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and
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Abstract. Central subsets of a discrete semigroup S have very strong combinatorial
properties which are a consequence of the Central Sets Theorem. We investigate here
the class of semigroups that have a subset with zero Følner density which satisfies
the conclusion of the Central Sets Theorem. We show that this class includes any
direct sum of countably many finite abelian groups as well as any subsemigroup of
(R, +) which contains Z. We also show that if S and T are in this class and either
both are left cancellative or T has a left identity, then S × T is in this class. We
also extend a theorem proved in [3], which states that, if p is an idempotent in βN
whose members have positive density, then every member of p satisfies the Central
Sets Theorem. We show that this holds for all commutative semigroups. Finally, we
provide a simple elementary proof of the fact that any commutative semigroup satisfies
the Strong Følner Condition.

1. Introduction

Given a discrete semigroup (S, ·), the operation can be extended to the Stone-Čech
compactification βS of S so that (βS, ·) is a right topological semigroup (meaning that
for any p ∈ βS, the function ρp : βS → βS defined by ρp(q) = q · p is continuous)
with S contained in its topological center (meaning that for any x ∈ S, the function
λx : βS → βS defined by λx(q) = x · q is continuous). Any compact right topological
semigroup T has a smallest two sided ideal denoted K(T ) and there are idempotents
in K(T ). We shall present a brief introduction to the algebraic structure of (βS, ·) in
Section 2.

1.1 Definition. Let S be a discrete semigroup and let C ⊆ S. The set C is central if
and only if there is an idempotent p ∈ K(βS) ∩ c`C.

The original Central Sets Theorem was proved by Furstenberg in [10] (using a
different but equivalent definition of central). Given a set X we let Pf (X) be the set of
finite nonempty subsets of X. We let N be the set of positive integers.

1 This author acknowledges support received from the National Science Foundation via Grant
DMS-0554803.
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1.2 Theorem (Furstenberg). Let C be a central subset of N. Let l ∈ N and for each
i ∈ {1, 2, . . . , l}, let fi be a sequence in Z. Then there exist sequences 〈an〉∞n=1 in N and
〈Hn〉∞n=1 in Pf (N) such that

(1) for all n, maxHn < minHn+1 and

(2) for all F ∈ Pf (N) and all i ∈ {1, 2, . . . , l},
∑

n∈F

(
an +

∑
t∈Hn

fi(t)
)
∈ C.

Proof. [10, Proposition 8.21].

This version of the Central Sets Theorem was already strong enough to derive
several combinatorial consequences such as Rado’s Theorem [23]. Subsequently, several
incremental strengthenings were found. (See [6] for a listing of these.) What is currently
the most general version of the Central Sets Theorem (for commutative semigroups) is
the following. (There is also a version for noncommutative semigroups. See [6].)

1.3 Theorem. Let (S,+) be a commutative semigroup and let T = NS, the set of
sequences in S. Let C be a central subset of S. There exist functions α : Pf (T ) → S

and H : Pf (T ) → Pf (N) such that

(1) if F,G ∈ Pf (T ) and F ⊆6 G, then maxH(F ) < minH(G) and

(2) whenever m ∈ N, G1, G2, . . . , Gm ∈ Pf (T ), G1 ⊆6 G2 ⊆6 . . . ⊆6 Gm, and for each
i ∈ {1, 2, . . . ,m}, fi ∈ Gi, one has

∑m
i=1

(
α(Gi) +

∑
t∈H(Gi)

fi(t)
)
∈ C.

Proof. [6, Theorem 2.2].

We introduce a name for sets satisfying the conclusion of the Central Sets Theorem.

1.4 Definition. Let (S,+) be a commutative semigroup, let C ⊆ S, and let T =
NS. The set C is a C-set if and only if there exist functions α : Pf (T ) → S and
H : Pf (T ) → Pf (N) such that

(1) if F,G ∈ Pf (T ) and F ⊆6 G, then maxH(F ) < minH(G) and

(2) whenever m ∈ N, G1, G2, . . . , Gm ∈ Pf (T ), G1 ⊆6 G2 ⊆6 . . . ⊆6 Gm, and for each
i ∈ {1, 2, . . . ,m}, fi ∈ Gi, one has

∑m
i=1

(
α(Gi) +

∑
t∈H(Gi)

fi(t)
)
∈ C.

Central sets are easy to work with because, for example, if p is an idempotent in the
smallest ideal of the right topological semigroup T , U is a semigroup, and ϕ : T → U

is a surjective homomorphism, then U has a smallest ideal and ϕ(p) is an idempotent
in that smallest ideal. However, from a combinatorial viewpoint, C-sets are the objects
that matter. They are sets which, in N and Z and many other commutative semigroups,
contain solutions to all non-trivial partition regular systems of homogeneous equations
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as well as having the other myriads of properties that are a consequence of the Central
Sets Theorem. (See Theorem 2.8 for example.)

We shall be interested in showing that the existence of C-sets which are not central
is common. In the process, we shall be concerned with a generalization of the following
version of density. While this notion was introduced by Polya in [22], it is commonly
called “Banach density”.

1.5 Definition. Let A ⊆ N. Then

d∗(A) = sup{α ∈ [0, 1] : (∀k ∈ N)(∃n ≥ k)(∃a ∈ N)(|A∩{a, a+1, . . . , a+n−1}| ≥ α·n)} ,

and ∆∗ = {p ∈ βN : (∀A ⊆ N)(p ∈ c`(A) ⇒ d∗(A) > 0)} .

Since ∆∗ is a two sided ideal of (βN,+), one has that if C is a central subset of N,
then d∗(C) > 0. And the following result establishes that a set need not be central in
order to satisfy the conclusion of the original Central Sets Theorem. (It is a consequence
of [1, Theorem 2.21], due to C. Adams, that there are idempotents in ∆∗ \ c`

(
K(βN)

)
.)

1.6 Theorem (Beiglböck, Bergelson, Downarowicz, and Fish). Let C ⊆ N and
assume that there is an idempotent in ∆∗ ∩ c`(C). Let l ∈ N and for each i ∈ {1, 2, . . . ,
l}, let fi be a sequence in Z. Then there exist sequences 〈an〉∞n=1 in N and 〈Hn〉∞n=1 in
Pf (N) such that

(1) for all n, maxHn < minHn+1 and

(2) for all F ∈ Pf (N) and all i ∈ {1, 2, . . . , l},
∑

n∈F

(
an +

∑
t∈Hn

fi(t)
)
∈ C.

Proof. [3, Theorem 11].

The question then naturally arose as to whether any subset C of N which satisfies
the conclusion of Theorem 1.2 must satisfy d∗(C) > 0. This question was answered in
the negative in [13, Theorem 2.1], where it was shown that there is a C-set C ⊆ N with
d∗(C) = 0.

We will be interested in this paper in seeing how widespread such a phenomenon is.
In order to even ask this question, we need an appropriate generalization of the notion of
Banach density. We believe that the notion of Følner density , which is defined for every
semigroup satisfying the Strong Følner Condition provides such a generalization. (By
[2, Theorem 4], every commutative semigroup satisfies the Strong Følner Condtition.
See Section 7 for an elementary proof of this fact.)
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1.7 Definition. A semigroup (S, ·) satisfies the Strong Følner Condition (SFC) if and
only if

(
∀H ∈ Pf (S)

)(
∀ε > 0

)(
∃K ∈ Pf (S)

)(
∀s ∈ H

)(
|K 4 sK| < ε · |K|

)
.

The semigroup (S, ·) satisfies the Følner Condition (FC) if and only if(
∀H ∈ Pf (S)

)(
∀ε > 0

)(
∃K ∈ Pf (S)

)(
∀s ∈ H

)(
|sK \K| < ε · |K|

)
.

Notice that (using an argument from [21]) for any K ∈ Pf (S) and any s ∈ S,
|K \ sK| + |K ∩ sK| = |K| ≥ |sK| = |sK \ K| + |K ∩ sK| so |K \ sK| ≥ |sK \ K|
and equality holds if s is left cancelable. Thus, one has that SFC implies FC and is
equivalent to the apparently weaker statement(

∀H ∈ Pf (S)
)(
∀ε > 0

)(
∃K ∈ Pf (S)

)(
∀s ∈ H

)(
|K \ sK| < ε · |K|

)
.

(The converse fails. Any finite left zero semigroup, that is a semigroup S in which
ab = a for all a in S, satisfies FC but not SFC. See [21, Section 4.22] for a description
of the relationship among the notions of FC, SFC, and left amenability.)

