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Notions of size in a semigroup –

an update from a historical perspective

Neil Hindman ∗

Abstract

Previous papers have investigated relationships among several notions
of largeness in a semigroup, some of which have their origins in topological
dynamics, others with pure combinatorial roots, and still others based on
the algebraic structure of the Stone-Čech compactification of a discrete
semigroup. Here we consider 52 distinct notions of largeness, giving to
the extent possible a description of the origins and why the notions are of
interest. We establish implications that must hold among these notions.
In the event the semigroup is commutative, these reduce to 24 distinct
notions. We give examples in (N,+) showing that the notions satisfy only
the implications which we have established for commutative semigroups.

1 Introduction

We shall be concerned with several notions of largeness for subsets of a semi-
group (S, ·). All of these notions are closed under passage to supersets. Given
a property R which is closed under passage to supersets, there is a dual notion
R∗ defined as follows: A subset A of S has property R∗ if and only if it has
nonempty intersection with every subset B of S which has property R. Equiva-
lently, A has property R∗ if and only if S \A does not have property R. Notice
that if property R implies property K, then property K∗ implies property R∗

and that property R∗∗ is the same as property R.

For motivation of most of the notions, and for the definitions of some of them,
we need to refer to the Stone-Čech compactification βS of S and its algebraic
structure. Accordingly, we give a very brief introduction to that structure. For
much more detail, see [27, Part I].
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Let (S, ·) be a discrete semigroup. We take the Stone-Čech compactification
βS of S to consist of the set of ultrafilters on S, identifying the principal ul-
trafilters with the points of S so that we take S to be a subset of βS. Given
A ⊆ S, A = {p ∈ βS : A ∈ p}. Then {A : A ⊆ S} forms a basis for the open
sets and a basis for the closed sets of βS and A is the closure of A with respect
to this topology.

The operation · extends to βS so that (βS, ·) is a compact right topological
semigroup (meaning that for each p ∈ βS, ρp is continuous where ρp(q) = q · p)
with S contained in its topological center (meaning that for each x ∈ S, λx
is continuous where λx(q) = x · q). As a compact Hausdorff right topological
semigroup, (βS, ·) has a smallest two sided ideal, K(βS, ·) which is the union
of all of the minimal left ideals and is also the union of all of the minimal right
ideals. The intersection of any minimal left ideal and any minimal right ideal is
a group. In particular, (βS, ·) has idempotents. Given any semigroup T , we let
E(T ) be the set of idempotents in T .

The operation can also be extended to an operation � on βS so that (βS,�)
becomes a left topological semigroup. If the operation on S is commutative, then
for all p and q in βS, p · q = q � p, so that minimal left ideals of (βS, ·) are
minimal right ideals of (βS,�) and K(βS, ·) = K(βS,�). As a consequence
for all of the notions that we will consider, the right version (corresponding to
(βS, ·)) is identical to the left version (corresponding to (βS,�)). However, if S
is not commutative, the two structures can be quite different. For example, by
[11, Corollary 2.2], if S is the free semigroup on two generators, then K(βS, ·)∩
K(βS,�) = ∅. All but two of the notions that we consider have distinct left
and right versions. When we are multiplying members x and y of S, we will
often simply denote the product as xy. But if we are multiplying p and q which
might be in βS \ S, we will always specify whether the product is p · q or p� q.
We will, however, rely on the context to tell whether λp(q) is p · q or p� q.

Many of the notions we will consider are partition regular meaning that, if
the union of two sets has the property, then one of them does. An important
fact is that property R is partition regular if and only if there is an ultrafilter
every member of which has property R.

2 The origin of the notions

The earliest of the notions that we will consider arises from van der Waerden’s
Theorem [36] published in 1927. That is, whenever N is partitioned into finitely
many cells (or finitely colored), one cell must contain arbitrarily long arithmetic
progressions (or is monochromatic). A straightforward translation of the notion
of a length k arithmetic progression into multiplicative notation would be

{
adt :

t ∈ {1, 2, . . . , k}
}

. This would make the notion of a progression a one sided
notion, and it does not seem that it should be inherently one sided, so we
adjust that slightly.
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Definition 2.1. Let (S, ·) be a semigroup.

(1) Given k ∈ N, a set B ⊆ S is a length k progression if and only if there
exist a ∈ S2 and d ∈ S such that B =

{
a(1)dta(2) : t ∈ {1, 2, . . . , k}

}
.

(2) Given k ∈ N, a set B ⊆ S is a length k weak progression if and only if
there exist m ∈ N, a ∈ Sm+1, and d ∈ S such that

B =
{
a(1)dta(2)dt · · · a(m)dta(m+ 1) : t ∈ {1, 2, . . . , k}

}
.

(3) A set A ⊆ S is a P-set if and only if for each k ∈ N, A contains a length
k progression.

(4) A set A ⊆ S is a WP-set if and only if for each k ∈ N, A contains a length
k weak progression.

(5) Prog(S) = {p ∈ βS : (∀A ∈ p)(A is a P-set)}.

(6) WProg(S) = {p ∈ βS : (∀A ∈ p)(A is a WP-set)}.

Notice that in (N,+) any length k progression is a length k arithmetic pro-
gression. The converse is not quite true since, for example, {1+2, 1+4, 1+6, 1+
8} is not a length 4 progression, but it does contain {1+2+2, 1+4+2, 1+6+2}
which is a length 3 progression. A subset of N is a P-set if and only if it contains
arbitrarily long arithmetic progressions.

Since the motivation for considering P and WP is the partition regularity
of arithmetic progressions, we want to verify that these are partition regular
properties.

Lemma 2.2. Let (S, ·) be a semigroup. The properties P and WP are partition
regular. Consequently if A is a P-set (respectively a WP-set), then A∩Prog(S) 6=
∅ (respectively A ∩WProg(S) 6= ∅). Prog(S) and wProg(S) are compact two
sided ideals of (βS, ·) and of (βS,�).

Proof. We do the proofs for P . The proofs for wP are similar, though no-
tationally more cumbersome. To see that P is a partition regular property,
let A1 ∪ A2 be a P-set. It suffices to show that for each k ∈ N, there ex-
ists i(k) ∈ {1, 2} such that Ai contains a length k progression. (Then pick i
such that i(k) = i for infinitely many values of k.) So let k ∈ N. By van
der Waerden’s Theorem, pick n such that whenever {1, 2, . . . , n} is 2-colored,
there is a monochromatic length k arithmetic progression. Pick c ∈ S2 and
d ∈ S such that

{
c(1)dtc(2) : t ∈ {1, 2, . . . , n}

}
⊆ A1 ∪ A2. For i ∈ {1, 2},

let Bi = {t ∈ {1, 2, . . . , n} : c(1)dtc(2) ∈ Ai}. Pick i(k) ∈ {1, 2} and a, b ∈ N
such that

{
a + sb : s ∈ {1, 2, . . . , k}

}
⊆ Bi(k). Then for each s ∈ {1, 2, . . . , k},

c(1)da+sbc(2) ∈ Ai(k). Let e(1) = c(1)da, let f = db, and let e(2) = c(2). Then{
e(1)fse(2) : s ∈ {1, 2, . . . , k}

}
⊆ Ai(k).
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The fact that A ∩ Prog(S) 6= ∅ whenever A is a P-set now follows from [27,
Theorem 3.11].

Now we show that Prog(S) is a compact two sided ideal of (βS,�). It is
trivially compact. Since S is a P-set, we have that Prog(S) 6= ∅. Since the
definition of Prog(S) is completely symmetrical, the corresponding proof for
(βS, ·) follows by left-right switches. Let p ∈ Prog(S) and let q ∈ βS. To see
that p� q ∈ Prog(S), let A ∈ p� q and let k ∈ N. We show that A contains a
length k progression. Now A ∈ λp(q) and λp is continuous with respect to � so
pick B ∈ q such that λp[B ] ⊆ A. Pick x ∈ B. Then ρx(p) = p � x ∈ A. Pick
C ∈ p such that ρx[C ] ⊆ A. Pick a ∈ S2 and d ∈ S such that

{
a(1)dta(2) : t ∈

{1, 2, . . . , k}
}
⊆ C. Then

{
a(1)dta(2)x : t ∈ {1, 2, . . . , k}

}
⊆ A.

