {2n : n ∈ B} ∈ p. Let C = {r ∈ H : θ̃(r) =

θ̃(p)}. Then C is a right ideal of H. Pick a minimal right ideal R of H such that
R ⊆ C. Since H contains all of the idempotents of βN, by [11, Theorem 1.65],
there is a minimal right ideal T of βN such that T ∩H = R.

To see that A is strongly central, let L be a minimal left ideal of βN. Let s
be the identity of the group L ∩ T . We claim that A ∈ s. Suppose instead that
N \ A ∈ s. Now s ∈ H so s ∈ R and thus θ̃(s) = θ̃(p). By [11, Lemma 3.30],

θ[{2n : n ∈ B}] ∈ θ̃(p) = θ̃(s) so θ−1
[
θ[{2n : n ∈ B}]

]
∈ s. Pick x ∈ N \ A such

that θ(x) ∈ θ[{2n : n ∈ B}]. Pick m ∈ B such that θ(x) = θ(2m) = m. But
then x ∈ A, a contradiction.

We now proceed to construct a left C set in the free semigroup on countably
many generators which is not a right J set, not a right weak Q set, and not a
Prog set. The construction is based on the construction in [9, Section 3] of a
left J set which is not a right J set. The notation used here is similar but not
identical to that of [9].

Definition 4.3. Let S be the free semigroup on the alphabet {an : n ∈ N}.

(1) M =
⋃∞
r=2
{1, 2, . . . , r}S = {f : (∃r ∈ N \ {1})(f : {1, 2, . . . , r} → S)}.

(2) Define ψ : Pf (M)→ N by, for H ∈ Pf (M),
ψ(H) = max{n ∈ N : (∃f ∈ H)

(
an occurs in f(1)

)
}.

(3) F =
{
H ∈ Pf (M) : (∀f ∈ H)(dom(f) = {1, 2, . . . , ψ(H)}) and

(∀f, g ∈ H)
(
f 6= g ⇒ (∀t ∈ {1, 2, . . . , ψ(H)})

(
f(t) 6= g(t)

))}
.

Notice that M is countable and so F is countable. Consequently, we may
choose δ as in the following definition.

Definition 4.4. Choose δ : N × F 1-1−→4N such that for n ∈ N and H ∈ F , if
there exist t ∈ {1, 2, . . . , ψ(H)}, f ∈ H, and k ∈ N such that ak occurs in f(t),
then k < δ(n,H).

Definition 4.5. Given n ∈ N,

Bn = {aδ(n,H)h
(
ψ(H)

)
aδ(n,H)h(ψ(H)− 1) · · · aδ(n,H)h(1)aδ(n,H) :

H ∈ F and h ∈ H} .
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Figure 2: None of the missing implications are valid.
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We write ↓Πl
i=1 yi for the product in decreasing order of indices.

Definition 4.6. Given n ∈ N,

An =
{
x ∈ S : (∃l ∈ N)(∃ increasing 〈mi〉li=1 ∈ Nl)

(∃〈Hi〉li=1 ∈ F l)(∃〈hi〉li=1)
(
each hi ∈ Hi ,

x = ↓Πl
i=1(aδ(mi,Hi)hi

(
ψ(Hi)

)
aδ(mi,Hi) · · · aδ(mi,Hi)hi(1)aδ(mi,Hi)) ,

m1 ≥ n, and for i ∈ {1, 2, . . . , l − 1} , δ(mi+1, Hi+1) > δ(mi, Hi)
)}
.

For example, assume that l = 2, m1 = 2, m2 = 4, H1 = {f, g}, H2 = {h},
ψ(H1) = 2, ψ(H2) = 3, and δ(2, H1) < δ(4, H2). Then

aδ(4,H2)h(3)aδ(4,H2)h(2)aδ(4,H2)h(1)aδ(4,H2)aδ(2,H1)f(2)aδ(2,H1)f(1)aδ(2,H1)

and
aδ(4,H2)h(3)aδ(4,H2)h(2)aδ(4,H2)h(1)aδ(4,H2)aδ(2,H1)g(2)aδ(2,H1)g(1)aδ(2,H1)

are elements of A1 and A2, but not of An for any n > 2 = m1.

Notice that for an element x of An as written in the definition, δ(ml, Hl) is
the largest index of any letter occurring in x, and its only occurrences are the
listed ones. Similarly, while aδ(ml−1,Hl−1) may have many occurrences before the
last occurrence of aδ(ml,Hl), beyond that point it only has the listed occurrences.

Lemma 4.7. Let S be the free semigroup on the alphabet {an : n ∈ N}. For
each n ∈ N, Bm is a left J set in S.