We will follow in this paper the custom of writing arbitrary (not necessarily commu-
tative) semigroups multiplicatively and semigroups that are assumed to be commutative
additively.

1.8 Definition. Let (S, ·) be a semigroup satisfying SFC.

(a) For A ⊆ S, d(A) = sup{α ∈ [0, 1] :
(
∀H ∈ Pf (S)

)
(∀ε > 0)

(
∃K ∈ Pf (S)

)(
(∀s ∈ H)(|K \ sK| < ε · |K|) and |A ∩K| ≥ α · |K|

)
}.

(b) ∆∗(S) = {p ∈ βS : (∀A ⊆ S)(p ∈ c`(A) ⇒ d(A) > 0)}.
It may be that A is contained in two relevant semigroups. In such an event, we will

write dS(A) instead of d(A) to emphasize that the density is computed in terms of S.

We shall refer to d(A) as the Følner density of A. (In [15, Section 4], where we
were dealing with several different notions of density, it was denoted by dFø(A).) We
observe now that for subsets of N, the Følner density of a set is equal to its Banach
density.

1.9 Theorem. Let A ⊆ N. Then d(A) = d∗(A).

Proof. Let δ = d∗(A) and let µ = d(A). To see that µ ≥ δ, let α ∈ [0, 1] such that

(∀k ∈ N)(∃n ≥ k)(∃a ∈ N)(|A ∩ {a, a+ 1, . . . , a+ n− 1}| ≥ α · n) .

Let H ∈ Pf (N) and let ε > 0. Let l = maxH and pick n > l
ε and a ∈ N such that

|A ∩ {a, a+ 1, . . . , a+ n− 1}| ≥ α · n. Let K = {a, a+ 1, . . . , a+ n− 1}. Given s ∈ H,
K \ (s+K) = {a, a+ 1, . . . , a+ s− 1} so |K \ (s+K)| = s < ε · |K|. Thus α ≤ µ.
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Now suppose that µ > δ and pick α and γ such that µ > α > γ > δ. Since δ < γ,
pick k ∈ N such that for all n ≥ k and all a ∈ N, |A ∩ {a, a+ 1, . . . , a+ n− 1}| < γ · n.
Let H = {1, 2, . . . , k} and let ε = (α− γ)/2k. Pick K ∈ Pf (N) such that for all s ∈ H,
|K \(s+K)| < ε · |K| and |A∩K| ≥ α · |K|. For s ∈ N, let −s+K = {t ∈ N : s+t ∈ K}.
Notice that, since (N,+) is cancellative, one has that for any s ∈ H, |K \ (−s+K)| ≤
|(s+K) \K| and we have already seen that |(s+K) \K| ≤ |K \ (s+K)|.

Let L = {x ∈ K : (∃a ∈ N)(x ∈ {a, a + 1, . . . , a + k − 1} ⊆ K)}. Since L is
the union of blocks of length at least k, we have that |A ∩ L| < γ · |L| ≤ γ · |K|.
Also, K \ L ⊆

⋃k−1
s=1

(
K \ (−s + K)

)
so |K \ L| ≤ (k − 1) · ε · |K| < α−γ

2 · |K|. Thus
α · |K| ≤ |A∩K| ≤ |A∩L|+ |K \L| < γ · |K|+ α−γ

2 · |K| < α · |K|, a contradiction.

The following generalization of Theorem 1.6 provides motivation for our search for
small C-sets, that is C sets with Følner density equal to 0. We shall present the proof
of this theorem in Section 6.

1.10 Theorem.

(a) Let (S, ·) be a left cancellative semigroup which satisfies SFC. Then ∆∗(S) is a two
sided ideal of (βS, ·) so if C is a central subset of S, then d(C) > 0.

(b) If (S,+) is any commutative semigroup and if E is a subset of S for which ∆∗(S)∩
c`(E) contains an idempotent, then E is a C-set.

In Section 3 we shall show that if S and T are infinite left cancellative semigroups
satisfying SFC, A is a C-set in S, B is a C-set in T , and either d(A) = 0, or d(B) = 0,
then A×B is a C-set in S × T with d(A×B) = 0.

In Section 4 we shall show that if S is any subsemigroup of (R,+) containing Z,
then there is a C-set in S which has zero Følner density. In Section 5 we shall show
that the same conclusion applies to any direct sum of countably many finite abelian
groups. In Section 7 we shall provide a simple elementary proof that any commutative
semigroup satisfies SFC.

2. Preliminaries

We begin with our promised presentation of some details about the algebraic structure
of βS.

Given a discrete semigroup (S, ·), we take the points of βS to be the ultrafilters on
S, identifying the principal ultrafilters with the points of S and thus pretending that
S ⊆ βS. Given A ⊆ S, c`(A) = A = {p ∈ βS : A ∈ p}. Thus A ⊆ S is central if and
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only if there is an idempotent p ∈ K(βS) such that A ∈ p. Given p, q ∈ βS and A ⊆ S,
A ∈ p · q if and only if {x ∈ S : x−1A ∈ q} ∈ p where x−1A = {y ∈ S : xy ∈ A}. If the
operation is written additively, A ∈ p+ q if and only if {x ∈ S : −x+A ∈ q} ∈ p where
−x+A = {y ∈ S : x+y ∈ A}. Notice that, while in this case we write the operation on
βS additively, (βS,+) is very unlikely to be commutative. See [14] for an elementary
introduction to the algebra of βS and for any unfamiliar details.

The concept of density is closely related to that of left invariant means.

2.1 Definition. Let S be a discrete semigroup. Then l∞(S) will denote the real Banach
space of bounded real-valued functions from S to R with the uniform norm. A mean on
S is an element µ ∈ l∞(S)∗ satisfying ‖µ‖ = 1 and µ(f) ≥ 0 for every f ≥ 0 in l∞(S).
A left invariant mean on S is a mean µ on S with the property that µ(f ◦ λs) = µ(f)
for every f ∈ l∞(S) and every s ∈ S. We shall denote the set of left invariant means on
S by LIM(S).

Now l∞(S) can be identified with the Banach space of continuous real-valued func-
tions defined on βS. Hence, by the Riesz Representation Theorem, l∞(S)∗ can be
identified with the space of real-valued regular Borel measures defined on βS. (If
η ∈ l∞(S)∗ corresponds to the real-valued regular Borel measure µ on βS and A ⊆ S,
then η(χA) = µ(A ).) So an element µ ∈ LIM(S) can be regarded as a regular Borel
probability measure defined on βS with the property that

∫
f(st)dµ(t) =

∫
f(t)dµ(t)

for every continuous f : βS → R and every s ∈ S. This is easily seen to be equivalent to
the condition that µ( s−1A ) = µ(A ) for every A ⊆ S and every s ∈ S. In this paper, we
shall regard left invariant means as measures of this kind. S is said to be left amenable
if LIM(S) 6= ∅. In [2] Argabright and Wilde showed that any semigroup satisfying SFC
is left amenable.

2.2 Lemma. Let S be a semigroup which satisfies SFC. For every A ⊆ S, there exists
µ ∈ LIM(S) such that d(A) = µ(A ).

Proof. This was shown in the proof of [16, Theorem 2.14].

We now introduce some notation from [6].

2.3 Definition. Let (S,+) be a commutative semigroup and let T = NS.

(a) A set A ⊆ S is a J-set if and only if whenever F ∈ Pf (T ), there exist d ∈ S and
H ∈ Pf (N) such that for each f ∈ F , d+

∑
t∈H f(t) ∈ A.

(b) J(S) = {p ∈ βS : (∀A ∈ p)(A is a J-set)}.
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2.4 Lemma. Let (S,+) be a commutative semigroup, let T = NS, and let A be a J-set
in S. Then for all F ∈ Pf (T ) and all r ∈ N, there exist d ∈ S and H ∈ Pf (N) such
that minH > r and for all f ∈ F , d+

∑
t∈H f(t) ∈ A.

Proof. Let F ∈ Pf (T ) and r ∈ N. For f ∈ F , define gf ∈ T by gf (t) = f(r + t) for all
t ∈ N. Pick d ∈ S and K ∈ Pf (N) such that for all f ∈ F , d +

∑
t∈K gf (t) ∈ A. Let

H = r +K.

The following is a consequence of [6, Theorem 3.8]. We present the proof because
the commutative case is much simpler than the general version established there.