To see that q � p ∈ Prog(S), let A ∈ q � p and let k ∈ N. We show that
A contains a length k progression. Now A ∈ λq(p) and λq is continuous with
respect to � so pick B ∈ p such that λ[B ] ⊆ A. Pick a ∈ S2 and d ∈ S

such that
{
a(1)dta(2) : t ∈ {1, 2, . . . , k}

}
⊆ B. For each t ∈ {1, 2, . . . , k}, let

x(t) = a(1)dta(2) and note that ρx(t)(q) ∈ A so that we may pick Ct ∈ q such

that ρx(t)[Ct ] ⊆ A. Pick z ∈
⋂k
t=1 Ct. Then

{
za(1)dta(2) : t ∈ {1, 2, . . . , k}

}
⊆

A.

All of the remaining notions we consider have both right and left versions.
The choice of which to call “right” and which to call “left” is based on whether
they relate most naturally to (βS, ·) or (βS,�).

The second notion which is of interest to us is a notion of density, introduced
for subsets of N by G. Polya in [33], published in 1929. To avoid proliferation
of terminology, we go along with Furstenberg in [15, Definition 3.7] in calling it
Banach density .

Definition 2.3. Let A ⊆ N. The Banach density of A is

d∗(A) = sup{α ∈ [0, 1] :
(∀m ∈ N)(∃n ≥ m)(∃x ∈ N)(|A ∩ {x+ 1, x+ 2, . . . , x+ n}| ≥ α · n} .

Definition 2.4. A set A ⊆ N is a B-set if and only if d∗(A) > 0.

In [35], E. Szemerédi proved a longstanding conjecture of Erdős which gen-
eralized van der Waerden’s Theorem, showing that any B-set in N contains ar-
bitrarily long arithmetic progressions. Recently in [30], J. Moreira, F. Richter,
and D. Robertson proved another longstanding conjecture of Erdős showing that
for any B-set A, there exist infinite B and C such that B + C = {b + c : b ∈
B and c ∈ C} ⊆ A.

In [9], V. Bergelson and A. Leibman used ergodic theory to provide strong
generalizations of Szemerédi’s Theorem. A special case of one of those general-
izations is the following. If S is a B-set, k ∈ N, p1, p2, . . . , pk are polynomials
with rational coefficients taking on integer values on the integers and satisfying
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pi(0) = 0 for each i ∈ {1, 2, . . . , k}, then for any v1, v2, . . . , vk ∈ Z, there exist n
and u in N such that u+ pi(n)vi ∈ S for each i ∈ {1, 2, . . . , k}.

We will introduce right and left versions of B-sets in Section 3 after de-
veloping what we believe is an appropriate extension of the notion of Banach
density.

The next notion which is of interest to us is that of a difference set . The
fact that this notion is partition regular is a consequence of Ramsey’s Theorem
[34], published in 1930. In its simplest nontrivial form, Ramsey’s Theorem says
that whenever

{
{m,n} : m,n ∈ N and m 6= n

}
= B1∪B2, there exist i ∈ {1, 2}

and an infinite set M ⊆ N such that
{
{m,n} : m,n ∈M and m 6= n

}
⊆ Bi.

Definition 2.5. (1) A set A ⊆ N is a difference set if and only if there is a
sequence 〈xn〉∞n=1 in N such that {xn − xm : m < n} ⊆ A.

(2) Let (S, ·) be a semigroup and let A ⊆ S. Then A is an rQ-set if and only
if there exists a sequence 〈xn〉∞n=1 in S such that whenever m < n in N,
xn ∈ xmA.

(3) Let (S, ·) be a semigroup and let A ⊆ S. Then A is an ` Q-set if and only
if there exists a sequence 〈xn〉∞n=1 in S such that whenever m < n in N,
xn ∈ Axm.

If S is commutative, we refer simply to Q-sets.

The letter Q is intended to represent “quotient”. Notice that if S is embed-
dable in a group, then A ⊆ S is an rQ-set if and only if there exists a sequence
〈xn〉∞n=1 in S such that {x−1m xn : m < n} ⊆ A. In particular a subset of (N,+)
is a difference set if and only if it is a Q-set.

Lemma 2.6. Let (S, ·) be a semigroup. The properties rQ and `Q are partition
regular.

Proof. It suffices to establish the assertion for rQ. Assume that A1 and A2 are
subsets of S and A1 ∪A2 is an rQ-set. Pick a sequence 〈xn〉∞n=1 in S such that
whenever m < n in N, xn ∈ xm(A1 ∪ A2). For i ∈ {1, 2}, let Bi =

{
{m,n} :

m,n ∈ N , m < n and xn ∈ xmAi
}

. By Ramsey’s Theorem, pick i ∈ {1, 2}
and an infinite set M ⊆ N such that

{
{m,n} : m,n ∈ M and m 6= n

}
⊆ Bi.

Enumerate Bi in increasing order as 〈t(n)〉∞n=1. For n ∈ N, let yn = xt(n). Then
whenever m < n in N, yn ∈ ymAi.

The historically next notions that we deal with are syndetic and thick . These
are notions from topological dynamics which go back at least to 1955. They
appear in [18] (where “thick” was called “replete”). Neither one is partition
regular but both are quite useful in describing the algebraic structure of βS.

Given a set X we write Pf (X) for the set of finite nonempty subsets of
X. Given x in a semigroup S and A ⊆ S, x−1A = {y ∈ S : xy ∈ A} and
Ax−1 = {y ∈ S : yx ∈ A}.
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Definition 2.7. Let (S, ·) be a semigroup.

(1) A set A ⊆ S is right syndetic (abbreviated rSynd) if and only if there
exists H ∈ Pf (S) such that S =

⋃
t∈H t

−1A.

(2) A set A ⊆ S is left syndetic (abbreviated `Synd) if and only if there exists
H ∈ Pf (S) such that S =

⋃
t∈H At

−1.

(3) A set A ⊆ S is right thick (abbreviated rThick) if and only if for every
F ∈ Pf (S), there exists x ∈ S such that Fx ⊆ A.

(4) A set A ⊆ S is left thick (abbreviated `Thick) if and only if for every
F ∈ Pf (S), there exists x ∈ S such that xF ⊆ A.

Note that A is right thick if and only if S \A is not right syndetic. That is
rThick=rSynd*.

Lemma 2.8. Let (S, ·) be a semigroup.

(a) A set A ⊆ S is right syndetic if and only if for every left ideal L of (βS, ·),
L ∩A 6= ∅.

(b) A set A ⊆ S is left syndetic if and only if for every right ideal R of (βS,�),
R ∩A 6= ∅.

(c) A set A ⊆ S is right thick if and only if there exists a left ideal L of (βS, ·)
such that L ⊆ A.

(d) A set A ⊆ S is left thick if and only if there exists a right ideal R of
(βS,�) such that R ⊆ A.

Proof. Statements (a) and (c) are [27, Theorem 4.48].

By now it should be clear how to convert a “right” statement into the corre-
sponding “left” statement, so we will cease to specifically state the left versions.

Next in historical order is the notion of piecewise syndetic. Without giving
the property a name, T. Brown in [10, Lemma 1], published in 1971, showed that
if N is partitioned into finitely many pieces, one of them is piecewise syndetic.

In [19, Definition 2.3], published in 1973, this author introduced a notion
for subsets of N that he called property S , which is the negation of piecewise
syndetic, and stated without proof as Lemma 2.4 that if A and B have property
S, then so does A ∪B.

In [15, Definition 1.11], published in 1981, the notion, again applied only to
subsets of N or Z, was given the name piecewise syndetic and defined as the
intersection of a syndetic set with a thick set. Further, in [15, Theorem 1.24] it
was proved that if a piecewise syndetic subset of N or Z is finitely colored, then
there is a monochromatic piecewise syndetic subset.
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The earliest instance that I have found of the notion being defined for an
arbitrary semigroup is in [27, Definition 4.38], the first edition of which was
published in 1998.

Definition 2.9. Let (S, ·) be a semigroup. A set A ⊆ S is right piecewise
syndetic (abbreviated rPS) if and only if there exists H ∈ Pf (S) such that for
every F ∈ Pf (S) there is some x ∈ S such that Fx ⊆

⋃
t∈H t

−1A.

Lemma 2.10. Let (S, ·) be a semigroup and let A ⊆ S. Then A is right
piecewise syndetic if and only if A ∩K(βS, ·) 6= ∅.

