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Abstract

The Central Sets Theorem is a powerful theorem, one of whose consequences is that any central
set in N contains solutions to any partition regular system of homogeneous linear equations.
Since at least one set in any finite partition of N must be central, any of the consequences of
the Central Sets Theorem must be valid for any partition of N. It is a result of Beiglböck,
Bergelson, Downarowicz, and Fish that if p is an idempotent in (βN,+) with the property that
any member of p has positive Banach density, then any member of p satisfies the conclusion of
the Central Sets Theorem. Since all central sets are members of such idempotents, the question
naturally arises whether any set satisfying the conclusion of the Central Sets Theorem must
have positive Banach density. We answer this question here in the negative.

1. Introduction

In [6] H. Furstenberg introduced the notion of central subsets of N in terms of notions from
topological dynamics. He showed that one cell of any finite partition of a N must contain a
central set and proved the original Central Sets Theorem. (Given a set X, we denote by Pf (X)
the set of finite nonempty subsets of X.)

1.1 Theorem. Let C be a central subset of N. Let l ∈ N and for each i ∈ {1, 2, . . . , l}, let fi

be a sequence in Z. Then there exist sequences 〈an〉∞n=1 in N and 〈Hn〉∞n=1 in Pf (N) such that
(1) for all n, max Hn < minHn+1 and
(2) for all F ∈ Pf (N) and all i ∈ {1, 2, . . . , l},

∑
n∈F

(
an +

∑
t∈Hn

fi(t)
)
∈ C.

Proof. [6, Proposition 8.21].

Furstenberg used central sets to prove Rado’s Theorem [10] by showing that any central
subset of N contains solutions to all partition regular systems of homogeneous linear equations.
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Based on an idea of V. Bergelson, central sets in N were characterized quite simply [4] as
members of minimal idempotents of (βN,+), and this characterization extended naturally to
define central subsets of an arbitrary discrete semigroup S.

What is currently the most general version of the Central Sets Theorem (for commutative
semigroups) is the following.

1.2 Theorem. Let (S, +) be a commutative semigroup and let T = NS, the set of sequences in
S. Let C be a central subset of S. There exist functions α : Pf (T ) → S and H : Pf (T ) → Pf (N)
such that
(1) if F,G ∈ Pf (T ) and F ⊆6 G, then max H(F ) < minH(G) and
(2) whenever m ∈ N, G1, G2, . . . , Gm ∈ Pf (T ), G1 ⊆6 G2 ⊆6 . . . ⊆6 Gm, and for each

i ∈ {1, 2, . . . ,m}, fi ∈ Gi, one has
∑m

i=1

(
α(Gi) +

∑
t∈H(Gi)

fi(t)
)
∈ C.

Proof. [5, Theorem 2.2].

To derive Theorem 1.1 from Theorem 1.2, note that one may assume that the sequences
f1, f2, . . . , fl in the statement of Theorem 1.1 are distinct. Choose additionally distinct se-
quences fk for k > l and let for each n ∈ N, Gn = {f1, f2, . . . , fn}. For n ∈ N, let an = α(Gn)
and let Hn = H(Gn).

For some of the motivating results that we will present, it is necessary to describe briefly
the algebraic structure of the Stone-Čech compactification. If the reader is willing to accept
that the question of whether every subset of N which satisfies the conclusion of Theorem 1.2
must have positive Banach density is interesting, she may proceed directly to Section 2 where
that question is answered.

Given a discrete semigroup (S, +), the Stone-Čech compactification βS of S is the set of
ultrafilters on S, the principal ultrafilters being identified with the points of S. Given A ⊆ S,
c`A = A = {p ∈ βS : A ∈ p}. The family {A : A ⊆ S} is a basis for the open sets (and a basis
for the closed sets) of βS. The operation + extends to βS so that (βS,+) is a right topological
semigroup (meaning that for each p ∈ βS the funtion ρp : βS → βS defined by ρp(q) = q + p is
continuous) with S contained in its topological center (meaning that for each x ∈ S the funtion
λx : βS → βS defined by λx(q) = x + q is continuous). Given p, q ∈ βS and A ⊆ S, one has
that A ∈ p + q if and only if {x ∈ S : −x + A ∈ q} ∈ p, where −x + A = {y ∈ S : x + y ∈ A}.