2.5 Theorem. Let (S,+) be a commutative semigroup, let T = NS, and let A ⊆ S.
Then A is a C-set if and only if there is an idempotent p ∈ A ∩ J(S).

Proof. Sufficiency. Let A? = {x ∈ A : −x + A ∈ p}. By [14, Lemma 4.14] if x ∈ A?,
then −x+A? ∈ p.

We define α(F ) and H(F ) inductively on |F | such that

(1) if ∅ 6= G ⊆6 F , then maxH(G) < minH(F ) and

(2) if m ∈ N, G1, G2, . . . , Gm ∈ Pf (T ), G1 ⊆6 G2 ⊆6 . . . ⊆6 Gm = F , and
(∀i ∈ {1, 2, . . . ,m})(fi ∈ Gi), then

∑m
i=1

(
α(Gi) +

∑
t∈H(Gi)

fi(t)
)
∈ A?.

If F = {f}, since A? is a J-set, pick α(F ) ∈ S and H(F ) ∈ Pf (N) such that
α(F ) +

∑
t∈H(F ) f(t) ∈ A?.

Now assume that |F | > 1 and α(K) and H(K) have been chosen for all K with
∅ 6= K ⊆6 F . Let r = max

⋃
{H(K) : ∅ 6= K ⊆6 F}. Let

B = A? ∩
⋂{

−
(∑m

i=1

(
α(Gi) +

∑
t∈H(Gi)

fi(t)
))

+A? : m ∈ N ,

G1, G2, . . . , Gm ∈ Pf (T ) , G1 ⊆6 G2 ⊆6 . . . ⊆6 Gm ⊆6 F , and

(∀i ∈ {1, 2, . . . ,m})(fi ∈ Gi)
}
.

Then B ∈ p so pick by Lemma 2.4, α(F ) ∈ S and H(F ) ∈ Pf (N) such that minH(F ) >
r and for each f ∈ F , α(F ) +

∑
t∈H(F ) f(t) ∈ B.

Necessity. Let T = NS. Pick α and H as guaranteed by the definition of C-set.
For F ∈ Pf (T ) let

TF =
{∑m

i=1

(
α(Gi) +

∑
t∈H(Gi)

fi(t)
)

: m ∈ N , G1, G2, . . . , Gm ∈ Pf (T ) ,

F ⊆6 G1 ⊆6 . . . ⊆6 Gm, and

(∀i ∈ {1, 2, . . . ,m})(fi ∈ Gi)
}
.

Then each TF 6= ∅. Let Q =
⋂

F∈Pf (T ) TF . We show first that Q is a semigroup.
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Given F,G ∈ Pf (T ), TF∪G ⊆ TF ∩DG and so Q 6= ∅. By [14, Theorem 4.20], to
see that Q is a semigroup, it suffices to show that(

∀F ∈ Pf (T )
)
(∀x ∈ TF )

(
∃K ∈ Pf (T )

)
(TK ⊆ −x+ TF )

so let F ∈ Pf (T ) and let x ∈ TF . Pick m, G1, G2, . . . , Gm, and f1, f2, . . . , fm as in the
definition of TF so that x =

∑m
i=1

(
α(Gi) +

∑
t∈H(Gi)

fi(t)
)
. Then TGm ⊆ −x+ TF .

To complete the proof we show, using an argument due to Furstenberg and Katznel-
son in [12], that K(Q) ⊆ A ∩ J(S), so that any idempotent in K(Q) establishes the
result. We have that each TF ⊆ A so Q ⊆ A. Now let p ∈ K(Q) and let B ∈ p. We
need to show that B is a J-set, so let F ∈ Pf (T ) be given. Let k = |F | and write
F = {f1, f2, . . . , fk}. Let D = {G ∈ Pf (T ) : F ⊆ G} and note that Q =

⋂
G∈D TG.

Let Y =×k
i=1βS. By [14, Theorem 2.22] Y is a right topological semigroup and if

~x ∈×k
i=1S, then λ~x is continuous. For G ∈ D let

IG =
{
~x ∈×k

i=1TG : (∃d ∈ S)
(
∃L ∈ Pf (N)

)(
~x =

(
d+

∑
t∈L f1(t), . . . , d+

∑
t∈L fk(t)

))}
and let EG = IG ∪ {(d, d, . . . , d) : d ∈ TG}. Let I =

⋂
G∈D c`Y IG and let E =⋂

G∈D c`Y EG. We claim that E is a subsemigroup of ×l
i=1Q and that I is an ideal of

E.

Trivially E ⊆×l
i=1Q. Given G1, G2 ∈ D we have that IG1∪G2 ⊆ IG1 ∩ IG2 so to

see that I 6= ∅ it suffices to let G ∈ D and show that IG 6= ∅. Pick G1, G2 ∈ D such
that G ⊆6 G1 ⊆6 G2. Let L = H(G2). Let d = α(G1) +

∑
t∈H(G1)

f1(t) + α(G2). Then(
d+

∑
t∈L f1(t), . . . , d+

∑
t∈L fk(t)

)
∈ IG.

Now let ~q, ~r ∈ E. We show that ~q + ~r ∈ E and, if either ~q ∈ I or ~r ∈ I, then
~q + ~r ∈ I. To this end, let G ∈ D and let U be an open neighborhood of ~q + ~r. Pick a
neighborhood V of ~q such that V + ~r ⊆ U . Pick ~x ∈ V ∩EG, with ~x ∈ IG if ~q ∈ I. For
each i ∈ {1, 2, . . . , k}, we have that xi ∈ TG so pick Ki ∈ D such that TKi

⊆ −xi + TG

and let K =
⋃k

i=1Ki. Pick a neighborhood W of ~r such that ~x + W ⊆ ~U . Pick
~y ∈ W ∩ EK with ~y ∈ IK if ~r ∈ I. Then ~x + ~y ∈ EG and, if ~x ∈ IG or ~y ∈ IK , then
~x+ ~y ∈ IG.

Recall that we have chosen p ∈ K(Q) and B ∈ p. We claim that p = (p, p, . . . , p) ∈
E. To see this letG ∈ D be given and let U be a neighborhood of p in Y . Pick C ∈ p such
that ×k

i=1C ⊆ U and pick d ∈ C ∩ TG. Then (d, d, . . . , d) ∈ U ∩ EG. By [14, Theorem
2.23], we have that K(×k

i=1Q) =×k
i=1K(Q) so p ∈ E ∩K(×k

i=1Q). Therefore by [14,
Theorem 1.65] we have that p ∈ K(E) and, since I is an ideal of E, we have that p ∈ I.
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Since ×k
i=1B is a neighborhood of p, we have some ~x ∈×k

i=1B ∩×k
i=1TF . Thus B is

a J-set as required.

We conclude this section with a verification that C-sets in commutative semigroups
have rich combinatorial properties.

2.6 Definition. Let A be a matrix over ω. A is said to be a first entries matrix if no
row of A is identically zero and if the first non-zero entries in any two rows of A are
equal if they occur in the same column. The first non-zero entry in any row of A is
called a first entry of A.

2.7 Definition. Let (S,+) be a semigroup with identity 0, let u, v ∈ N, and let A be a
u× v matrix with entries from ω. Then A is image partition regular over S if and only
if whenever r ∈ N and S =

⋃r
i=1Ei, there exist i ∈ {1, 2, . . . , r} and ~x ∈ (S\{0})v such

that A~x ∈ Ei
u.

It is a fact due to Deuber [7] that first entries matrices are image partition regular
over N. Some of the classical results in Ramsey Theory are naturally stated in terms of
the image partition regularity of first entries matrices. For example Schur’s Theorem is
the assertion that the matrix  1 0

0 1
1 1


is image partition regular over N and van der Waerden’s Theorem [25] is the assertion
that for each k ∈ N, the matrix 

1 0
1 1
...

...
1 k


is image partition regular over N.

It is known [14, Theorem 15.5] that first entries matrices have images contained in
any central set. We see now, via minor modifications of the proof of that theorem, that
the same conclusion holds for C-sets.

2.8 Theorem. Let (S,+) be an infinite commutative semigroup with identity 0, let
u, v ∈ N, and let A be a u × v first entries matrix with entries from ω. Let p be an
idempotent in J(S), assume that for every first entry c of A, cS ∈ p, and let C ∈ p.
There exist sequences 〈x1,n〉∞n=1, 〈x2,n〉∞n=1, . . ., 〈xv,n〉∞n=1 in S such that for every F ∈
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Pf (N), ~xF ∈ (S \ {0})v and A~xF ∈ Cu, where

~xF =


∑

n∈F x1,n∑
n∈F x2,n

...∑
n∈F xv,n

 .