Proof. [27, Theorem 4.40].

Next in historical order is the notion of an IP-set which stems from the
proof as [20, Theorem 3.1], published in 1974, of the Finite Sums Theorem and
from [20, Corollary 3.3] which easily allows the Finite Sums Theorem to apply
to an arbitrary semigroup. Given a sequence 〈xn〉∞n=1, in a semigroup (S, ·),
let FP (〈xn〉∞n=1) = {

∏
t∈F xt : F ∈ Pf (N)} where the products are taken in

increasing order of indices.

Theorem 2.11. Let (S, ·) be a semigroup, let r ∈ N and let S =
⋃r
i=1Ai. There

exist i ∈ {1, 2, . . . , r} and a sequence 〈xn〉∞n=1 in S such that FP (〈xn〉∞n=1) ⊆ Ai.

Proof. Pick any sequence 〈yn〉∞n=1 in S. For i ∈ {1, 2, . . . , r}, let Bi = {F ∈
Pf (N) :

∏
t∈F yt ∈ Ai}. By the proof of [20, Corollary 3.3], pick i ∈ {1, 2, . . . , r}

and a sequence 〈Fn〉∞n=1 in Pf (N) such that maxFn < minFn+1 for each n ∈ N
and {

⋃
t∈H Ft : H ∈ Pf (N)} ⊆ Bi. For n ∈ N, let xn =

∏
t∈Fn

yt. Given H ∈
Pf (N), if G =

⋃
n∈H Fn, then

∏
n∈H xn =

∏
t∈G yt because maxFn < minFn+1

for each n so FP (〈xn〉∞n=1) ⊆ Ai.

The term IP-set (applied only to subsets of N) originated in [17, Definition
2.2], published in 1978.

Definition 2.12. Let (S, ·) be a semigroup. A set A ⊆ S is a right IP-set
(abbreviated rIP) if and only if there exists a sequence 〈xn〉∞n=1 in S such that
FP (〈xn〉∞n=1) ⊆ A.

The following lemma is due to F. Galvin in personal communications. It
was not published by him.

Lemma 2.13. Let (S, ·) be a semigroup. The set A ⊆ S is a right IP-set if and
only if there is an idempotent p ∈ (βS, ·) with A ∈ p.

Proof. [27, Theorem 5.12].

For left IP-sets, the products are taken in decreasing order of indices and
the idempotent of Lemma 2.13 is an idempotent of (βS,�).
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Furstenberg [15, page 53] says that IP-sets were so named because of the
relationship to idempotents. But he considered a finite-dimensional parallelop-
iped, such as the 3-dimensional one indicated below and pointed out that “an
IP-set might be thought of as an Infinite-dimensional Parallelopiped”.

�
�
�
�

�
�
�
�

�
�
�
�

· ·
· ·
· ·
· ·
·
·
·
·
·
·
·

· · · · · · ·

a

c

b
a+ b

a+ c

a+ b+ cb+ c

Next in historical order is the notion of central sets, which were introduced
for subsets of N by H. Furstenberg in [15, Definition 8.3], published in 1981. The
original definition was in terms of a dynamical system and involved the notions
of uniform recurrence and proximality. See [27, Section 19.3] for a proof that
this definition is equivalent to the one we are using here and see the notes to
[27, Chapter 14 and Chapter 19] for historical information about the evolution
of the Central Sets Theorem.

Definition 2.14. Let (S, ·) be a semigroup. A set A ⊆ S is right central
(abbreviated rCntrl) if and only if there is an idempotent p ∈ A ∩K(βS, ·).

The original Central Sets Theorem was [15, Proposition 8.21] and applied to
subsets of N and finitely many sequences in Z. What is currently the strongest
version follows. It is due to D. De, D. Strauss, and this author in [12] and to J.

Johnson in [28]. We write NS for the set of sequences in S.

Definition 2.15. Let m ∈ N. Then
Jm =

{(
t(1), t(2), . . . , t(m)

)
∈ Nm : t(1) < t(2) < . . . < t(m)

}
.

Theorem 2.16. Let (S, ·) be a semigroup and let C be a right central subset of
S. There exist

m : Pf (NS)→ N , α ∈×F∈Pf (NS)
Sm(F )+1, and τ ∈×F∈Pf (NS)

Jm(F )

such that

(a) if F,G ∈ Pf (NS) and F ( G, then maxH(F ) < minH(G) and

(b) whenever n ∈ N, G1, G2, . . . , Gn ∈ Pf (NS), G1 ( G2 ( . . . ( Gn, and for
each i ∈ {1, 2, . . . , n}, fi ∈ Gi, one has∏n

i=1

((∏m(Gi)
j=1 α(Gi)(j) · fi

(
τ(Gi)(j)

))
· α(Gi)(m(Gi) + 1)

)
∈ A .
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Proof. [28, Corollary 3.3].

By [27, Theorem 4.44], for any semigroup S, c`K(βS, ·) is a two sided ideal
of (βS, ·). The following notion was introduced in [25], published in 1996.

Definition 2.17. Let (S, ·) be a semigroup. A set A ⊆ S is a right quasi-central
set (abbreviated rQC) if and only if there is an idempotent p ∈ A ∩ c`K(βS, ·).

It is not obvious that there are quasi-central sets that are not central. It
was shown in [25, Theorem 4.4] that there is a quasi-central subset of N which
is not central.

The following notion was introduced in [7, Definition 2.11], published in
1998. Its definition is a cross between the definitions of right piecewise syndetic
and left piecewise syndetic. We shall see that it sits between the notions of left
syndetic and right piecewise syndetic.

Definition 2.18. Let (S, ·) be a semigroup. A set A ⊆ S is right strongly
piecewise syndetic (abbreviated rSPS) if and only if there exists H ∈ Pf (S)
such that for every F ∈ Pf (S) there is some x ∈ S such that Fx ⊆

⋃
t∈H At

−1.

Next come the notions of C-set and J-set, introduced in [12, Definition 3.3]
which was published in 2008. (C-sets were called there strongly rich sets.) The
main reason one is interested in central sets is because they satisfy the Central
Sets Theorem (Theorem 2.16). And C-sets are precisely those sets which satisfy
the Central Sets Theorem. Because of this fact, C-sets have many (but not
all) of the desirable properties of central sets. For example, it follows from
[27, Theorem 15.5.2 and (a) ⇒ (f) of Theorem 15.24] that given any C-set C
contained in N and any finite image partition regular matrix A with rational
entries, there is an image of A with all of its entries in C.

Definition 2.19. Let (S, ·) be a semigroup.

(1) A set A ⊆ S is a right J-set (abbreviated rJ) if and only if for each

F ∈ Pf (NS), there exist m ∈ N, α ∈ Sm+1, and t ∈ Jm such that for each

f ∈ F ,
(∏m

j=1 α(j)f
(
t(j)

))
α(m+ 1) ∈ A.

(2) rJ(S) = {p ∈ βS : (∀A ∈ p)(A is a right J-set)}.

(3) A set A ⊆ S is a right C-set (abbreviated rC) if and only if there exist

m : Pf (NS)→ N , α ∈×F∈Pf (NS)
Sm(F )+1, and τ ∈×F∈Pf (NS)

Jm(F )

such that

(a) if F,G ∈ Pf (NS) and F ( G, then maxH(F ) < minH(G) and
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(b) whenever n ∈ N, G1, G2, . . . , Gn ∈ Pf (NS), G1 ( G2 ( . . . ( Gn,
and for each i ∈ {1, 2, . . . , n}, fi ∈ Gi, one has∏n

i=1

((∏m(Gi)
j=1 α(Gi)(j) · fi

(
τ(Gi)(j)

))
· α(Gi)(m(Gi) + 1)

)
∈ A .

Lemma 2.20. Let (S, ·) be a semigroup.

(a) rJ(S) is a compact two sided ideal of (βS, ·) and of (βS,�).

(b) A set A ⊆ S is a right C-set if and only if there is an idempotent p ∈
A ∩ rJ(S).

Proof. The first part of conclusion (a) is [27, Theorem 14.14.4] except that we
neglected to show that rJ(S) 6= ∅, so it should have been placed after [27,
Lemma 14.14.6]. The second part is [24, Lemma 3.1].

Conclusion (b) is [27, Theorem 14.15.1].