Proof. Let n ∈ N. We need to show that for each G ∈ Pf (NS) there exist m ∈ N,
α ∈ Sm+1, and t ∈ Jm such that for all f ∈ G,

α(m+ 1)f
(
t(m)

)
α(m)f

(
t(m− 1)

)
· · ·α(2)f

(
t(1)

)
α(1) ∈ Bn .

So let G ∈ Pf (NS). Let G′ = G∪{a2}, where a2 ∈ NS is the function constantly
equal to a2. By [9, Lemma 3.1], pick an infinite subset C of N such that for all
f, g ∈ G′, either (∀n ∈ C)

(
f(n) = g(n)

)
or (∀n ∈ C)

(
f(n) 6= g(n)

)
.

Enumerate C in increasing order as 〈ci〉∞i=1. Let

m = max{n ∈ N : (∃f ∈ G′)(an occurs in f(c1)} ,

and note that m ≥ 2. For f ∈ G′, define hf : {1, 2, . . . ,m} → S by, for
i ∈ {1, 2, . . . ,m}, hf (i) = f(ci).

Let H = {hf : f ∈ G′} and observe that ψ(H) = m so that H ∈ F . Define
α ∈ Sm+1 by α(1) = α(2) = . . . = α(m + 1) = aδ(n,H) and define t ∈ Jm by
t(i) = ci for i ∈ {1, 2, . . . ,m}. Let f ∈ G. Then hf ∈ H and

α(m+ 1)f
(
t(m)

)
α(m)f

(
t(m− 1)

)
· · ·α(2)f

(
t(1)

)
α(1) =

aδ(n,H)hf (m)aδ(n,H)hf (m− 1) · · · aδ(n,H)hf (1)aδ(n,H) ∈ Bn .
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Theorem 4.8. Let S be the free semigroup on the alphabet {an : n ∈ N}. A1

is a left C set in S.

Proof. By Lemma 4.7, each Bm is a left J set and Bm ⊆ Am, so by the left-
right switch of Theorem 2.6(11) it suffices to show that for each n ∈ N and each
x ∈ An, there exists m ∈ N such that Am ⊆ Anx

−1. So let n ∈ N and x ∈ An
be given. Then

x = ↓Πl
i=1(aδ(mi,Hi)hi

(
ψ(Hi)

)
aδ(mi,Hi) · · · aδ(mi,Hi)hi(1)aδ(mi,Hi))

for some l ∈ N, some increasing 〈mi〉li=1 ∈ Nl, some 〈Hi〉li=1 ∈ F l, and
some 〈hi〉li=1 with each hi ∈ Hi, such that m1 ≥ n and for i ∈ {1, 2, . . . , l −
1} , δ(mi+1, Hi+1) > δ(mi, Hi).

There are only finitely many k ∈ N such that there is some H ∈ F with
δ(k,H) ≤ δ(ml, Hl). So pick r ∈ N such that for all k ∈ N with k ≥ r and all
H ∈ F , δ(k,H) > δ(ml, Hl). Then Ar ⊆ Anx−1.

It is a fact that A1 is not a right weak Q set in the free semigroup on the
alphabet {an : n ∈ N}, but we will not need that fact. (The curious reader can
construct the proof along the lines of the proof of [9, Theorem 3.7(a)].)

Theorem 4.9. Let S be the free semigroup on the alphabet {an : n ∈ N}. A1

is not a right J set in S.

Proof. Define h, k in NS by, for n ∈ N, h(n) = a4n−1 and k(n) = a4n+2a4n+3.
Let K = {h, k}. Suppose that A1 is a right J set. Pick m ∈ N, α ∈ Sm+1, and
t ∈ Jm such that x and y are in A1 where

x = α(1)h
(
t(1)

)
α(2) · · ·α(m)h

(
t(m)

)
α(m+ 1) and

y = α(1)k
(
t(1)

)
α(2) · · ·α(m)k

(
t(m)

)
α(m+ 1) .

Since x and y are in A1, pick l and u in N, increasing 〈ri〉li=1 ∈ Nl, increasing
〈si〉ui=1 ∈ Nu, 〈Ci〉li=1 ∈ F l, 〈Di〉ui=1 ∈ Fu, and 〈fi〉li=1 and 〈gi〉ui=1 such that
each fi ∈ Ci, each gi ∈ Di, and

x = aδ(rl,Cl)fl
(
ψ(Cl)

)
aδ(rl,Cl) · · · aδ(rl,Cl)fl(1)aδ(rl,Cl)

· aδ(rl−1,Cl−1)fl−1
(
ψ(Cl−1)

)
· · · aδ(rl−1,Cl−1)fl−1(1)aδ(rl−1,Cl−1)

...
· aδ(r1,C1)f1

(
ψ(C1)