As is true of any compact Hausdorff right topological semigroup, βS has a smallest two sided
ideal K(βS) and there are idempotents in K(βS). Such idempotents are said to be minimal ,
and a subset C of S is central if and only if it is a member of a minimal idempotent. The reader
is referred to [8] for an elementary introduction to the algebra of βS.
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The following notion was originally introduced by Polya in [9], but it is commonly referred
to as “Banach density”.

1.3 Definition. Let A ⊆ N. Then

d∗(A) = sup{α ∈ R : (∀k ∈ N)(∃n ≥ k)(∃a ∈ N)(|A ∩ {a + 1, a + 2, . . . , a + n}| ≥ α · n)} .

∆∗ = {p ∈ βN : (∀A ∈ p)(d∗(A) > 0)}.

Since ∆∗ is a two sided ideal of βN, one has that K(βN) ⊆ ∆∗, and in particular, if C is a
central subset of N, then d∗(C) > 0. The following result of Beiglböck, Bergelson, Downarowicz,
and Fish establishes that a weaker assumption than central yields the conclusion of the original
Central Sets Theorem.

1.4 Theorem. Let C ⊆ N and assume that C is a member of an idempotent in ∆∗. Let l ∈ N
and for each i ∈ {1, 2, . . . , l}, let fi be a sequence in Z. Then there exist sequences 〈an〉∞n=1 in
N and 〈Hn〉∞n=1 in Pf (N) such that
(1) for all n, max Hn < minHn+1 and
(2) for all F ∈ Pf (N) and all i ∈ {1, 2, . . . , l},

∑
n∈F

(
an +

∑
t∈Hn

fi(t)
)
∈ C.

Proof. [2, Theorem 10].

In fact, the proof of [2, Theorem 10] is easily modified to show that any member of an
idempotent in ∆∗ satisfies the conclusion of Thoerem 1.2. It is a result of C. Adams [1,
Theorem 2.21] that there is a set C which is a member of an idempotent in ∆∗ but C misses
the closure of the smallest ideal of βN and in particular, C is not central.

One is naturally led by the above results to ask whether any subset of N which satisfies the
conclusion of Theorem 1.2 must in fact have positive Banach density. We show in Section 2
that this is not the case.

We close this introduction with an interesting contrast between members of idempotents in
∆∗ and central sets, that is members of idempotents in K(βN). Those sets A ⊆ N such that
A∩K(βN) 6= ∅ are exactly the piecewise syndetic subsets of N by [8, Theorem 4.40] while a set
A ⊆ N has A∩∆∗ 6= ∅ if and only if d∗(A) > 0 by [8, Theorem 3.11]. If A is piecewise syndetic,
then by [8, Theorem 4.43] there is some x ∈ N such that −x+A is central. On the other hand,
it is a result of Ernst Straus that there exist sets A ⊆ N with asymptotic density arbitrarily
close to 1 (and thus d∗(A) arbitrarily close to 1) such that no translate of A is a member of
any idempotent. (See [3, Theorem 2.20].)

2. A small subset of N satisfying the conclusion of the Central Sets Theorem
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We produce in this section a subset of N with zero Banach density which satisfies the conclusion
of Theorem 1.2 applied to the group (Z,+). The construction is based on that of [7, Lemma
5.2]. For x ∈ N we denote by supp(x) the subset of ω = N ∪ {0} such that x =

∑
t∈supp(x) 2t.

2.1 Theorem. Let T = NZ, the set of sequences in Z. There is a subset A of N such that
d∗(A) = 0 and there exist functions α : Pf (T ) → N and H : Pf (T ) → Pf (N) such that
(1) if F,G ∈ Pf (T ) and F ⊆6 G, then max H(F ) < minH(G) and
(2) whenever m ∈ N, G1, G2, . . . , Gm ∈ Pf (T ), G1 ⊆6 G2 ⊆6 . . . ⊆6 Gm, and for each

i ∈ {1, 2, . . . ,m}, fi ∈ Gi, one has
∑m

i=1

(
α(Gi) +

∑
t∈H(Gi)

fi(t)
)
∈ A.