The historically next to last notion that we will consider is D-set which was
introduced for subsets of N by V. Bergelson and T. Downarowicz in [5, Definition
1.2], published in 2008.

Definition 2.21. A set A ⊆ N is a D-set if and only if there is an idempotent
p ∈ A such that every B ∈ p has d∗(B) > 0.

M. Beiglböck, V. Bergelson, T. Downarowicz, and A. Fish in [4, Theorem
11] proved that any D-set in N satisfies the conclusion of the original Central
Sets Theorem [15, Proposition 8.21] and remarked that in fact one could show
that a D-set in N satisfies the full Central Sets Theorem; that is that D-sets in
N are C-sets.

As with B-sets, introduction of right and left versions of D-sets await the
introduction of an appropriate generalization of Banach density in the next
section.

The historically last of the notions that we are considering is strongly cen-
tral which was introduced by V. Bergelson, D. Strauss, and this author in [8,
Definition 2.1], published in 2012.

Definition 2.22. Let (S, ·) be a semigroup. A set A ⊆ S is right strongly
central (abbreviated rSC) if and only if for every minimal left ideal L of (βS, ·),
there is an idempotent in A ∩ L.

Note that since every left ideal of (βS, ·) contains a minimal left ideal, one
can equivalently require that there is an idempotent in A∩L for every left ideal
L of (βS, ·). Note that A is rSC* if and only if there is a left ideal L of (βS, ·)
with E(L) ⊆ A.

To the best of my knowledge, there are five previous papers that considered
the relationships among some of the notions that we have introduced in this
section.
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• In [7] both right and left versions of syndetic, thick, piecewise syndetic,
and strongly piecewise syndetic were considered, defined in an arbitrary
semigroup.

• In [6] Q, Q∗, IP , IP ∗, central, central*, PS, PS∗, syndetic, and syndetic*
were considered, defined in an arbitrary semigroup, but only the “right”
versions were considered.

• In [5] IP , IP ∗, D, D∗, central, and central* were considered, all defined
only for subsets of Z. They also considered infinite and infinite* (i.e.
cofinite) and shift invariant extensions of all of these.

• In [23]Q, Q∗, IP , IP ∗, C, C∗, J , J∗, central, central*, syndetic, syndetic*,
PS, PS∗, P , P ∗, and SC (but not SC∗) were considered, all defined only
for subsets of N.

• In [24] both right and left versions of Q, IP , C, J , central, PS, SPS,
P , WP , syndetic, syndetic*, SC, and SC∗ were considered, defined for
arbitrary semigroups. They also considered another notion, called a weak
Q-set (about which, more below).

As we noted, in [5] “infinite” was included among the things studied, as
well as translation invariant extensions of all of the notions they studied. It is
certainly reasonable to think that “large” sets ought to be infinite. But since we
are dealing with arbitrary semigroups, one cannot arrange this without strongly
modifying the definitions. For example, {0} is an IP-set in Z. (In [5], this was
excluded by fiat.)

There is no obvious reason not to study the translation invariant extensions
of the notions, except that I feel that results in an unmanageable number of
notions. (The innocent reader can be excused if she thinks I already have an
unmanageable number.)

In [24] a right weak Q-set was defined as a set A for which there is a sequence
〈xn〉∞n=1 in A such that xnxn+1 ∈ A for each n ∈ N. I decided that this is not
an interesting notion. In (N,+), {x, 2x} satisfies that definition for each x ∈ N.
(At least in (N,+) any set satisfying any of the notions that we study is infinite.)

3 Følner Density, B-sets, and D-sets

In this section we argue that semigroups satisfying (left or right versions of)
the Strong Følner Condition are a natural context for extending the notion of
Banach density and therefore for studying right and left B-sets and D-sets.

A semigroup (S, ·) is left amenable if and only if there exists a left invariant
mean for S. See [32] for the definitions. We don’t need to deal with means here.
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E. Følner established in [13] that a group (S, ·) is left amenable if and only
if it satisfies what is now known as the Følner condition:(

∀H ∈ Pf (S)
)(
∀ε > 0

)(
∃K ∈ Pf (S)

)(
∀s ∈ H

)(
|sK \K| < ε|K|

)
.

We will denote this condition as rFC. If “|sK \K|” is replaced by “|Ks \K|”
we will refer to the condition as `FC.

In [14], A. Frey showed that any left amenable semigroup satisfies rFC. A
more easily accessible proof was given by I. Namioka in [31].

Using an argument from [32, Section 4.22] we see that if (S, ·) is a semigroup,
K ∈ Pf (S), and s ∈ S, then |K ∩ sK| + |K \ sK| = |K| ≥ |sK| = |sK ∩K| +
|sK \K| so that |K \ sK| ≥ |sK \K| and equality holds if s is left cancelable.
Consequently the Følner condition follows from the strong Følner condition(

∀H ∈ Pf (S)
)(
∀ε > 0

)(
∃K ∈ Pf (S)

)(
∀s ∈ H

)(
|K \ sK| < ε|K|

)
which we will denote by rSFC. Further, if S is left cancellative, then rFC and
rSFC are equivalent and in particular any left cancellative left amenable semi-
group satisfies rSFC. (If the reader wonders about the right versus left termi-
nology, we will see that for certain semigroups rSFC is associated with an ideal
of (βS, ·), which is the structure that we have been associating with “right”
terminology.)

L. Argabright and C. Wilde showed in [3, Theorem 1] that any semigroup
satisfying the strong Følner coindition is left amenable and in [3, Theorem 4]
that any commutative semigroup satisfies the strong Følner condition. (For a
simple elementary proof of the latter fact, see [26, Section 7].) In [29] M. Klawe
proved that there exists a right cancellative left amenable semigroup which does
not satisfy the strong Følner condition. An isomorphic copy of this semigroup
is presented below in Theorem 6.1. (She did not mention this fact, but her
example is in fact weakly left cancellative, meaning that for any x, y ∈ S,
{z ∈ S : xz = y} is finite.)

Given any semigroup satisfying rSFC, there is a natural notion of density
associated, which we will argue is an appropriate generalization of Banach den-
sity.

Definition 3.1. Let (S, ·) be a semigroup which satisfies rSFC.

(1) For A ⊆ S, the right Følner density of A is defined by
dr(A) = sup{α ∈ [0, 1] :

(
∀H ∈ Pf (S)

)
(∀ε > 0)

(
∃K ∈ Pf (S)

)(
(∀s ∈ H)(|K \ sK| < ε · |K|) and |A ∩K| ≥ α · |K|

)
}.

(b) ∆∗r(S) = {p ∈ βS : (∀A ∈ p)(dr(A) > 0)}.

We now note some important facts about Følner density from [26]. We first
observe that Følner density does generalize Banach density.
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Lemma 3.2. Let A ⊆ N. Then dr(A) = d∗(A).

Proof. [26, Theorem 1.9].

A desirable property of a notion of density is left invariance.

Lemma 3.3. Let (S, ·) be a semigroup satisfying rSFC, let A ⊆ S, and let
t ∈ S. Then dr(t

−1A) = dr(A).

Proof. [26, Theorem 6.3].

Another desirable property of a notion of density is subadditvity.

Lemma 3.4. Let (S, ·) be a semgroup satisfying rSFC and let A and B be
subsets of S. Then dr(A ∪B) ≤ dr(A) + dr(B).

Proof. Suppose that we have δ > 0 such that dr(A ∪ B) > dr(A) + dr(B) + δ.
Let a = dr(A) and b = dr(B). Since dr(A) < a+ δ

3 pick H1 ∈ Pf (S) and ε1 > 0
such that(

∀K ∈ Pf (S)
)(

(∀s ∈ H1)(|K \ sK| < ε1|K|)⇒ |A ∩K| < (a+ δ
3 )|K|

)
.

Since dr(B) < b+ δ
3 pick H2 ∈ Pf (S) and ε2 > 0 such that(

∀K ∈ Pf (S)
)(

(∀s ∈ H2)(|K \ sK| < ε2|K|)⇒ |A ∩K| < (a+ δ
3 )|K|

)
.

Let H = H1 ∪ H2 and let ε = min{ε1, ε2}. Pick K ∈ Pf (S) such that for
all s ∈ H, |K \ sK| < ε|K| and |(A ∪ B) ∩ K| ≥ (a + b + δ)|K|. This is a
contradiction.