Proof. If 0 were a minimal idempotent, then βS = 0+βS = βS+0 would be a minimal
left ideal and a minimal right ideal, hence a group by [14, Theorem 1.61]. In particular,
S would be cancellative so by [14, Corollary 4.33], S∗ would be a left ideal properly
contained in βS, a contradiction. Thus we may presume that 0 /∈ C.

We proceed by induction on v. Assume first v = 1. We can assume A has no
repeated rows, so in this case we have A = (c) for some c ∈ N such that cS ∈ p. Then
C∩cS ∈ p so pick by [14, Theorem 5.8] a sequence 〈kn〉∞n=1 with FS(〈kn〉∞n=1) ⊆ C∩cS.
For each n ∈ N pick some x1,n ∈ S such that kn = cx1,n. The sequence 〈x1,n〉∞n=1 is as
required.

Now let v ∈ N and assume the theorem is true for v. Let A be a u × (v + 1) first
entries matrix with entries from ω and assume that whenever c is a first entry of A,
cS ∈ p. By rearranging the rows of A and adding additional rows to A if need be, we
may assume that we have some r ∈ {1, 2, . . . , u− 1} and some d ∈ N such that

ai,1 =
{

0 if i ∈ {1, 2, . . . , r}
d if i ∈ {r + 1, r + 2, . . . , u} .

Let B be the r × v matrix with entries bi,j = ai,j+1. Pick sequences 〈z1,n〉∞n=1,
〈z2,n〉∞n=1, . . .,〈zv,n〉∞n=1 in S as guaranteed by the induction hypothesis for the matrix
B. For each i ∈ {r + 1, r + 2, . . . , u} and each n ∈ N, let fi(n) =

∑v+1
j=2 ai,j · zj−1,n and

let fr(n) = 0 for all n ∈ N.

Since C∩dS ∈ p, it is a C-set so pick functions α and H as guaranteed by Definition
1.4. Choose a sequence 〈gn〉∞n=1 of distinct members of NS \ {fr, fr+1, . . . , fu}. For
each n ∈ N, let Gn = {fr, fr+1, . . . , fu} ∪ {g1, g2, . . . , gn}, let kn = α(Gn) and let
Hn = H(Gn).

Then maxHn < minHn+1 for each n and for each i ∈ {r, r + 1, . . . , u},

FS(〈kn +
∑

t∈Hn
fi(t)〉∞n=1) ⊆ C ∩ dS .

Note in particular that each kn = kn +
∑

t∈Hn
fr(t) ∈ C ∩ dS, so pick x1,n ∈ S such

that kn = dx1,n. For j ∈ {2, 3, . . . , v + 1}, let xj,n =
∑

t∈Hn
zj−1,t.

We claim that the sequences 〈xj,n〉∞n=1 are as required. To see this, let F ∈ Pf (N)
be given. We need to show that for each j ∈ {1, 2, . . . , v + 1},

∑
n∈F xj,n 6= 0 and for

10



each i ∈ {1, 2, . . . , u},
∑v+1

j=1 ai,j

∑
n∈F xj,n ∈ C.

For the first assertion note that if j > 1, then
∑

n∈F xj,n =
∑

t∈G zj−1,t where
G =

⋃
n∈F Hn. If j = 1, then d

∑
n∈F x1,n =

∑
n∈F

(
kn +

∑
t∈Hn

fr(t)
)
∈ C.

To establish the second assertion, let i ∈ {1, 2, . . . , u} be given.

Case 1. i ≤ r. Then∑v+1
j=1 ai,j

∑
n∈F xj,n =

∑v+1
j=2 ai,j

∑
n∈F

∑
t∈Hn

zj−1,t

=
∑v

j=1 bi,j
∑

t∈G zj,t ∈ C

where G =
⋃

n∈F Hn.

Case 2. i > r. Then∑v+1
j=1 ai,j

∑
n∈F xj,n = d

∑
n∈F x1,n +

∑v+1
j=2 ai,j

∑
n∈F xj,n

=
∑

n∈F dx1,n +
∑

n∈F

∑v+1
j=2 ai,j

∑
t∈Hn

zj−1,t

=
∑

n∈F dx1,n +
∑

n∈F

∑
t∈Hn

∑v+1
j=2 ai,jzj−1,t

=
∑

n∈F

(
kn +

∑
t∈Hn

fi(t)
)
∈ C .

There are many familiar commutative semigroups S, such as (ω,+), (Q,+), or
(R,+), in which cS is a member of every idempotent in βS for every c ∈ N.

2.9 Corollary. Let (S,+) be an infinite commutative semigroup with identity 0, let
u, v ∈ N, let A be a u× v first entries matrix with entries from ω, and let C be a C-set
in S. If for every first entry c of A and every idempotent p ∈ βS, cS ∈ p, then there
exists ~x ∈ (S \ {0})v such that all entries of A~x are in C. In particular, if 1 is the only
first entry of A, then there exists ~x ∈ (S \ {0})v such that all entries of A~x are in C.

Proof. Pick by Theorem 2.5 an idempotent p ∈ C ∩ J(S) and apply Theorem 2.8.

3. Products of semigroups with small C-sets

In this section we investigate the class of semigroups which contain a C-set with Følner
density zero, deriving sufficient conditions for the product of two members of that class
to remain in the class.

3.1 Theorem. Let (S, ·) and (T, ·) be infinite semigroups, let A be a C-set in S, and
let B be a C-set in T . Then A×B is a C-set in T .

Proof. [17, Theorem 2.16].

3.2 Theorem. Let (S, ·) and (T, ·) be left cancellative semigroups which satisfy SFC,
let A ⊆ S, and let B ⊆ T . Then d(A×B) = d(A) · d(B).
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Proof. [16, Theorems 2.12 and 3.4].

The conclusion of Theorem 3.4 is much weaker than that of Theorem 3.2, but except
for the requirement that T have a left identity, the assumptions are much weaker as
well, and the conclusion is enough to guarantee that d(A× T ) = 0 whenever d(A) = 0.

3.3 Lemma. Let (S, ·) be a semigroup and let (T, ·) be a semigroup with left identity e.
Let G ∈ Pf (S) and let ε > 0. Assume that M ⊆ S × T and

(∀s ∈ G)(|M \ (s, e)M | < ε

|G|
· |M |) .

Then there is some b ∈ π2[M ] such that, if H = π1[M ∩ (S × {b})], then

(∀s ∈ G)(|H \ sH| < ε · |H|) .

Proof. Let C = π2[M ]. For b ∈ C, let Hb = π1[M ∩ (S × {b})]. For s ∈ G, let
Us = {b ∈ C : |Hb \ sHb| ≥ ε · |Hb|}. We show that C \

⋃
s∈G Us 6= ∅. Suppose instead

that C =
⋃

s∈G Us.

Let s ∈ G be given. Then (M \ (s, e)M) =
⋃

b∈C

(
(Hb \ sHb)× {b}

)
. Thus

ε
|G| ·

∑
b∈C |Hb| = ε

|G| · |M |

> |M \ (s, e)M |

=
∑

b∈C |Hb \ sHb|

≥
∑

b∈Us
|Hb \ sHb|

≥
∑

b∈Us
ε · |Hb| .

Thus ε ·
∑

b∈C |Hb| =
∑

s∈G
ε
|G| ·

∑
b∈C |Hb| > ε ·

∑
s∈G

∑
b∈Us

|Hb|. Since C =⋃
s∈G Us, we have that

∑
b∈C |Hb| ≤

∑
s∈G

∑
b∈Us

|Hb|, so ε > ε, a contradiction.

3.4 Theorem. Let (S, ·) be a semigroup and let (T, ·) be a semigroup with left identity
e. Assume that S and T satisfy SFC and let A ⊆ S. Then d(A) = d(A× T ).

Proof. By [16, Lemma 3.1] S×T satisfies SFC and d(A×T ) ≥ d(A) ·d(T ) and trivially
d(T ) = 1.

Suppose d(A) < d(A × T ) and pick α and δ such that d(A) < α < δ < d(A × T ).
Pick G ∈ Pf (S) and ε > 0 such that(

∀H ∈ Pf (S)
)(

(∀s ∈ G)(|H \ sH| < ε · |H|) ⇒ |A ∩H| < α · |H|
)
.