)
aδ(r1,C1) · · · aδ(r1,C1)f1(1)aδ(r1,C1), and

y = aδ(su,Du)gu
(
ψ(Du)

)
aδ(su,Du) · · · aδ(su,Du)gu(1)aδ(su,Du)

· aδ(su−1,Du−1)gu−1
(
ψ(Du−1)

)
· · · aδ(su−1,Du−1)gu−1(1)aδ(su−1,Du−1)

...
· aδ(s1,D1)g1

(
ψ(D1)

)
aδ(s1,D1) · · · aδ(s1,D1)g1(1)aδ(s1,D1) ,

where for each i ∈ {1, 2, . . . , l − 1} and each j ∈ {1, 2, . . . , u − 1} (if any)
δ(ri, Ci) < δ(ri+1, Ci+1) and δ(sj , Dj) < δ(sj+1, Dj+1).

16



Notice that, given n ∈ N, H ∈ F , and j ∈ {1, 2, . . . ,m}, there are no
occurrences of aδ(n,H) in h

(
t(j)

)
or in k

(
t(j)

)
, because δ(n,H) is divisible by 4.

From the expansions of x we see that the first letter of α(1) is aδ(rl,Cl) and
from the expansions of y we see that the first letter of α(1) is aδ(su,Du) so
(rl, Cl) = (su, Du). The last occurrence of aδ(rl,Cl) in the expansion of either
x or y is in some α(j). In the expansion of x we then deduce that the last
occurrence of aδ(rl,Cl) is followed immediately in α(j) by aδ(rl−1,Cl−1) (since

aδ(rl−1,Cl−1) cannot occur in h
(
t(j)

)
. We are using the fact that there are no

occurrences of aδ(rl,Cl) after the first line of the displayed characterization of x
as a member of A1. Similarly, there may be occurrences of aδ(rl−1,Cl−1) in the
first line of that display, but there are none beyond the second line.

Looking at the expansion of y we deduce that the last occurrence of aδ(rl,Cl) is
followed immediately in α(j) by aδ(su−1,Du−1). Consequently, we have
(su−1, Du−1) = (rl−1, Cl−1). Continuing in this fashion we see that u = l
and for each i ∈ {1, 2, . . . , l}, (ri, Ci) = (si, Di).

We have that x 6= y so there is a smallest p ∈ {1, 2, . . . , l} such that fp 6= gp.
Since Cp ∈ F and fp and gp are in Cp, we have that for all i ∈ {1, 2, . . . , ψ(Cp)},
fp(i) 6= gp(i). Now we claim that the rightmost occurrence of aδ(rp,Cp) is in
α(m+ 1). If p = 1, this is trivial so assume that p > 1. Then

aδ(rp−1,Cp−1)fp−1
(
ψ(Cp−1)

)
· · · aδ(rp−1,Cp−1)fp−1(1)aδ(rp−1,Cp−1)

...
· aδ(r1,C1)f1

(
ψ(C1)

)
aδ(r1,C1) · · · aδ(r1,C1)f1(1)aδ(r1,C1)

= aδ(rp−1,Cp−1)gp−1
(
ψ(Cp−1)

)
· · · aδ(rp−1,Cp−1)gp−1(1)aδ(rp−1,Cp−1)

...
· aδ(r1,C1)g1

(
ψ(C1)

)
aδ(r1,C1) · · · aδ(r1,C1)g1(1)aδ(r1,C1)

and the letter immediately to the left of α(m+1) in h
(
t(m)

)
α(m+1) is a4t(m)−1

while the letter immediately to the left of α(m + 1) in k
(
t(m)

)
α(m + 1) is

a4t(m)+3. Therefore there is some u ∈ S such that

α(m+ 1) =
u · aδ(rp−1,Cp−1)fp−1

(
ψ(Cp−1)

)
aδ(rp−1,Cp−1) · · · aδ(rp−1,Cp−1)fp−1(1)aδ(rp−1,Cp−1)

...
· aδ(r1,C1)f1

(
ψ(C1)

)
aδ(r1,C1) · · · aδ(r1,C1)f1(1)aδ(r1,C1) .

In this case, the rightmost letter of u is aδ(rp,Cp).

Let q = ψ(Cp). We note that there exist j1 < j2 < . . . < jq+1 = m+ 1 such
that the rightmost q + 1 occurrences of aδ(rp,Cp) in x are in α(j1), α(j2), . . . ,
α(jq+1) respectively. This is true because if aδ(rp,Cp)fp(w)aδ(rp,Cp) occurs as
part of α(j) for some w ∈ {1, 2, . . . , q}, then also aδ(rp,Cp)gp(w)aδ(rp,Cp) occurs
as part of α(j) and aδ(rp,Cp)fp(w)aδ(rp,Cp) 6= aδ(rp,Cp)gp(w)aδ(rp,Cp).