Lemma 3.5. Let S be a semigroup satisfying rSFC and let A ⊆ S. Then
A ∩∆∗r(S) 6= ∅ if and only if dr(A) > 0.

Proof. This is an immediate consequence of Lemma 3.4 and [27, Theorem 3.11].

Definition 3.6. Let (S, ·) be a semigroup satisfying rSFC.

(1) The set A ⊆ S is a right B-set (abbreviated rB) if and only if dr(A) > 0.

(2) The set A ⊆ S is a right D-set (abbreviated rD) if and only if A is a
member of an idempotent in ∆∗r(S).

Lemma 3.7. Let (S, ·) be a semigroup satisfying rSFC. Then ∆∗r(S) is a left
ideal of (βS, ·). If S is left cancellative or there exists b ∈ N such that for each
x ∈ S, ρx is at most b-to-1, then ∆∗r is a compact two sided ideal of (βS, ·).

Proof. [26, Corollary 6.6].

13



A strong argument in favor of the appropriateness of the notion of Følner
density is the fact that we extend the main result of [4].

Theorem 3.8. Let (S, ·) be a commutative semigroup.

(a) If A is an rB-set in S, then A is an rJ-set in S.

(b) If A is an rD-set in S, then A is an rC-set in S.

Proof. Conclusion (a) follows from [26, Lemma 2.2 and Theorem 6.10]. By
conclusion (a), ∆∗r(S) ⊆ rJ(S) so if A is an rD-set, then A is a member of an
idempotent in rJ(S) so that [27, Theorem 14.15.1] applies.

We would like to get rid of the commutativity assumption in Theorem 3.8.
However, the proof of [26, Theorem 6.10] relies heavily on [16, Theorem A]
which is a deep theorem about commuting transformations. So we do not have
high hopes of success.

The following simple fact will be useful later.

Lemma 3.9. Assume that (S, ·) is a semigroup satisfying rSFC and there exists
b ∈ N auch that for each x ∈ S, ρx is at most b-to-1. If A is a right thick subset
of S, then dr(A) = 1. If A is a right piecewise syndetic subset of S, then there
exists H ∈ Pf (S) such that dr(

⋃
t∈H t

−1A) = 1.

Proof. Assume that A is right thick. Let H ∈ Pf (S) and ε > 0 be given. Pick
K ∈ Pf (S) such that for all s ∈ H, |K \ sK| < ε

b |K|. Pick x ∈ S such that
Kx ⊆ A. Then for each s ∈ H, Kx \ sKx ⊆ ρx[K \ sK] so |Kx \ sKx| ≤
|K \ sK| < ε

b |K| ≤ ε|Kx| and |A∩Kx| = |Kx|. If A is right piecewise syndetic,
then there is some H ∈ Pf (S) such that

⋃
t∈H t

−1A is right thick.

There is a density notion naturally associated with semigroups satisfying
rFC. We could define:
d′(A) = sup{α ∈ [0, 1] :

(
∀H ∈ Pf (S)

)
(∀ε > 0)

(
∃K ∈ Pf (S)

)(
(∀s ∈ H)(|sK \K| < ε · |K|) and |A ∩K| ≥ α · |K|

)
}.

However, this notion is not particularly well behaved. Let S be an infinite
left zero semigroup – that is, xy = x for all x, y ∈ S. Then S is not left
amenable, but it does satisfy rFC. And it is an easy exercise to show that for
A ⊆ S, d′(A) = 1 if A is infinite and d′(A) = 0 if A is finite. So if A is an
infinite subset of S and t ∈ S \ A, then d′(A) = 1 while d′(t−1A) = 0. Then if
one defines ∆′(S) = {p ∈ βS : (∀A ∈ p)(d′(A) > 0)}, one has ∆′(S) = βS \ S
so that ∆′(S) is not a left ideal of (βS, ·).

It is possible that d′ is a respectable notion for semigroups that are left
amenable; we do not know. Certainly, if S is left cancellative, then d′(A) =
dr(A) for all A ⊆ S so we do have that d′ is a decent notion.
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An infinite left zero semigroup S does satisfy `SFC, and is, in particular,
right amenable. For A ⊆ S, d`(A) = 1 if and only if A 6= ∅ and given t ∈ S,
At−1 = A.

4 Implications among the notions

In Figure 1 we have diagrammed the implications that we know hold among the
52 notions that we have introduced.
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Figure 1: Implications for arbitrary S
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To verify that all of the listed implications in Figure 1 are valid, it suffices to
verify the immplications in the following diagram. For example, having shown
that rSC ⇒ rCntrl, rSC ⇒ rSynd, and rSC* ⇒ rCntrl, it follows respectively
that rCntrl* ⇒ rSC*, rThick ⇒ rSC*, and rCntrl* ⇒ rSC, using the fact that
rThick = rSynd*. And of course the remaining implications hold by left-right
switches.
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to hold if S is

commutative.

As we proceed through the verifications, we will assume we have a semigroup
(S, ·). The implications rSC*⇒ rCntrl, rSC⇒ rCntrl, rSynd⇒ `SPS,
rSynd ⇒ rPS, rCntrl ⇒ rQC, rD ⇒ rB, and P ⇒ WP are all immediate
consequences of the relevant definitions as are the facts that rPS ⇒ rSPS and
WP⇒ P, when S is commutative.

By Theorem 3.8, if S is commutative, then rB ⇒ rJ and rD ⇒ rC. If A
is right strongly central, then for any left ideal L of (βS, ·), A ∩ L 6= ∅ so by
Lemma 2.8 A is right syndetic. Thus rSC⇒ rSynd. Using Lemma 2.10 we see
that rQC⇒ rPS.

By Lemma 2.2, Prog(S) is a compact two sided ideal of (βS, ·) and of (βS,�)
and by Lemma 2.20, rJ(S) is a compact two sided ideal of (βS, ·) and of (βS,�)
so c`K(βS, ·) ⊆ ProgS ∩ rJ(S) and c`K(βS,�) ⊆ ProgS ∩ rJ(S). By Lemma
2.10, if A is right piecewise syndetic, then A ∩ K(βS, ·) 6= ∅ and if A is left
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piecewise syndetic, then A ∩K(βS,�) 6= ∅. Consequently rPS⇒ P, rPS⇒ rJ,
and `PS ⇒ rJ. By a left-right switch, rPS ⇒ `J. Also, if p is an idempotent
in c`K(βS, ·), then p ∈ rJ(S) so by Lemma 2.20, any member of p is an rC-set
and consequently rQC⇒ rC.

By Lemma 2.13 a set A ⊆ S is an rIP-set if and only if A is a member of an
idempotent in (βS, ·). Therefore rD⇒ rIP and by Lemma 2.20, rC⇒ rIP. The
fact that rC⇒ rJ is a direct consequence of Lemma 2.20.

To see that rIP⇒ rQ, let A be an rIP-set and pick a sequence 〈xn〉∞n=1 in S
such that FP (〈xn〉∞n=1) ⊆ A. For n ∈ N, let yn =

∏n
t=1 xt. Then if m < n, we

have yn = ym
∏n
t=m+1 xt ∈ ymA.

To see that rJ ⇒ WP, let k ∈ N be given and fix d ∈ S. For t ∈
{1, 2, . . . , k}, let ft be the sequence in S constantly equal to dt. Let A be an
rJ-set. Pick m ∈ N, a ∈ Sm+1, and s ∈ Jm such that for each t ∈ {1, 2, . . . , k},
a(1)ft

(
s(1)

)
a(2) · · · a(m)ft

(
s(m)

)
a(m+ 1) ∈ A. Then{

a(1)dta(2) · · · a(m)dta(m+ 1) : t ∈ {1, 2, . . . , k}
}

is a length k weak progression contained in A.

To see that rSPS⇒ rPS, let A be a right strongly piecewise syndetic subset
of S. Pick H ∈ Pf (S) such that for each F ∈ Pf (S) there exists x ∈ S
such that Fx ⊆

⋃
t∈H At

−1. Then
⋃
t∈H At

−1 is right thick so by Lemma 2.8,

pick a minimal left ideal L of (βS, ·) such that L ⊆
⋃
t∈H At

−1. Pick p ∈ L.
Then

⋃
t∈H At

−1 ∈ p so pick t ∈ H such that At−1 ∈ p. Then A ∈ pt and

pt ∈ K(βS, ·) so A ∩K(βS, ·) 6= ∅. Thus by Lemma 2.10, A is right piecewise
syndetic.