Let γ =
ε

|G|
·(δ−α+1). Pick K ∈ Pf (S×T ) such that (∀s ∈ G)(|K \(s, e)K| < γ · |K|)

and |(A× T ) ∩K| ≥ δ · |K|.

12



Let C = π2[K]. For b ∈ C, let Hb = π1[K∩ (S×{b})]. Then K =
⋃

b∈C (Hb×{b}).
Let L = {b ∈ C : |Hb ∩ A| ≥ α · |Hb|} and let M =

⋃
b∈L (Hb × {b}). We shall show

that (∀s ∈ G)(|M \ (s, e)M | < ε
|G| · |M |). Then by Lemma 3.3 we will have some b ∈ L

such that (∀s ∈ G)(|Hb \ sHb| < ε · |Hb|). Since also |Hb ∩ A| ≥ α · |Hb|, this will be a
contradiction.

So let s ∈ G and suppose that |M \ (s, e)M | ≥ ε
|G| · |M |. For b ∈ C, let xb =

|Hb \ sHb|, let yb = |Hb|, and let zb = |Hb ∩A|. Then L = {b ∈ C : zb ≥ α · yb}. Now

(1) C \ L = {b ∈ C : zb < α · yb} so
∑

b∈C\L zb < α ·
∑

b∈C\L yb;

(2) |(A× T ) ∩K| ≥ δ · |K| so
∑

b∈C zb ≥ δ ·
∑

b∈C yb;

(3) |M \ (s, e)M | ≥ ε
|G| · |M | so

∑
b∈L xb ≥ ε

|G| ·
∑

b∈L yb; and

(4) |K \ (s, e)K| < γ · |K| so
∑

b∈C xb < γ ·
∑

b∈C yb.

From (1) and (2) we have

δ ·
∑

b∈L yb + δ ·
∑

b∈C\L yb = δ ·
∑

b∈C yb

≤
∑

b∈L zb +
∑

b∈C\L zb

<
∑

b∈L yb + α ·
∑

b∈C\L yb

so

(∗)
∑

b∈C\L yb <
(

1−δ
δ−α

)
·
∑

b∈L yb .

From (3) and (4) we have ε
|G| ·

∑
b∈L yb ≤

∑
b∈L xb and

∑
b∈L xb ≤

∑
b∈C xb <

γ ·
∑

b∈C yb so

(∗∗)
(

ε
γ·|G| − 1

)
·
∑

b∈L yb <
∑

b∈C\L yb .

Combining (∗) and (∗∗), we conclude that γ >
ε

|G|
· (δ − α+ 1), a contradiction.

Now we see that under appropriate hypotheses, the existence of small C-sets is
preserved under products.

3.5 Theorem. Let (S, ·) and (T, ·) be infinite semigroups which satisfy SFC and assume
that either S and T are both left cancellative or T has a left identity. If A is a C-set in S
with d(A) = 0 and B is a C-set in T , then A×B is a C-set in S×T and d(A×B) = 0.

Proof. By Theorem 3.1, A×B is a C-set in S×T . By [16, Lemma 3.1] S×T satisfies
SFC. By Theorem 3.2 or Theorem 3.4, d(A×B) = 0.
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4. Small C-sets in subsemigroups of (R,+)

Throughout this section S will denote a subsemigroup of (R,+) with Z ⊆ S and we will
let T = NS. We shall show that there is a set A ⊆ S such that A is a C-set in S and
d(A) = 0.

We shall denote by Sd, the set S with the discrete topology. We represent T = R/Z
as
[
− 1

2 ,
1
2

)
. Given a sequence 〈xn〉∞n=1 in S, we let

FS(〈xn〉∞n=1) = {
∑

t∈F xt : F ∈ Pf (N)} .

4.1 Definition. Define h : S → Z by h(x) =
⌊
x+ 1

2

⌋
for x ∈ S, and let π : S → T be

the natural projection. (So that, for x ∈ S, π(x) = x − h(x).) Let h̃ : βSd → βZ and
π̃ : βSd → T be the continuous extensions of h and π respectively.

4.2 Lemma. Let l ∈ N and let f1, f2, . . . , fl ∈ T . There exists a sequence 〈Lm〉∞m=1 in
Pf (N) such that for all m ∈ N, maxLm < minLm+1 and for all i ∈ {1, 2, . . . , l} and all
m ∈ N, π

(∑
t∈Lm

fi(t)
)
∈
(
− 1

2m ,
1

2m

)
.

Proof. We proceed by induction on l, so assume first that l = 1. Pick by [14, Lemma
5.11] an idempotent p ∈ βSd such that for all m ∈ N, FS(〈f1(t)〉∞t=m) ∈ p. Since
p = p + p and by [14, Corollary 4.22] (due originally to P. Milnes in [19]), π̃ is a
homomorphism, we have that π̃(p) = 0 and so for each m ∈ N, π−1

[(
− 1

2m ,
1

2m

)]
∈ p.

Choose L1 ∈ Pf (N) such that
∑

t∈L1
f1(t) ∈ π−1

[(
− 1

2 ,
1
2

)]
. Now assume that

m ∈ N and Lm has been chosen. Let k = maxLm + 1 and pick

x ∈ FS(〈f1(t)〉∞t=k) ∩ π−1
[(
− 1

2m+1 ,
1

2m+1

)]
.

Pick Lm+1 ∈ Pf (N) with minLm+1 ≥ k such that x =
∑

t∈Lm+1
f1(t).

Now let l ∈ N and assume that the lemma is valid for l. Let f1, f2, . . . , fl+1 ∈ T .
Pick a sequence 〈Fm〉∞m=1 in Pf (N) such that for all m ∈ N, maxFm < minFm+1 and
for all i ∈ {1, 2, . . . , l} and all m ∈ N, π

(∑
t∈Fm

fi(t)
)
∈
(
− 1

2m+1 ,
1

2m+1

)
. (One may do

this by deleting the first term of the sequence guaranteed by the induction hypothesis.)

For each m ∈ N, define g(m) =
∑

t∈Fm
fl+1(t). Pick a sequence 〈Km〉∞m=1 in Pf (N)

such that for all m ∈ N, maxKm < minKm+1 and π
(∑

n∈Km
g(n)

)
∈
(
− 1

2m ,
1

2m

)
.

For each m ∈ N, let Lm =
⋃

n∈Km
Fn. Then for each m ∈ N,

∑
t∈Lm

fl+1(t) =∑
n∈Km

∑
t∈Fn

fl+1(t) =
∑

n∈Km
g(n) ∈ π−1

[(
− 1

2m ,
1

2m

)]
.

For i ∈ {1, 2, . . . , l} and m ∈ N,

π
(∑

t∈Lm
fi(t)

)
= π

(∑
n∈Km

∑
t∈Fn

fi(t)
)

=
∑

n∈Km
π
(∑

t∈Fn
fi(t)

)
.
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Givenm ∈ N and n ∈ Km, we have π
(∑

t∈Fn
fi(t)

)
∈
(
− 1

2n+1 ,
1

2n+1

)
and if v = minKm,

then
∑

n∈Km

1
2n+1 <

1
2v ≤ 1

2m and so
∑

n∈Km
π
(∑

t∈Fn
fi(t)

)
∈
(
− 1

2m ,
1

2m

)
.

The following lemma provides the basis for the main result of the section.

4.3 Lemma. Let p = p+p ∈ J(Z) and let T =
⋂∞

n=2 π
−1
[(
− 1

n ,
1
n

)]
. Then T ∩h̃−1[{p}]

is a subsemigroup of βSd and if q + q = q ∈ K(T ∩ h̃−1[{p}]), then q ∈ J(S).

Proof. We show first that T is a semigroup. Since Z ⊆ T , we know that T 6= ∅. Let
r, s ∈ T and let n ∈ N \ {1}. Then given any x ∈

[(
− 1

2n ,
1
2n

)]
, π−1

[(
− 1

2n ,
1
2n

)]
⊆

−x+ π−1
[(
− 1

n ,
1
n

)]
so π−1

[(
− 1

2n ,
1
2n

)]
⊆ {x ∈ S : −x+ π−1

[(
− 1

n ,
1
n

)]
∈ s} and thus

π−1
[(
− 1

n ,
1
n

)]
∈ r+s. Next note that (viewing βZ as a subset of βSd) p ∈ T ∩ h̃−1[{p}]

so T ∩ h̃−1[{p}] 6= ∅. Given x, y ∈ π−1
[(
− 1

4 ,
1
4

)]
, h(x + y) = h(x) + h(y) so by [14,

Theorem 4.21] h̃ is a homomorphism on T so T ∩ h̃−1[{p}] is a semigroup.