Since 1 ≤ j1 < j2 < . . . < jq+1 = m + 1, we have that q ≤ m. But the
letter of x immediately to the left of α(m + 1) is a4t(m)−1 and the letter of y
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immediately to the left of α(m + 1) is a4t(m)+3. Since fp(1) 6= gp(1), this says
that a4t(m)−1 occurs in fp(1) (and, though we won’t use that fact, a4t(m)+3

occurs in gp(1)). Since a4t(m)−1 occurs in fp(1) and fp ∈ Cp, we have that
q = ψ(Cp) ≥ 4t(m)− 1 ≥ 4m− 1, contradicting the fact that q ≤ m.

Theorem 4.10. Let S be the free semigroup on the alphabet {an : n ∈ N}. A1

is not a Prog set in S.

Proof. We shall show that there do not exist d ∈ S and b ∈ S2 such that
b(1)db(2) ∈ A1 and b(1)d2b(2) ∈ A1. Suppose such do exist and pick d and b
such that l

(
b(1)

)
+ l
(
b(1)

)
is a minimum among all examples.

We thus have some l, u ∈ N, some increasing 〈mi〉li=1 ∈ Nl, some increas-
ing 〈ri〉ui=1 ∈ Nu, some 〈Ci〉li=1 ∈ F l, some 〈Di〉ui=1 ∈ Fu, some 〈fi〉li=1 with
each fi ∈ Ci, some 〈gi〉ui=1 with each gi ∈ Di, such that for i ∈ {1, 2, . . .
l − 1} , δ(mi+1, Ci+1) > δ(mi, Ci), for i ∈ {1, 2, . . . , u − 1} , δ(ri+1, Di+1) >
δ(ri, Di), and

b(1)db(2) = ↓Πl
i=1(aδ(mi,Ci)fi

(
ψ(Ci)

)
aδ(mi,Ci) · · · aδ(mi,Ci)fi(1)aδ(mi,Ci)) , and

b(1)d2b(2) = ↓Πu
i=1(aδ(ri,Di)gi

(
ψ(Di)

)
aδ(ri,Di) · · · aδ(ri,Di)gi(1)aδ(ri,Di)) .

Since aδ(ml,Cl) = aδ(ru,Du) and aδ(m1,C1) = aδ(r1,D1) we have that (ml, Cl) =
(ru, Du) and (m1, C1) = (r1, D1).

Suppose first that fl 6= gu, so that for each t ∈ {1, 2, . . . , ψ(Cl)}, fl(t) 6= gu(t)

because Cl = Du ∈ F . Then b(1) ends before fl
(
ψ(Cl)

)
ends and b(2) starts

after fl(1) starts – possibly after fl(1)aδ(ml,Cl
). If b(2) starts after fl(1)aδ(ml,Cl

),
then there are ψ(Cl) occurrences of aδ(ml,Cl) in d and in d2. Otherwise there are
ψ(Cl)−1 occurrences of aδ(ml,Cl) in d and in d2. In the first case ψ(Cl) = 2ψ(Cl)
while in the second, ψ(Cl) − 1 = 2ψ(Cl) − 2. So ψ(Cl) ≤ 1. But Cl ∈ F so
ψ(Cl) ≥ 2, a contradiction.

Since (ml, Cl) = (ru, Du) and (m1, C1) = (r1, D1), if either l = 1 or u = 1,
then l = u = 1 and thus fl 6= gu which we have seen is impossible.

Thus we may assume that l > 1, u > 1, and fl = gu.

If b(1) = aδ(ml,Cl)fl
(
ψ(Cl)

)
· · · aδ(ml,Cl)fl(1)aδ(ml,Cl)γ for some γ ∈ S, then

γdb(2) ∈ A1 and γd2b(2) ∈ A1, contradicting the minimality of l
(
b(1)

)
+ l
(
b(2)

)
.

Similarly, if b(2) = γaδ(m1,C1)f1
(
ψ(C1)

)
· · · aδ(m1,C1)f1(1)aδ(m1,C1) for some γ ∈

S, then b(1)dγ ∈ A1 and b(1)d2γ ∈ A1, again a contradiction.

Consequently, we have that b(1) ends at or before the end of

aδ(ml,Cl)fl
(
ψ(Cl)

)
· · · aδ(ml,Cl)fl(1)aδ(ml,Cl)

and b(2) starts at or after the start of

aδ(m1,C1)f1
(
ψ(C1)

)
· · · aδ(m1,C1)f1(1)aδ(m1,C1) .