It remains for us to show that if S satisfies rSFC and is either left cancellative
or there exists b ∈ N such that for each x ∈ S, ρx is at most b-to-1, then
rPS ⇒ rB and rQC ⇒ rD. So assume that S satisfies rSFC and is either left
cancellative or there exists b ∈ N such that for each x ∈ S, ρx is at most
b-to-1. Then by Lemma 3.7, ∆∗r(S) is a compact two sided ideal of (βS, ·) and
consequently c`K(βS, ·) ⊆ ∆∗r(S). Thus, if p is an idempotent in c`K(βS, ·) we
have that p is an idempotent in ∆∗r(S) and so rQC⇒ rD. If A is right piecewise
syndetic then by Lemma 2.10, A∩K(βS, ·) 6= ∅ and hence A∩∆∗r(S) 6= ∅. Thus
rPS⇒ rB.

It would be nice to know whether any of the missing implications hold in
general. We had partial success in [24] where it was shown that the only im-
plications that hold in general among the notions rThick, rSC*, rSynd, rSPS,
rCntrl, rPS, rC, rJ, rIP, rQ, `Thick, `SC*, `Synd, `SPS, `Cntrl, `PS, `C, `J,
`IP, `Q, P, and WP are those that follow from the implications in Figure 1.
What little information we have to add to this will be presented in Section 6
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5 Commutative semigroups

In the event that S is commutative, Figure 1 collapses to Figure 2. All of the
implications in Figure 2 hold because they follow from implications in Figure 1.
In this section, we will show that none of the missing implications in Figure 2
hold in general. In fact, we will show that for each of the 24 properties listed,
there is a subset of (N,+) having that property and only those other properties
that hold as a consequence of the implications in the diagram. This is stronger
than simply showing that in (N,+) none of the missing implications is valid. For
example, to see that central does not satisfy any missing implication, it suffices
to find a central set A which is not syndetic and a central set B which is not
SC*. Then A∩B will be neither syndetic nor SC*, but may not be central. We
shall show that there is a central set which is neither syndetic nor SC*.

Theorem 5.1. For each of the properties in Figure 2, there is a subset of N with
that property and only those other properties that it must have as a consequence
of the implications in Figure 2.

Proof. (1) Let A = {22n−22m : m,n ∈ N and m < n}. Then A is a Q-set which
is neither a P-set nor an IP-set.

Trivially A is a Q-set and is not an IP-set. We claim A contains no length
3 progression. Suppose instead one has a, d ∈ N with a > 1 such that {a, a +
d, a+2d} ⊆ A. Pick m,n, r, s, l, t ∈ N such that a = 22n−22m, a+d = 22r−22s,
and a + 2d = 22l − 22t. Note that n > m, r > s, l > t, and l ≥ r ≥ n. Then
d = 22r − 22s − 22n + 22m = 22l − 22t − 22r + 22s so 22r+1 + 22m + 22t =
22l + 22s+1 + 22n. A little checking of cases shows that this is impossible.

(2) Let A = {22n + m2n + 1 : m,n ∈ N and m < n}. Then A is a P-set
which is neither a Q-set nor a J-set.

Trivially A is a P-set. Since A ⊆ 2N + 1, A is not a Q-set. By [23, Lemma
4.3], A is not a J-set.

(3) Let A = {
∑
n∈F 22n : F ∈ Pf (N)}. Then A is an IP-set which is not

P-set.

To see that A is not a P-set, we show that A does not contain a length 3
progression. Suppose instead one has a, d ∈ N with a > 1 such that {a, a+d, a+
2d} ⊆ A. Pick F,G,H ∈ Pf (N) such that a =

∑
n∈F 22n, a+d =

∑
n∈G 22n, and

a+2d =
∑
n∈H 22n. Note that G\F 6= ∅. Then d =

∑
n∈G\F 22n−

∑
n∈F\G 22n

and d =
∑
n∈H\G 22n−

∑
n∈G\H 22n so that x =

∑
n∈G\F 22n +

∑
n∈G\H 22n =∑

n∈H\G 22n+
∑
n∈F\G 22n. We write supp(x) for the binary support of x, that

is the powers of 2 occurring in the binary expansion of x. Pick t ∈ G \ F . If
t /∈ H, then 2t + 1 ∈ supp(x). If t ∈ H, then 2t ∈ supp(x). But {2t, 2t + 1} ∩
supp(

∑
n∈H\G 22n +

∑
n∈F\G 22n) = ∅, a contradiction.

(4) In [22, Theorem 2.1] a subset of N is produced which is a C-set and not
a B-set.
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Figure 2: Implications for S commutative.
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(5) Let A be the set produced in [22, Theorem 2.1] and let B = A+ 1. Then
B is a J-set which is not a Q-set and not a B-set.

Since A is a C-set, it is also a J-set so B is a J-set. Since d(A) = 0, d(B) = 0.
Finally, we claim that A ⊆ 2N, so that B ⊆ 2N + 1 and therefore B is not a Q-
set. To see that A ⊆ 2N, note that in the proof of [22, Theorem 2.1], B0 = {0}
and for all x ∈ A, B0 \ supp(x) 6= ∅. That is, 0 /∈ supp(x).

(6) By [21, Theorem 3.1] pick a set B ⊆ N such that dr(B) = 3
4 and for all

b ∈ N, dr(
⋃b
t=1−t+B) < 1. Let A = B ∩ (2N + 1). Then A is a B-set which is

not piecewise syndetic and is not a Q-set.

By Lemma 3.9, B is not piecewise syndetic so A is not piecewise syndetic.
Since A ⊆ 2N + 1, A is not a Q-set. Also 3

4 = dr(B) ≤ dr
(
A ∪ (2N + 1)

)
≤

dr(A) + dr(2N + 1) = dr(A) + 1
2 , so A is a B-set.

(7) Let x1 = 1, for n ∈ N, let xn+1 =
∑n
t=1 xt+n, and let A = FS(〈xn〉∞n=1).

Then A is a D-set which is not piecewise syndetic.

By [1, Theorem 2.21], ∆∗r(N) ∩
⋂∞
m=1 FS(〈xn〉n = m∞) is a semigroup so

has an idempotent. Consequently A is a D-set. By [2, Corollary 4.2], A is not
piecewise syndetic.

(8) Let A = {2n + 2m− 1 : n,m ∈ N and m < n}. It is immediate that A is
piecewise syndtetic and not syndetic. Since A ⊆ 2N + 1, it is not a Q-set.

(9) Let X = {22n(2b+1) + a22n + 22n−2 : a, b, n ∈ N and a ≤ b} and let
A = {

∑m
i=1 xi : l ∈ N, for each i ∈ {1, 2, . . . ,m} , xi ∈ X, and if 1 ≤ i <

m, then max supp(xi) < min supp(xi+1)}. Then A is quasi-central and is nei-
ther central nor syndetic.

By [25, Theorem 4.4] A is quasi-central and not central. If y ∈ A, then there
exist b, n ∈ N such that max supp(y) = 2n(2b + 1) ∈ 2N so A ∩ {22n−1 + m :
m,n ∈ N and m < n} = ∅. Therefore A is not syndetic.

(10) 2N + 1 is syndetic and not a Q-set.

(11) Define f : N → [− 1
2 ,

1
2 ) by f(x) =

√
x− b

√
2x+ 1

2c. Let B = {x ∈ N :
f(x) ∈ (0, 12 )} and let A = {2n + 2m : n,m ∈ N and m < n}. Then A ∩ B is
central, not syndetic, and not SC*.

Pick p ∈ N∗ such that {2n : n ∈ N} ∈ p. We claim that E(βN + p) ⊆ A.
To see this, let C = {2n +m : n,m ∈ N and m < 2n}. It suffices to show that
βN + p ⊆ C, since 2N is a member of any idempotent in βN. So let q ∈ βN.
Given m ∈ N, {2n : 2n > m} ⊆ −m + C} so C ∈ q + p. Pick a minimal left
ideal L of βN such that L ⊆ βN + p.

Let f̃ : βN → [− 1
2 ,

1
2 ] be the continuous extension of f , let U = {q ∈ βN :

{x ∈ N : f̃(q) < f(x)} ∈ q}, and let D = {q ∈ βN : {x ∈ N : f̃(q) > f(x)} ∈ q}.
By [27, Theorem 10.8], U and D are right ideals of βN. Pick a minimal right
ideal R of βN such that R ⊆ U . Let q be the identity of R ∩ L.