Now let q+ q = q ∈ K(T ∩ h̃−1[{p}]). We need to show that every element of q is a
J-set. So let C ∈ q, let l ∈ N, and let f1, f2, . . . , fl ∈ NS. We shall eventually show that
there exist a ∈ S andH ∈ Pf (N) such that for each i ∈ {1, 2, . . . , l}, a+

∑
t∈H fi(t) ∈ C.

For each A ∈ p, let A? = {x ∈ A : −x + A ∈ p} and recall that by [14, Lemma
4.14], whenever x ∈ A?, one has −x+A? ∈ p.

By Lemma 4.2, we may choose a sequence 〈Lt〉∞t=1 in Pf (N) with the property
that for each t ∈ N, maxLt < minLt+1 and π

(∑
u∈Lt

fi(u)
)
∈
(
− 1

2t+1 ,
1

2t+1

)
for each

i ∈ {1, 2, . . . , l}. For t ∈ N and i ∈ {1, 2, . . . , l}, let gi(t) =
∑

u∈Lt
fi(u). Then for every

a ∈ π−1[(− 1
4 ,

1
4 )], every H ∈ Pf (N), and every i ∈ {1, 2, . . . , l}, h

(
a +

∑
t∈H gi(t)

)
=

h(a) +
∑

t∈H h
(
gi(t)

)
.

Let Y =×l
i=1βS. For A ∈ p and n ∈ N, let

IA,n =
{
〈a+

∑
t∈H gi(t)〉li=1 : H ∈ Pf (N) , minH > n ,

a ∈ π−1
[(
− 1

2n+2 ,
1

2n+2

)]
∩ h−1[A?] ,

and for i ∈ {1, 2, . . . , l} , h
(
a+

∑
t∈H gi(t)

)
∈ A?

}
and let

EA,n = IA,n ∪
{
〈a, a, . . . , a〉 : a ∈ π−1

[(
− 1

2n+2 ,
1

2n+2

)]
∩ h−1[A?]

}
.

Let I =
⋂
{c`Y IA,n : A ∈ p and n ∈ N}, and let E =

⋂
{c`Y EA,n : A ∈ p and n ∈ N}.

We claim that for each A ∈ p and each n ∈ N, IA,n 6= ∅, and consequently I 6= ∅. So let
A ∈ p and n ∈ N. Since A? is a J-set in Z, pick by Lemma 2.4 applied to the functions
0, h◦g1, h◦g2, . . . , h◦gl, some a ∈ A? and H ∈ Pf (N) such that minH > n and for each
i ∈ {1, 2, . . . , l}, a +

∑
t∈H h

(
gi(t)

)
∈ A?. Then 〈a +

∑
t∈H gi(t)〉li=1 ∈ IA,n. (Given

i ∈ {1, 2, . . . , l}, h
(
a+
∑

t∈H gi(t)
)

= h(a)+
∑

t∈H h
(
gi(t)

)
= a+

∑
t∈H h

(
gi(t)

)
∈ A?.)
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Now we show that E is a subsemigroup of Y and I is an ideal of E. To this end,
let ~r,~s ∈ E. We shall show that ~r + ~s ∈ E and if ~r ∈ I or ~s ∈ I, then ~r + ~s ∈ I.

We shall use the convention that
∑

t∈∅ f(t) = 0. Let U be an open neighborhood
of ~r + ~s, let A ∈ p, and let n ∈ N. We shall show that U ∩ EA,n 6= ∅ and if either
~r ∈ I or ~s ∈ I, then U ∩ IA,n 6= ∅. By [14, Theorem 2.22] we have that Y is a right
topological semigroup and if ~x ∈×l

i=1S, then λ~x is continuous. Pick a neighborhood
V of ~r such that V +~s ⊆ U . Pick ~x ∈ V ∩EA,n with ~x ∈ IA,n if ~r ∈ I. If ~x ∈ IA,n, pick
a and H as in the definition of IA,n such that ~x = 〈a +

∑
t∈H gi(t)〉li=1. If ~x /∈ IA,n,

pick a ∈ π−1
[(
− 1

2n+2 ,
1

2n+2

)]
∩ h−1[A?] such that ~x = 〈a, a, . . . , a〉 and let H = ∅.

Pick a neighborhood W of ~s such that ~x + ~W ⊆ U . Pick m ∈ N such that(
π(a)− 1

2m+2 , π(a) + 1
2m+2

)
⊆
(
− 1

2n+2 ,
1

2n+2

)
and note that m ≥ n. If H 6= ∅ require

also that maxH ≤ m. Let B = (−h(a)+A?)∩
⋂l

i=1

(
−h
(
a+
∑

t∈H gi(t)
)
+A?

)
. Then

B ∈ p. Pick ~y ∈W ∩ EB,m with ~y ∈ IB,m if ~s ∈ I. If ~y ∈ IB,m, pick

b ∈ π−1
[(
− 1

2m+2 ,
1

2m+2

)]
∩ h−1[B?]

and G ∈ Pf (N) with minG > m such that ~y = 〈b +
∑

t∈G gi(t)〉li=1 and for i ∈ {1, 2,
. . . , l}, h

(
b+

∑
t∈G gi(t)

)
∈ B?. If ~y /∈ IB,m, pick b ∈ π−1

[(
− 1

2m+2 ,
1

2m+2

)]
∩ h−1[B?]

such that ~y = 〈b, b, . . . , b〉 and let G = ∅. Then π(a+ b) ∈
(
− 1

2n+2 ,
1

2n+2

)
and h(a+ b) =

h(a) + h(b) ∈ A?. Further, given i ∈ {1, 2, . . . , l}, π
(
a +

∑
t∈H gi(t)

)
∈
(
− 1

2n+2 ,
1

2n+2

)
and π

(
b+

∑
t∈G gi(t)

)
∈
(
− 1

2n+2 ,
1

2n+2

)
so

h
(
a+ b+

∑
t∈H∪G gi(t)

)
= h

(
a+

∑
t∈H gi(t)

)
+ h
(
b+

∑
t∈G gi(t)

)
∈ A? .

Consequently ~x+ ~y ∈ U ∩ EA,n and if ~r ∈ I or ~s ∈ I,then ~x+ ~y ∈ U ∩ IA,n.

We thus have that E is a subsemigroup of I and I is an ideal of E. Let q =
〈q, q, . . . , q〉 ∈ Y and let X = ×l

i=1h̃
−1[{p}]. We claim that q ∈ E. To this end,

let U be a neighborhood of q, let A ∈ p, and let n ∈ N. Pick B ∈ q such that
×l

i=1B ⊆ U . Since q ∈ T , π−1
[(
− 1

2n+2 ,
1

2n+2

)]
∈ q and since h̃(q) = p, h̃−1[A?] ∈ q.

Pick a ∈ B ∩ π−1
[(
− 1

2n+2 ,
1

2n+2

)]
∩ h̃−1[A?]. Then 〈a, a, . . . , a〉 ∈ U ∩ EA,n. Now

K(T ∩ h̃−1[{p}]) = (T ∩ h̃−1[{p}]) ∩K(h̃−1[{p}])

by [14, Theorem 1.65] so q ∈ K(h̃−1[{p}]). Also K(X) = ×l
i=1K(h̃−1[{p}]) by [14,

Theorem 2.23] so q ∈ K(X).

Next we claim that E ⊆ X. To see this, let ~r ∈ E, let i ∈ {1, 2, . . . , l}, and suppose
that ri /∈ h̃−1[{p}]. Pick A ∈ p \ h̃(ri) and pick B ∈ ri such that h̃[B ] ∩ A = ∅. Then
{~s ∈ Y : si ∈ B} is a neighborhood of ~r missing EA,1, a contradiction.
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Thus we have that q ∈ E∩K(X) so, again using [14, Theorem 1.65], q ∈ K(E) ⊆ I.
Now×l

i=1C is a neighborhood of q so pick ~x = 〈a+
∑

t∈H gi(t)〉li=1 ∈ (×l
i=1C )∩ IS,1.

Let K =
⋃

t∈H Lt. Then for i ∈ {1, 2, . . . , l}, a+
∑

u∈K fi(u) = a+
∑

t∈H gi(t) ∈ C as
required.

Recall that we have fixed a subsemigroup S of (R,+) with Z ⊆ S.