Thus we have some γ and τ in S ∪ {∅} such that

aδ(ml,Cl)fl
(
ψ(Cl)

)
· · · aδ(ml,Cl)fl(1)aδ(ml,Cl) = b(1)γ and

aδ(m1,C1)f1
(
ψ(C1)

)
· · · aδ(m1,C1)f1(1)aδ(m1,C1) = τb(2) .
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Therefore

d = γ
(
↓Πl−1
i=2(aδ(mi,Ci)fi

(
ψ(Ci)

)
aδ(mi,Ci) · · · aδ(mi,Ci)fi(1)aδ(mi,Ci))

)
τ , and

d2 = γ
(
↓Πu−1
i=2 (aδ(ri,Di)gi

(
ψ(Di)

)
aδ(ri,Di) · · · aδ(ri,Di)gi(1)aδ(ri,Di))

)
τ .

Assume that l > 2, and consequently also u > 2. Then d starts out
γaδ(ml−1,Cl−1) and d2 starts out γaδ(ru−1,Du−1) so (ml−1, Cl−1) = (ru−1, Du−1).
Let k be the number of occurrences of aδ(ml−1,Cl−1) in γ. Then there are
k+ψ(Cl−1) + 1 occurrences of aδ(ml−1,Cl−1) in d and in d2 so k+ψ(Cl−1) + 1 =
2k + 2ψ(Cl−1) + 2, which is impossible.

We must then have that l = 2. Since d2 is longer than d, u > 2. Thus d = γτ
and

d2 = γ
( ↓Πu−1

i=2 (aδ(ri,Di)gi
(
ψ(Di)

)
aδ(ri,Di) · · · aδ(ri,Di)gi(1)aδ(ri,Di))

)
τ .

Since d2 = γτγτ we then have that

τγ = ↓Π
u−1
i=2 (aδ(ri,Di)gi

(
ψ(Di)

)
aδ(ri,Di) · · · aδ(ri,Di)gi(1)aδ(ri,Di)) .

If τ 6= ∅, then from the choice of τ we have the leftmost letter of τ is aδ(m1,C1),
while from the above equation, the leftmost letter of τ is aδ(ru−1,Du−1) while
δ(ru−1, Du−1) > δ(r1, D1) = δ(m1, C1), a contradiction. So τ = ∅ and thus
γ 6= ∅. Then from the choice of γ, the rightmost letter of γ is aδ(ml,Cl) while
from the above equation, the rightmost letter of γ is aδ(r2,D2) while δ(r2, D2) <
δ(ru, Du) = δ(ml, Cl), a contradiction.

Recall that a semigroup (S, ·) is weakly left cancellative if and only if, when-
ever u, v ∈ S, {x ∈ S : u = vx} is finite.

Theorem 4.11. There exist a right cancellative and weakly left cancellative
semigroup (S, ·) and a subset A of S which is a right Q set but not a right weak
Q set.

Proof. Let D = {xk : k ∈ N} ∪ {yn,m : n,m ∈ N and n < m} and let S be the
set of words over D that have no occurrences of xnyn,m for any n < m. Given
u, v ∈ S, we let u · v = uv, the ordinary concatenation of words, unless there
exist n < m in N such that u ends in xn and v begins with yn,m. In the latter
case, pick z, w ∈ S ∪ {∅}, l ∈ N, and ml > ml−1 > . . . > m1 = m such that
u = zxn, v = yn,m1ym1,m2 · · · yml−1,ml

w, and w does not begin with yml,r for
any r > ml. Then define u · v = zxml

w.

It is routine, though mildly tedious, to verify that the operation on S is
associative. To see that S is right cancellative, assume we have s, v, and u in
S and that u · v = s · v. If u · v = uv and s · v = sv, then we are done. So
we assume without loss of generality that we have z, w ∈ S ∪ {∅}, n, l ∈ N,
and ml > ml−1 > . . . > m1 such that u = zxn, v = yn,m1

ym1,m2
· · · yml−1,ml

w,
and w does not begin with yml,r for any r > ml. Then u · v = zxml

w. If s
does not end in xn, then s · v = sv. The letter immediately preceding w in
sv is yml−1,ml

while the letter immediately preceding w in zxml
w, is xml

so
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u · v 6= s · v. So we have some t ∈ S ∪ {∅} such that s = txn and s · v = txml
w.

Since zxml
w = txml

w, we have z = t so u = s as required.

To see that S is weakly left cancellative, note that if u,w ∈ S and {v ∈
S : u · v = w} has more than one member, then we must have n < m in
N and z, s ∈ S ∪ {∅} such that s does not begin with ym,r for any r > m,
u = zxn, and w = zxms. In that event, if u · v = w, then there exist l ∈ N
n = k1 < k2 < . . . < kl = m such that v = yk1,k2yk2,k3 · · · ykl−1,kls. So
{v ∈ S : u · v = w} is finite.