Let π be the projection from R to the circle group T = R/Z and let h = π◦f .
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Then by [27, Lemma 10.3], h̃ : βN → T is a homomorphism so f̃(q) = 0.
Therefore B ∈ q. Since L ⊆ A, A ∈ q. Therefore A ∩ B is central. Since A is
not syndetic, A ∩B is not syndetic.

Suppose that A∩B is SC* and pick a minimal left ideal M of βN such that
E(M) ⊆ A ∩B. Pick an idempotent r ∈ M ∩ D. Since f̃(r) = 0, and r ∈ D,
B /∈ r, a contradiction.

(12) As in (11), define f : N → [− 1
2 ,

1
2 ) by f(x) =

√
x − b

√
2x + 1

2c. Let
A = {x ∈ N : f(x) ∈

⋃∞
n=1( 1

2n+1 ,
1
2n )}. Then A is strongly central, not SC*.

By [8, Theorem 3.1] with k = l = 1 and µ1 =
√

2, both A and N \ A are
strongly central.

(13) Let A = {2n + 2m : n,m ∈ N and m < n}. Then A is SC*, not thick,
and not syndetic.

Trivially A is neither thick nor syndetic. If p ∈ N∗ such that {2n : n ∈ N} ∈
p, then as in the proof of (11), E(βN + p) ⊆ A so A is SC*.

(14) Let A = {2n + m : n,m ∈ N and m < n}. Then A is thick and not
syndetic.

(15) Let A be as in (9) and let B = 2N \ A. Then B is central*, not QC*,
and not thick.

We have that A is QC, not central. Since 2N is central*, in fact IP*, and A
is not central, B is central*. Since 2N is not thick, neither is B. Since A is QC,
B is not QC*.

(16) As in (7), let x1 = 1, for n ∈ N, let xn+1 =
∑n
t=1 xt + n, and let

A = FS(〈xn〉∞n=1). Then 2N \A is QC*, not thick, and not D*.

In the proof of (7) we saw that A is a D-set and not piecewise syndetic.
Since A is not piecewise syndetic, K(βN) ⊆ N \A so c`K(βN) ⊆ N \A and
thus E

(
c`K(βN)

)
⊆ 2N \A. Consequently, 2N \ A is QC*. Since 2N is not

thick, neither is 2N \A. Since A is a D-set, 2N \A is not D*.

(17) As in (7), let x1 = 1, for n ∈ N, let xn+1 =
∑n
t=1 xt + n, and let

A = FS(〈xn〉∞n=1). Then N \A is PS* and not D*.

In the proof of (7) we saw that A is a D-set and not piecewise syndetic.
Since A is not piecewise syndetic, K(βN) ⊆ N \A so N \A is PS*. Since A is a
D-set, N \A is not D*.

(18) Let A be the set produced in [22, Theorem 2.1] which is a C-set and
not a B-set. Then 2N \A is D*, not C*, and not thick.

Since A is not a B-set, ∆∗r(N) ⊆ N \A so E
(
∆∗r(N)) ⊆ 2N \A and so 2N \A

is D*. Since A is a C-set, 2N \A is not C*. Since 2N is not thick, 2N \A is not
thick.

(19) Let A be the set produced in [22, Theorem 2.1] which is a C-set and
not a B-set. Then N \A is B* and not C*.
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(20) Let A = {
∑
n∈F 22n : F ∈ Pf (N)}. Then 2N \ A is C*, not IP*, and

not thick.

Since 2N is not thick, neither is 2N \ A and 2N \ A is trivially not IP*. We
saw in (3) that A is not a P-set and therefore not a J-set so that J(N) ⊆ N \A
and thus E

(
J(N)

)
⊆ 2N \A. Therefore 2N \A is C*.

(21) Let A = {
∑
n∈F 22n : F ∈ Pf (N)} and let B = {22n +m2n + 1 : m,n ∈

N and m < n}. Then N \ (A ∪B) is J*, not IP*, and not P*.

Trivially N\ (A∪B) is not IP*. Since B is a P-set, N\ (A∪B) is not P*. We
saw in (2) that B is not a J-set. We saw in (3) that A is not a J-set. Therefore
by [27, Lemma 14.14.6], A ∪B is not a J-set. Therefore N \ (A ∪B) is J*.

(22) Let A = {2n − 2m : n,m ∈ N and m < n}. Then 2N \ A is IP*, not
thick, and not Q*.

Since 2N is not thick neither is 2N \A. Since A is a Q-set, 2N \A is not Q*.
It is easy to see that A is not an IP-set, so 2N \A is IP*.

(23) 2N is Q* and not thick.

(24) Let A = {
∑
n∈F 22n : F ∈ Pf (N)}. We saw in (3) that A is an IP-set

which is not a P-set. So N \A is P* and not IP*.

6 The missing implications in Figure 1

We know quite a bit about notions that do not imply any of the other notions
except those that follow from the implications in Figure 1. And there is quite a
lot more that we do not know.

Each of the right and left versions of Thick, SC*, Synd, Cntrl, SPS, QC,
PS, C, J, IP, and Q, as well as the two sided notions of P and WP does not
imply any of the other 52 notions we are considering, unless that implication is
forced by the implications in Figure 1. This can be established in each case by
considering the examples in Section 5 and [24, Theorems 4.13 and 4.14]. For
example, in Section 5, there is a subset of N which is quasi-central and neither
syndetic nor central, so neither rQC nor `QC implies any of the properties that
lie above it in Figure 1. Further rQC does imply each of rPS, rC, `J, P, rJ, rIP,
WP, and rQ. The example of [24, Theorem 4.14(1)] is rSC, hence rQC, and is
not rSPS. The example of [24, Theorem 4.13(1)] is rThick, hence rQC, and is
neither `Q nor `PS, and thus has none of the properties that imply these. That
leaves only the question of whether rQC implies any or all of `B, rB, or rD. The
examples of [24, Theorem 4.13(1) and Theorem 4.14(1)] are in free semigroups,
which are not left or right amenable, so do not satisfy `SFC nor rSFC, so do
not satisfy `B nor rB.

That almost ends the good news. We do not know whether `SC implies any
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or all of rCntrl, rQC, rC, rIP, or rQ. A similar statement holds for rSC. All of
the properties in Figure 1 above the level of rSC and `SC except `D*, `B*, rD*,
and rB* imply either rSC or `SC. Thus, for example, if we knew that there is a
rC* set which is not `Cntrl, we would know that there is a rSC set which is not
`Cntrl.

We do know that WP*, rJ*, and `J* do not imply any of the notions except
those that are forced by the implications in Figure 1 and possibly any or all of
`B*, rB*, `D*, and rD*. For WP*, this fact is a consequence of the fact that
there is a subset of N which is WP* and not IP*, as well as the fact that if
S is any semigroup which is neither left nor right amenable, it will not satisfy
rSFC nor `SFC so that S is WP* but not `B, not rB, not `D, and not rD. For
rJ*, one needs to note that by [24, Theorems 4.8 and 4.9], there is a subset of
the free semigroup on countably many generators which is `C and not rJ, so its
complement is rJ* and not `C*.

If S is any semigroup not satisfying rSFC, then any subset of S is rB* and
rD* (because its complement is not rB nor rD). This fact complicates the search
for examples of sets which are, say, rJ* but not rB*.

We conclude by considering what implications must hold from the notions of
`B, rB, `D, and rD. Since there are semigroups satisfying rSFC and not `SFC,
we have that rB does not imply either `B or `D. Since there is a subset of N
which is a B set but not a Q set, we see that the only properties that might be
implied by rB and do not follow from the implications in Figure 1 are `J, rJ, P,
and WP.

The reader is invited to work out what we know about things that must be
implied by `D. Among the things that we don’t know at this stage is whether
`D implies rIP. We conclude the paper with a proof that it does not. To do this
we need to construct a semigroup S and an idempotent in ∆∗` (S) which has a
member which is not an rIP set. The construction is based on an example due
to M. Klawe [29, Counterexample 3.5]. Here ω = N ∪ {0}.