Proof. For n ∈ N, let an = min{t ∈ N : (2n−1
2n )t ≤ 1

2} and let sn =
∑n

i=1 ai. (So s1 = 1 and
s2 = 4.) Let b0 = 0, let b1 = 1, and for n ∈ N and t ∈ {sn, sn + 1, sn + 2, . . . , sn+1 − 1}, let
bt+1 = bt + n + 1. For k ∈ ω, let Bk = {bk, bk + 1, bk + 2, . . . , bk+1 − 1}. Let

A = {x ∈ N : (∀k ∈ ω)(Bk \ supp(x) 6= ∅)}

and let A′ = {x ∈ ω : (∀k ∈ ω)(Bk \ supp(x) 6= ∅)} (so A′ = A ∪ {0}).

We show first that d∗(A) = 0. Notice that for any x and m in N,

|A ∩ {x, x + 1, x + 2, . . . , x + 2m − 1}| ≤ |A′ ∩ {0, 1, 2, . . . 2m − 1}| .

Indeed, given any y ∈ {0, 1, 2, . . . 2m − 1} \ A′, there is some k with bk+1 ≤ m such that
Bk ⊆ supp(y) and there is a unique z(y) ∈ {x, x+1, x+2, . . . , x+2m−1} such that the rightmost
m bits in the binary representation of z(y) are equal to those of y and so Bk ⊆ supp

(
z(y)

)
.

Further, if y 6= y′, then z(y) 6= z(y′).

Let x,m ∈ N, let k = sm+1 and let l ≥ 2bk . We shall show that

|A ∩ {x, x + 1, x + 2, . . . , x + l − 1}|
l

<

(
1
2

)m

.

Pick r ∈ N such that 2r−1 ≤ l < 2r. Then

|A ∩ {x, x + 1, . . . , x + l − 1}| ≤ |A ∩ {x, x + 1, . . . , x + 2r − 1}| ≤ |A′ ∩ {0, 1, . . . , 2r − 1}|

so
|A ∩ {x, x + 1, x + 2, . . . , x + l}|

l
≤ |A′ ∩ {0, 1, 2, . . . , 2r − 1}|

2r−1
.

Now

|A′ ∩ {0, 1, 2, . . . , 2r − 1}| =
∑2r−bk−1

t=0 |A′ ∩ {t2bk , t2bk + 1, . . . , (t + 1)2bk − 1}|

≤
∑2r−bk−1

t=0 |A′ ∩ {0, 1, . . . , 2bk − 1}|

= 2r−bk · |A′ ∩ {0, 1, . . . , 2bk − 1}|
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so
|A′ ∩ {0, 1, 2, . . . , 2r − 1}|

2r−1
≤ 2r−bk · |A′ ∩ {0, 1, . . . , 2bk − 1}|

2r−1

=
|A′ ∩ {0, 1, . . . , 2bk − 1}|

2bk−1
.

We have that |A′ ∩ {0, 1, . . . , 2bk − 1}| =
∏k−1

t=0 (2bt+1−bt − 1) and 2bk−1 = 1
2

∏k−1
t=0 2bt+1−bt so

|A′ ∩ {0, 1, . . . , 2bk − 1}|
2bk−1

= 2 ·
k−1∏
t=0

(
2bt+1−bt − 1

2bt+1−bt

)

= 2 · 21 − 1
21

·
m∏

n=1

sn+1−1∏
t=sn

(
2bt+1−bt − 1

2bt+1−bt

)

=
m∏

n=1

(
2n+1 − 1

2n+1

)an+1

≤
(

1
2

)m

.