4.4 Lemma. Let A ⊆ N. Then dS(h−1[A]) ≤ dN(A).

Proof. Suppose instead that dN(A) < dS(h−1[A]) and pick γ and α such that dN(A) <
γ < α < dS(h−1[A]). Recall that by Theorem 1.9, dN(A) is the Banach density of A.
Pick l ∈ N such that for all a ∈ N, |A∩{a, a+1, . . . , a+l}| < γ ·(l+1). Then in fact for all
a ∈ Z, |A∩{a, a+1, . . . , a+l}| < γ·(l+1). (If a ≤ 0 thenA∩{a, a+1, . . . , a+l} ⊆ A∩{1, 2,
. . . , 1 + l}.) Let ε = α−γ

l·(l+1) .

Let H = {−1,−2, . . . ,−l}. Then H ∈ Pf (S) so pick K ∈ Pf (S) such that for all
s ∈ H, |K \ (s+K)| < ε · |K| and |h−1[A] ∩K| ≥ α · |K|.

Let a0 = minK. Having chosen a0, a1, . . . , at, if K ⊆
⋃t

i=0{ai, ai + 1, . . . , ai + l},
let k = t+ 1. Otherwise, let at+1 = min(K \

⋃t
i=0{ai, ai + 1, . . . , ai + l}).

Note that if i, j ∈ {0, 1, . . . , k − 1} and i 6= j, then

{ai, ai + 1, . . . , ai + l} ∩ {aj , aj + 1, . . . , aj + l} = ∅ .

Let B = {i ∈ {0, 1, . . . , k − 1} : {ai + 1, ai + 2, . . . , ai + l} \ K 6= ∅}. If i ∈ B, then
ai ∈

⋃
s∈H

(
K \ (s+K)

)
so |B| ≤ l · ε · |K|.

Now
⋃{

{ai, ai + 1, . . . , ai + l} : i ∈ {0, 1, . . . , k − 1} \B
}
⊆ K so

|K| ≥ (k − |B|) · (l + 1) > k · (l + 1)− l · (l + 1) · ε · |K|

and thus |K| > k·(l+1)
l·(l+1)·ε+1 .

Next observe that for any a ∈ S,

|h−1[A] ∩ {a, a+ 1, . . . , a+ l}| = |A ∩ {h(a), h(a) + 1, . . . , h(a) + l}|

because for each a ∈ S and each s ∈ {1, 2, . . . , l}, h(a+ s) = h(a) + s. Consequently

α · k · (l + 1)
l · (l + 1) · ε+ 1

< α · |K|

≤ |h−1[A] ∩K|

≤
∑k−1

i=0 |h−1[A] ∩ {ai, ai + 1, . . . , ai + l}|

=
∑k−1

i=0 |A ∩ {h(ai), h(ai) + 1, . . . , h(ai) + l}|

< γ · k · (l + 1) .
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Thus α < γ · l · (l + 1) · ε+ γ < l · (l + 1) · ε+ γ and so ε > α−γ
l·(l+1) , a contradiction.

In the following theorem we restate our standing hypothesis for this section.

4.5 Theorem. Let S be a subsemigroup of (R,+) such that Z ⊆ S. There is a C-set
B contained in S such that dS(B) = 0.

Proof. By [13, Theorem 2.1] pick a set A ⊆ N such that A is a C-set in Z and
dN(A) = 0. Let B = h−1[A]. By Lemma 4.4, dS(B) = 0. Pick by Theorem 2.5 an
idempotent p ∈ A ∩ J(Z).

Let T =
⋂∞

n=2 π
−1
[(
− 1

n ,
1
n

)]
. By Lemma 4.3, there is an idempotent q ∈ K(T ∩

h̃−1[{p}]) and q ∈ J(S). Since B ∈ q, we have by Theorem 2.5 that B is a C-set.

5. Small C-sets in the direct sum of finite abelian groups

In this section we show that if G is the direct sum of countably many finite abelian
groups, then there is a C-set A in G with d(A) = 0. Since each finite abelian group
is the direct sum of cyclic groups, we shall assume throughout this section that G =⊕∞

n=0 Zν(n) where each ν(n) ∈ N \ {1}. As usual, we let ω = N ∪ {0}.

5.1 Definition. For x ∈ G, supp(x) = {t ∈ ω : x(t) 6= 0}. For n ∈ N,
Kn =

{
x ∈ G : supp(x) ⊆ {0, 1, . . . , n}

}
.

5.2 Lemma. Let A ⊆ G. Then

d(A) = sup{α ∈ R : (∀k ∈ N)(∃n > k)(∃d ∈ G)(|A ∩ (d+Kn)| ≥ α · |Kn|)} .

Proof. Let δ = sup{α ∈ R : (∀k ∈ N)(∃n > k)(∃d ∈ G)(|A ∩ (d + Kn)| ≥ α · |Kn|)}.
To see that d(A) ≥ δ, suppose instead we have some α such that δ > α > d(A). Pick
H ∈ Pf (G) and ε > 0 such that(

∀L ∈ Pf (G)
)(

(∀s ∈ H)(|L \ (s+ L)| < ε · |L| ⇒ |A ∩ L| < α · |L|
)
.

Pick k ∈ N such that for all s ∈ H, supp(s) ⊆ {0, 1, . . . , k}. Pick n > k and d ∈ G

such that |A ∩ (d +Kn)| ≥ α · |Kn|. Let L = d +Kn. Given s ∈ H, s +Kn = Kn so
|L \ (s+ L)| = 0 < ε · |L|, a contradiction.

Now suppose that we have α and γ such that δ < γ < α < d(A). Pick l ∈ N
such that for all n ≥ l and all a ∈ G, |A ∩ (a +Kn)| < γ · |Kn|. Let ε =

α− γ

|Kl|
. Pick

M ∈ Pf (G) such that (∀s ∈ Kl)(|M \ (s + M)| < ε · |M |) and |A ∩M | ≥ α · |M |.
Let L =

⋃
{a + Kl : a ∈ G and a + Kl ⊆ M}. Since each a + Kl is a coset of Kl, if
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(a + Kl) ∩ (b + Kl) 6= ∅, then a + Kl = b + Kl. Pick D such that L =
⋃

a∈D(a + Kl)
and if a, b ∈ D and a 6= b, then (a+Kl) ∩ (b+Kl) = ∅. Thus

|A ∩ L| =
∑

a∈D |A ∩ (a+Kl)| <
∑

a∈D γ · |Kl| = γ · |L| ≤ γ · |M | .

Also M \ L ⊆
⋃

s∈Kl

(
M \ (s + M) so |M \ L| ≤ |Kl| · ε · |M |. Thus |A ∩ M | ≤

|A ∩ L|+ |M \ L| < γ · |M |+ |Kl| · ε · |M | = α · |M | ≤ |A ∩M |, a contradiction.

5.3 Theorem. There is a set A ⊆ G such that d(A) = 0 and A is a C-set in G,

Proof. For n ∈ N, let an = min{t ∈ N : ( 2n−1
2n )t ≤ 1

2} and let sn =
∑n

i=1 ai. (So s1 = 1
and s2 = 4.) Let b0 = 0, let b1 = 1, and for n ∈ N and t ∈ {sn, sn+1, sn+2, . . . , sn+1−1},
let bt+1 = bt + n+ 1. For k ∈ ω, let Bk = {bk, bk + 1, bk + 2, . . . , bk+1 − 1}. Let

A = {x ∈ G : (∀k ∈ ω)(Bk \ supp(x) 6= ∅)} .

We show first that d(A) = 0. We claim that for any d ∈ G and l ∈ N,

|A ∩ (d+Kl)| ≤ |A ∩Kl| .

To see this, note that we may presume that supp(d) ∩ {0, 1, . . . , l} = ∅, since if

d′(i) =
{
d(i) if i > l
0 if i ≤ l ,

then d′+Kl = d+Kl. It follows that d+(Kl\A) ⊆ (d+Kl)\A. (If y ∈ Kl\A, then there
is some k with bk+1 − 1 ≤ l such that Bk ⊆ supp(y) and so Bk ⊆ supp(d + y).) Thus
|A∩(d+Kl)|+|Kl\A| ≤ |A∩(d+Kl)|+|(d+Kl)\A| = |d+Kl| = |Kl| = |A∩Kl|+|Kl\A|
so |A ∩ (d+Kl)| ≤ |A ∩Kl| as required.