Theorem 6.1. Let S =
(⊕∞

i=0 ω
)
× N. For ~x =

(
(x0, x1, . . .),m

)
and ~y =(

(y0, y1, . . .), n
)
, let ~x+ ~y =

(
(x0 +

∑m
i=0 yi, x1 + ym+1, x2 + ym+2, . . .),m+ n).

Then (S,+) is left and right amenable, right cancellative, not left cancellative,
and does not satisfy rSFC.

Proof. It is easy to verify that S is isomorphic to the semigroup produced in [29,
Counterexample 3.5] where all of the assertions of the theorem are proved.

It is not hard to show that the semigroup of Theorem 6.1 satisfies `SFC.
(We will not need this fact.)

Definition 6.2. Let T = N × N and for ~x = (x0, x1) and ~y = (y0, y1), define
~x+ ~y = (x0 + y0 + y1, x1). For m ∈ N, let Km = {1, 2, . . . , 2m+1} × {2m+1}.
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Theorem 6.3. (T,+) is a semigroup, right cancellative, not left cancellative,
does not satisfy rSFC, but does satisfy `SFC. In fact, if r, k ∈ N,
H ⊆ {1, 2, . . . , k} × {1, 2, . . . , k}, ε > 0, and 2r > k

ε , then for all ~x ∈ H,
|Kr \ (Kr + ~x)| < ε|Kr|.

Proof. Given (x0, x1), (y0, y1), (z0,+z1) ∈ T , (x0, x1) + (y0, y1) + (z0,+z1) =
(x0 + y0 + y1 + z0 + z1, x1) computed in either order, so T is associative. Right
cancellation is easy to check. And (1, 1) + (2, 1) = (4, 1) = (1, 1) + (1, 2), so left
cancellation fails.

In [32, Section 4.22], it is shown that any semigroup which is right cancella-
tive and not left cancellative does not satisfy rSFC. (Paterson assumes that the
semigroup is left amenable, but does not use the assumption.)

To verify that T satisfies `SFC, it suffices to verify the final assertion. So
assume that r, k ∈ N, H ⊆ {1, 2, . . . , k} × {1, 2, . . . , k}, ε > 0, and 2r > k

ε . Let
~x ∈ H. Then Kr \ (Kr + ~x) = {~y ∈ Kr : y0 ≤ x0 + x1} so Kr \ (Kr + ~x) =
{1, 2, . . . , x0 + x1}× {2r+1} and thus |Kr \ (Kr + ~x)| = x0 + x1 ≤ 2k < ε2r+1 =
ε|Kr|.

If one cares, it is easy to check that T is weakly left cancellative, i.e., for all
~x, ~y ∈ T , {~z ∈ T : ~x + ~z = ~y} is finite. It is probably worth pointing out that
T does not have the weak cancellation property referred to on the left side of
Figure 1. That is, there does not exist b ∈ N such that for all ~x ∈ T , λ~x is at
most b-to-1. Indeed, there is no b ∈ N such that λ(1,1) is b-to-1.

Definition 6.4. For m ∈ N and u ∈ {1, 2, . . . , 2m − 1},
Bm,u = {2m, 2m + 1, 2m + 2, . . . , 2m+1 − u} × {2m+1} and Am,u =

⋃∞
n=mBm,u.

Lemma 6.5. Let m ∈ N and u ∈ {1, 2, . . . , 2m − 1}. Then d`(A) ≥ 1
2 .

Proof. d`(A) is defined by replacing K \ sK in the definition of dr in Definition
3.1 with K \Ks. In the current context this means we must show that for 0 <
α < 1

2 , H ∈ Pf (T ), and ε > 0, there exists K ∈ Pf (T ) such that for all ~x ∈ H,
|K \ (K + ~x)| < ε|K| and |Am,u ∩K| ≥ α|K|. So let 0 < α < 1

2 , H ∈ Pf (T ),
and ε > 0 be given. Pick k ∈ N such that H ⊆ {1, 2, . . . , k} × {1, 2, . . . , k} and
pick r ∈ N such that 2r > k

ε , u
2r+1 <

1
2 − α, and r ≥ m.

By Theorem 6.3, for all ~x ∈ H, |Kr \ (Kr + ~x)| < ε|Kr| so we only need
to show that |Am,u ∩ Kr| ≥ α|Kr|. We have that Br,u ⊆ Am,u ∩ Kr and
|Br,u| = 2r − u+ 1 so

|Br,u|
|Kr|

=
2r − u+ 1

2r+1
>

1

2
− u

2r+1
> α .

Lemma 6.6. Let M =
⋂∞
m=1

⋂2m−1
u=1 Am,u. Then M ∩∆∗` (T ) 6= ∅.
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Proof. It suffices to show that{
Am,u ∩∆∗` (T ) : m ∈ N and u ∈ {1, 2, . . . , 2m − 1}

}
has the finite intersection property. Let F ∈ Pf (N) and for m ∈ F , let
∅ 6= Gm ⊆ {1, 2, . . . , 2m − 1}. Let k = maxF and let w = 2k − 1. Then
Ak,w ⊆

⋂
m∈F

⋂
u∈Gm

Am,u so it suffices to show that Ak,w∩∆∗` 6= ∅. By Lemma

6.5, d`(Ak,w) ≥ 1
2 so by (the left-right switch of) Lemma 3.5, Ak,w∩∆∗` 6= ∅.

Theorem 6.7. Let M =
⋂∞
m=1

⋂2m−1
u=1 Am,u. Then M ∩ ∆∗` (T ) is a compact

subsemigroup of (βT,⊕), the left topological extension of the operation on T
with T contained in its topological center.

Proof. By the left-right switch of Lemma 3.7, ∆∗` is a right ideal of (βT,⊕)
and is therefore a semigroup. By Lemma 6.6, it suffices to show that M is a
subsemigroup of (βT,⊕). So let p, q ∈M . Let m ∈ N and u ∈ {1, 2, . . . , 2m−1}.
We will show that Am,u ∈ p⊕q by showing that Am,u ⊆ {~x ∈ T : Am,u−~x ∈ p}
so that {~x ∈ T : Am,u − ~x ∈ p} ∈ q. (Here Am,u − ~x = {~y ∈ T : ~y+ ~x ∈ Am,u}.)
Let ~x ∈ Am,u and pick n ≥ m such that ~x ∈ Bn,u. Pick k ∈ {0, 1, . . . , 2n − u}
such that ~x = (2n + k, 2n+1). Let v = 2n+2 and let r = n + 3. Then v ∈
{1, 2, . . . , 2r − 1} so Ar,v ∈ p.

We claim that Ar,v ⊆ Am,u − ~x. Let ~y ∈ Ar,v and pick s ≥ r such that
~y ∈ Bs,v. Pick t ∈ {0, 1, . . . , 2s − v} such that ~y = (2s + t, 2s+1). Then
~y + ~x = (2s + t+ 2n + k + 2n+1, 2s+1). Now t+ 2n + k + 2n+1 ≤ 2s − v + 2n +
2n − u+ 2n+1 = 2s − u so ~y + ~x ∈ Bs,u ⊆ Am,u.

Theorem 6.8. A1,1 is an `D set which is not a rIP set (and thus not a rC set).

Proof. By Theorem 6.7 we may pick p = p⊕ p ∈M ∩∆∗` (T ).

Now suppose there is a sequence with all finite products in increasing order
of indices in A1,1. In particular, there exist m ≤ n, ~x ∈ Bm,1 and ~y ∈ Bn,1 such
that ~x + ~y ∈ A1,1. Pick t ∈ {0, 1, . . . , 2m − 1} and k ∈ {0, 1, . . . , 2n − 1} such
that ~x = (2m + t, 2m+1) and ~y = (2n + k, 2n+1). Then ~x + ~y = (2m + t + 2n +
k + 2n+1, 2m+1). This is a contradiction because whenever (z0, z1) ∈ A1,1, one
has that z0 < z1.

As a consequence of Theorem 6.8 we have that `D does not imply either rC or
rIP (and by the left-right switch, rD does not imply either `C or `IP). We still do
not know whether `D implies any or all of `C, `J, P, WP, rJ, or rQ. We do know
that A1,1 is a rQ set. To see this, for n ∈ N, let ~xn =

(∑2n−2
t=0 2t, 1

)
. If m < n,

then ~xn = ~xm +
(∑2n−3

t=2m−1 2t, 22n−2
)

and
(∑2n−3

t=2m−1 2t, 22n−2
)
∈ B2n−3,1.
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