Finally, let A = {yn,m : n,m ∈ N and n < m}. Then whenever n < m in N,
we have xm = xnyn,m so A is a Q set in S. Since no two members of A have a
product in A, A is not a weak Q set.

Theorem 4.12. (1) There is a subset A of (N,+) which is right strongly
central and is neither right nor left thickly central.

(2) There is a subset A of (N,+) which is right thickly central and is not right
thick.

(3) There is a subset A of (N,+) which is right syndetic and is neither a right
weak Q set nor a left weak Q set.

(4) There is a subset A of (N,+) which is a right IP set and is not a weak
Prog set.

(5) There is a subset A of (N,+) which is a Prog set and is not a right J set.

Proof. (1) Let B be an infinite subset of N such that N \ B is infinite and let
A = {n ∈ N : θ(n) ∈ B}. By Lemma 4.2, A and N \ A are strongly central,
so A is not thickly central. Since (N,+) is commutative, left and right thickly
central are equivalent.

(2) Let A = {2n + 2m : n,m ∈ N and m < n}. Since {2n + m : n,m ∈
N and m < n

2 } is thick and 2N is a member of any idempotent, A is thickly
central. It is trivially not thick.

(3) Let A = 2N− 1. One cannot get x1 and x2 with {x1, x2, x1 + x2} ⊆ A.

(4) Let A = {
∑
n∈F 22n : F ∈ Pf (N)}. We leave it as an exercise to show

that there do not exist a, d ∈ N such that {a+ d, a+ 2d, a+ 3d} ⊆ A.

(5) Let A = {22n + m2n + 1 : n,m ∈ N and m < n}. A is trivially a Prog
set. By [8, Lemma 4.3], A is not a J set.

Theorem 4.13. Let S be the free semigroup on the alphabet {an : n ∈ N}.

(1) There is a subset A of S which is right thick and is not right strongly
piecewise syndetic, not left piecewise syndetic, and not a left weak Q set.

(2) There is a subset A of S which is a right C set and is not a left J set and
not a Prog set.

(3) There is a subset A of S which is a right weak Q set and is not a right Q
set and not a right IP set.
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Proof. (1) Enumerate Pf (S) as 〈Fn〉∞n=1. For n ∈ N, let τ(n) = 1 + max{m :
(∃w ∈ Fn)(am occurs in w)}. Let A =

⋃∞
n=1 Fnaτ(n). Trivially A is right thick.

By the left-right switch of [9, Theorem 2.4] A is not left piecewise syndetic and
is not a left weak Q set. To see that A is not right strongly piecewise syndetic,
suppose we have H ∈ Pf (S) such that for all F ∈ Pf (S) there is some x ∈ S
such that Fx ⊆

⋃
t∈H At

−1. Now H = Fk for some k ∈ N. Let r = τ(k) and
let F = {ar}. Pick x ∈ S such that Fx ⊆

⋃
t∈H At

−1 and pick t ∈ H such that
arxt ∈ A. Pick n ∈ N and w ∈ Fn such that arxt = waτ(n). Then aτ(n) occurs
in t and since t ∈ H, τ(n) < τ(k) = r. This is a contradiction because aτ(n) is
the largest letter occurring in waτ(n).

(2) This is a consequence of the left-right switches of Theorems 4.8, 4.9, and
4.10.

(3) Let A = {an : n ∈ N} ∪ {anan+1 : n ∈ N}.

The proof of (2) in the next theorem is adapted from [3, Theorem 2.18].

Theorem 4.14. Let S be the free semigroup on the alphabet {a, b}.

(1) There is a subset A of S which is right strongly central and is not right
strongly piecewise syndetic.

(2) There is a subset A of S which is right strongly piecewise syndetic and is
not left piecewise syndetic.

Proof. (1) Let A = aS. Then A is a right ideal of S so by [11, Corollary 4.18] A
is a right ideal of (βS, ·). Pick a minimal right ideal R of (βS, ·) such that R ⊆ A.
Given any minimal left ideal L of (βS, ·), there is an idempotent p ∈ L ∩R.

Now suppose that A is right strongly piecewise syndetic and pick H ∈ Pf (S)
such that for each F ∈ Pf (S), there is some x ∈ S such that Fx ⊆

⋃
t∈H At

−1.
Letting F = {b}, we obtain a contradiction.

(2) Let A = {wan : w ∈ S and n > l(w)}, where l(w) denotes the length
of w. To see that A is right strongly piecewise syndetic, let H = {a}. Let
F ∈ Pf (S) be given and let n = max{l(w) : w ∈ F}. Let x = an. Then
Fxa ⊆ A.