Now we show that A satisfies the conclusion of Theorem 1.2. First note that if n, k ∈ N and
and bk+1 − bk > n, then whenever z1, z2, . . . , zn ∈ N, there must exist r ∈ Bk such that for all
t ∈ {1, 2, . . . , n}, Bk \ supp(2r + zt) 6= ∅. Indeed, if r ∈ Bk, z ∈ N, and Bk ⊆ supp(2r + z) then
supp(z) ∩Bk = Bk \ {r}. Consequently

|{r ∈ Bk : there is some i ∈ {1, 2, . . . , n} with Bk ⊆ supp(2r + zi)}| ≤ n .

Now we claim that

(∗) for each n, m ∈ N and each F ∈ Pf (T ), there exist d ∈ N and H ∈ Pf (N)
such that minH > m and for all f ∈ F , d +

∑
t∈H f(t) ∈ A ∩ N2n.

To see this, let r = |F | and pick k such that bk+1 − bk > r and bk > n. Pick H ∈ Pf (N)
such that min H > m and for all f ∈ F ,

∑
t∈H f(t) ∈ Z2bk . (Choose an infinite subset C of N

such that for all s, t ∈ C and all f ∈ F , f(s) ≡ f(t) (mod 2bk). Then pick H ⊆ C such that
minH > m and |H| = 2bk .) Pick c ∈ N2bk such that for all f ∈ F , c +

∑
t∈H f(t) > 0.

Let l = max
⋃ {

supp
(
c +

∑
t∈H f(t)

)
: f ∈ F

}
and pick j such that l < bj . Pick r0 ∈ Bk

such that Bk \ supp
(
2r0 + c +

∑
t∈H f(t)

)
6= ∅ for each f ∈ F . Inductively for i ∈ {1, 2, . . . ,

j − k}, pick ri ∈ Bk+i such that Bk+i \ supp
(
2ri +

∑i−1
t=0 2rt + c +

∑
t∈H f(t)

)
6= ∅ for each

f ∈ F . Let d = c +
∑j−k

i=0 2ri . Then (∗) is established.

Now we define α(F ) ∈ N and H(F ) ∈ Pf (N) for F ∈ Pf (T ) inductively on |F |. If F = {f},
pick α(F ) ∈ N and H(F ) ∈ Pf (N) by (∗) such that α(F ) +

∑
t∈H(F ) f(t) ∈ A. Now let

F ∈ Pf (T ) with |F | > 1 and assume that we have defined α(G) and H(G) for all G such that
∅ 6= G ⊆6 F so that
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(1) α(G) +
∑

t∈H(G) f(t) ∈ A for each f ∈ G and

(2) if K ⊆6 G, then

(a) maxH(K) < minH(G) and

(b) there exists k ∈ N such that for all f ∈ K and all g ∈ G,

max supp
(
α(K) +

∑
t∈H(K) f(t)

)
< bk < min supp

(
α(G) +

∑
t∈H(G) g(t)

)
.

Let m = max
⋃
{H(G) : ∅ 6= G ⊆6 F} and pick k ∈ N such that for all G ∈ Pf (T ) with

G ⊆6 F and all f ∈ G, max supp
(
α(G) +

∑
t∈H(G) f(t)

)
< bk. Pick by (∗) some H(F ) ∈ Pf (N)

and α(F ) ∈ N such that minH(F ) > m and for all f ∈ F , α(F ) +
∑

t∈H(F ) f(t) ∈ A∩N2bk+1.

To verify that α and H are as required for Theorem 1, let m ∈ N, let

G1, G2, . . . , Gm ∈ Pf (T ) ,

and assume that G1 ⊆6 G2 ⊆6 . . . ⊆6 Gm, and for each i ∈ {1, 2, . . . ,m}, fi ∈ Gi. We claim that∑m
i=1

(
α(Gi) +

∑
t∈H(Gi)

fi(t)
)
∈ A. Suppose instead one has some k ∈ N such that Bk ⊆

supp
(∑m

i=1

(
α(Gi) +

∑
t∈H(Gi)

fi(t)
))

. Then there is some i such that Bk ⊆ supp
(
α(Gi) +∑

t∈H(Gi)
fi(t)

)
, contradicting hypothesis (1) of the construction.
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