Suppose now we have H ∈ Pf (S) such that for every F ∈ Pf (S) there
is some x ∈ S such that xF ⊆

⋃
t∈H At

−1. We may presume a ∈ H. Let
m = max{n : an ∈ H} and let F = {bm}. For any x ∈ S and t ∈ H,
xbmt /∈ A.

Theorems 4.11, 4.12, 4.13, and 4.14 establish that none of the missing im-
plications in Figure 2 are valid in general. We do not know whether every right
strongly central set must be left central, left C, left IP, left Q, or left weak Q. If,
for example, we knew that there is a right cancellative semigroup with a right
strongly central set which is not a left weak Q set, then we would know that
none of the missing implications in Figure 1 are valid in general.

In some cases some mental gymnastics are needed to see that the listed
examples are sufficient. For example, in addition to the example of Theorem
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4.14(2), to see that right strongly piecewise syndetic does not imply any of the
properties that are not shown, one needs to know that that there is a right
strongly piecewise syndetic set which is not a right weak Q set (and similarly
for left weak Q). We know that there is a right syndetic set which is neither
right weak Q nor left weak Q. So we know that there is a left syndetic set which
is neither left weak Q nor right weak Q, and such a set must be right strongly
piecewise syndetic.

Similarly, we need to know that there is a right Q set which is not a right
IP set. It is trivial to construct such an example in (N,+), but the way that
follows from our listed examples is that we have a right Q set which is not a
right weak Q set, so it cannot be a right IP set.

We conclude this section by showing that to answer the questions about
strongly central sets, it suffices to consider free semigroups.

As usual, in a free semigroup S on an alphabet A we identify the elements
of A with the length 1 words.

Theorem 4.15. Let (T, ·) be a semigroup and let S be the free semigroup on
the alphabet T , Let h : S → T be the homomorphism which extends the identity
function and let A ⊆ T .

(1) If h−1[A] is a left J set in S, then A is a left J set in T .

(2) If A is a right strongly central set in T , then h−1[A] is a right strongly
central set in S.

(3) If h−1[A] is a left central set, a left C set, a left IP set, a left Q set, or a
left weak Q set in S, then A is respectively a left central set, a left C set,
a left IP set, a left Q set, or a left weak Q set in T .

Proof. Let h̃ : βS → βT be the continuous extension of h. Note that by [11,

Corollary 4.22], h̃ is a homomorphism from (βS, ·) to (βT, ·) and from (βS,�)

to (βT,�). Since h is surjective, so is h̃.

(1) Assume that h−1[A] is a left J set in S. To see that A is a left J set in T ,

let F ∈ Pf (NT ) be given. Since T ⊆ S, F ∈ Pf (NS), so pick m ∈ N, a ∈ Sm+1,
and t ∈ Jm such that for each f ∈ F ,

a(m+ 1)f
(
t(m)

)
a(m) · · · a(2)f

(
t(1)

)
a(1) ∈ h−1[A] .

Note that since each f
(
t(i)
)
∈ T , we have that h

(
f
(
t(i)
))

= f
(
t(i)
)
. So we

have h ◦ a ∈ Tm+1 and for each f ∈ F ,

h
(
a(m+ 1)

)
f
(
t(m)

)
h
(
a(m)

)
· · ·h

(
a(2)

)
f
(
t(1)

)
h
(
a(1)

)
∈ A .

(2) Assume that A is right strongly central in T . To see that h−1[A] is right
strongly central in S, let L be a minimal left ideal in (βS, ·). By [11, Exercise

1.7.3], h̃[L] is a minimal left ideal of (βT, ·) so pick an idempotent p of (βS, ·)
with p ∈ h̃[L] ∩ A. Then h̃−1[{p}] ∩ L is a compact subsemigroup of (βS, ·) so

pick an idempotent q ∈ h̃−1[{p}] ∩ L. Then h−1[A] ∈ q.
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(3) Assume that h−1[A] is a left central set in S. Pick an idempotent p in
K(βS,�) such that h−1[A] ∈ p and pick a minimal right ideal R of (βS,�) such

that p ∈ R. By [11, Exercise 1.7.3] h̃[R] is a minimal right ideal of (βT,�) so

h̃(p) is an idempotent in K(βT,�) and A ∈ h̃(p).

Assume that h−1[A] is a left C set in S. Pick an idempotent p in J(βS,�)

such that h−1[A] ∈ p. By (1) h̃(p) is an idempotent in J(βT,�) and A ∈ h̃(p).

Assume that h−1[A] is a left IP set in S. Pick an idempotent p in (βS,�)

such that h−1[A] ∈ p. Then h̃(p) is an idempotent in (βT,�) and A ∈ h̃(p).

Assume that h−1[A] is a left Q set in S. Pick a sequence 〈xn〉∞n=1 in S such
that whenever n,m ∈ N with n < m, one has xm ∈ h−1[A]xn. Then 〈h(xn)〉∞n=1

is a sequence in T and whenever n,m ∈ N with n < m, one has h(xm) ∈ Ah(xn).

Assume that h−1[A] is a left weak Q set in S. Pick a sequence 〈xn〉∞n=1 in
h−1[A] such that whenever n ∈ N one has xn+1xn ∈ h−1[A]. Then 〈h(xn)〉∞n=1

is a sequence in A and whenever n ∈ N one has xn+1xn ∈ A.

5 Partition regularity

A notion that is closed under passage to supersets, as all of the properties we
have been considering are, is partition regular if and only if, whenever the union
of two sets has the property, one of them does. This notion is an important
concept in Ramsey Theory. In this section we establish which of our properties
are partition regular.

It is well known and trivial that right syndetic is not partition regular and
it is easy to see that right strongly central is not partition regular. (If A1 =⋃∞
n=0{22n, 22n+1, 22n+2, . . . , 22n+1−1} and A2 = N\A1, then both A1 and A2

are right thick, so neither is right syndetic nor right strongly central.) Similarly
the even and odd positive integers show that right thick is not partition regular.

All of our notions that are implied by right central except right weak Q
have an algebraic characterization that is witnessed by a single ultrafilter, and
so these notions are all partition regular. That leaves three properties (and of
course, their corresponding left versions). That is, right thickly central, right
strongly piecewise syndetic, and right weak Q. We show now that none of these
notions is partition regular.

Theorem 5.1. In (N,+) the notion of right thickly central is not partition
regular.

Proof. Let B be an infinite subset of N such that N \ B is infinite and let
A = {n ∈ N : θ(n) ∈ B}. By Lemma 4.2, A and N \ A are strongly central, so
A and N \A are not thickly central.

Theorem 5.2. In the free semigroup S on the alphabet {an : n ∈ N} the notion
of strongly right piecewise syndetic is not partition regular.
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Proof. Enumerate Pf (S) as 〈Fn〉∞n=1. Define φ : S → {a1, a2} by φ(w) = a1 if
w begins with a1 and φ(w) = a2 otherwise.

Pick σ(1) ∈ N larger than the index of any letter of any word in F1, and
let K1 = {zaσ(1)φ(z) : z ∈ F1}. Inductively assume that K1,K2, . . . ,Kn−1 and
σ(1), σ(2), . . . , σ(n − 1) have been chosen. Pick σ(n) larger than the index of

any letter that occurs in any word in Fn ∪
⋃n−1
l=1 Kl. Let Kn = {zaσ(n)φ(z) :

z ∈ Fn}. Let A =
⋃∞
n=1Kn. Then given Fn, Fnaσ(n) ⊆

⋃
t∈{a1,a2}At

−1. So

A is strongly right piecewise syndetic. (Note that if z ∈ Fn, u ∈ Fm, and
zaσ(n)φ(z) = uaσ(m)φ(u), then m = n and z = u.)

Let Bi = {zanφ(z) : n ∈ N, z ∈ Fn, and φ(z) = ai}, for i ∈ {1, 2}. We claim
that Bi is not strongly right piecewise syndetic. To see this, let F = {a3−i}
and suppose we have H ∈ Pf (S) and w ∈ S such that Fw ⊆

⋃
t∈H Bit

−1.
Pick t ∈ H such that a3−iwt ∈ Bi. Then a3−iwt = zanφ(z) for some n ∈ N
and z ∈ Fn such that φ(z) = ai. But z begins with a3−i. So φ(z) = a3−i, a
contradiction.

Theorem 5.3. In the free semigroup on the alphabet {an : n ∈ N} the notion
of right weak Q set is not partition regular.

Proof. Let A = {an : n ∈ N}∪{anan+1 : n ∈ N}. Then A is a right weak Q set.
Let B0 = {a2n : n ∈ N} ∪ {a2na2n+1 : n ∈ N} and

B1 = {a2n−1 : n ∈ N} ∪ {a2n−1a2n : n ∈ N}.

Then A = B0 ∪B1 and neither B0 nor B1 is right weak Q. To see this, suppose
we have i ∈ {0, 1} and 〈yn〉∞n=1 in Bi with {ynyn+1 : n ∈ N} ⊆ Bi. Since
for w ∈ A, l(w) ≤ 2, each yn is a2r(n)−i for some r(n) ∈ N and no product
of two such elements can belong to A because words of length two in A have
consecutive indices.
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