Now let d ∈ G, m ∈ N, k = sm+1, and l ≥ bk. We shall show that |A ∩ (d+Kl)| ≤
( 1
2 )m · |Kl| for which it suffices that |A ∩Kl| ≤ ( 1

2 )m · |Kl|. To this end, we first note
that for any i ∈ ω, ν(i)

ν(i)−1 ≤ 2 so for t ∈ N,
∏bt+n

i=bt

(
ν(i)

ν(i)−1

)
≤ 2n+1 and so∏bt+n

i=bt
ν(i)−

∏bt+n
i=bt

(ν(i)− 1)∏bt+n
i=bt

ν(i)
≤
(

2n+1 − 1
2n+1

)
.

Now let T =
{
x ∈ G : supp(x) ⊆ {bk, bk + 1, . . . , l}

}
. Then

|A ∩Kl| =
∑

x∈T |A ∩ (x+Kbk−1)| ≤ |T | · |A ∩Kbk−1|

and Kl = |T | · |Kbk−1| so it suffices to show that |A ∩Kbk−1| ≤
(

1
2

)m · |Kbk−1|. Now
|A ∩Kbk−1| =

∏k−1
t=0 |{x ∈ G : supp(x) ⊆6 Bt}| and {x ∈ G : supp(x) ⊆6 B0} = {0} so

|A ∩Kbk−1| =
∏k−1

t=1 |{x ∈ G : supp(x) ⊆6 Bt}|
=

∏m
n=1

∏sn+1−1
t=sn

|{x ∈ G : supp(x) ⊆6 Bt}|
=

∏m
n=1

∏sn+1−1
t=sn

(∏bt+n
i=bt

ν(i)−
∏bt+n

i=bt
(ν(i)− 1)

)
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and |Kbk−1| =
∏m

n=1

∏sn+1−1
t=sn

∏bt+n
i=bt

ν(i) so

|A ∩Kbk−1|
|Kbk−1|

=
∏m

n=1

∏sn+1−1
t=sn

(∏bt+n
i=bt

ν(i)−
∏bt+n

i=bt
(ν(i)− 1)∏bt+n

i=bt
ν(i)

)
≤

∏m
n=1

∏sn+1−1
t=sn

(
2n+1−1
2n+1

)
=

∏m
n=1

(
2n+1−1
2n+1

)an+1

≤
(

1
2

)m
.

We have thus shown that d(A) = 0.

Now we claim that if n, k ∈ N, bk+1−bk ≥ n, and z0, z1, . . . , zn−1 ∈ G, then there is
some x ∈ G such that supp(x) ⊆ Bk and for all t ∈ {0, 1, . . . , n−1}, Bk\supp(x+zt) 6= ∅.
To see this, define x by, for i ∈ {0, 1, . . . , n− 1}, x(bk + i) = ν(bk + i)− zi(bk + i) and
x(t) = 0 otherwise.

For n ∈ ω, let Cn = {x ∈ G : min supp(x) ≥ bn and (∀k ∈ ω)(Bk \ supp(x) 6= ∅)}.
Then C0 = A.

We claim that

(i) for all n ∈ N and all x ∈ Cn, there exists m ∈ N such that Cm ⊆ x−1Cn and

(ii) for all n ∈ N, Cn is a J-set.

so that by [18, Theorem 2.6], A is a C-set. To see this, let n ∈ N and let x ∈ Cn. Pick
m ∈ N such that bm > max supp(x). Then Cm ⊆ −x+ Cn.

Next let n ∈ N. We claim that Cn is a J-set, so let F ∈ Pf (T ). Let r = |F |
and pick k ≥ n such that bk+1 − bk > r. First choose an infinite subset M of N
such that for all t, s ∈ M , all f ∈ F , and all i ∈ {0, 1, . . . , bk − 1}, f(t)(i) = f(s)(i).
Then pick H ∈ Pf (N) such that ν(i) divides |H| for each i ∈ {0, 1, . . . , bk − 1}. Then
for each f ∈ F , min supp

(∑
t∈H f(t)

)
≥ bk. Pick s ∈ N such that for all f ∈ F ,

max supp
(∑

t∈H f(t)
)
< bs+1. For l ∈ {k, k+1, . . . , s} pick xl with supp(xl) ⊆ Bl such

that for each f ∈ F , Bl \ supp
(
xl +

∑
t∈H f(t)

)
6= ∅. Let d =

∑s
l=k xl.

5.4 Corollary. There is an idempotent in J(G) \∆∗(G).

Proof. Pick A as guaranteed by Theorem 5.3. By Theorem 2.5, A is a member of an
idempotent in J(G) and A ∩∆∗(G) = ∅.

6. Large subsets of commutative semigroups

In this section we generalize Theorem 1.6 by proving Theorem 1.10 (as Theorem 6.12).
We first establish some basic facts about density and ∆∗(S) for arbitrary semigroups
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which satisfy SFC. The following lemma establishes that if K \ sK is small, then λs is
nearly one-to-one on K ∩ s−1K.

6.1 Lemma. Let (S, ·) be a semigroup, let δ > 0, let s ∈ S, and let K ∈ Pf (S) such
that |K \ sK| < δ · |K|. Let G = {x ∈ K : there is a unique t ∈ K such that x = st}.
Then |G| ≥ (1− 2δ) · |K|.

Proof. Let n = |K|, let m = |G|, let H = {x ∈ K : there exist t 6= t′ in K such that
x = st = st′}, and let k = |H|. We first note that n ≥ 2k + m. To see this, for each
x ∈ G, pick tx ∈ K such that x = stx and for x ∈ H pick ux 6= vx in K such that
x = sux = svx. Then {tx : x ∈ G} ∪ {ux : x ∈ H} ∪ {vx : x ∈ H} is a subset of K with
2k +m elements.

Now K \H = (K \ sK) ∪G so n− k = |K \H| ≤ δ · |K|+m. Thus 2k +m− k ≤
n− k ≤ δ · |K|+m so k ≤ δ · |K| and thus m+ δ · |K| ≥ n− k ≥ n− δ · |K|.

6.2 Lemma. Let (S, ·) be a semigroup, let A ⊆ S, let s ∈ S, let δ > 0, and let
K ∈ Pf (S) such that |K \ sK| < δ · |K|. Then

∣∣|s−1A ∩K| − |A ∩K|
∣∣ < 2δ · |K|.

Proof. Let G = {x ∈ K : there is a unique t ∈ K such that x = st}. By Lemma 6.1,
|G| ≥ (1− 2δ) · |K|.

Notice that λs : s−1G ∩K 1-1−→ontoG and so also λs : s−1A ∩ s−1G ∩K 1-1−→ontoA ∩G. Now

|K \ s−1G| = |K| − |s−1G ∩K|

= |K| − |G|

≤ |K| − (1− 2δ) · |K|

= 2δ · |K|

and |K \G| = |K| − |G| ≤ 2δ · |K|. Thus

|s−1A ∩K| ≤ |s−1A ∩ s−1G ∩K|+ |K \ s−1G|

= |A ∩G|+ |K \ s−1G|

≤ |A ∩K|+ 2δ · |K|

and

|A ∩K| ≤ |A ∩G|+ |K \G|
= |s−1A ∩ s−1G ∩K|+ |K \G|
≤ |s−1A ∩K|+ 2δ|K| .
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We know from [15, Theorem 4.17] that if S is left cancellative and satisfies SFC,
then for all t ∈ S and A ⊆ S, d(A) = d(t−1A) = d(tA). We see now that the first of
these equalities holds in an arbitrary semigroup satisfying SFC.

6.3 Theorem. Let (S, ·) be a semigroup satisfying SFC, let A ⊆ S, and let t ∈ S. Then
d(t−1A) = d(A).

Proof. Suppose first that d(t−1A) < d(A) and pick α > 0 and δ > 0 such that
d(t−1A) < α − δ < α + δ < d(A). Pick H ∈ Pf (S) and ε > 0 such that for all
K ∈ Pf (S), if (∀s ∈ H)(|K \ sK| < ε · |K|), then |t−1A ∩ K| < (α − δ) · |K|. Let
H ′ = H ∪ {t} and pick K ∈ Pf (S) such that (∀s ∈ H ′)(|K \ sK| < min{ε, δ} · |K|) and
|A ∩K| > (α+ δ) · |K|. Then, by Lemma 6.2,

2δ · |K| = (α+ δ) · |K| − (α− δ) · |K| < |A ∩K| − |t−1A ∩K| < 2δ · |K| ,

a contradiction.

The proof that d(t−1A) ≤ d(A) is essentially identical.

We do not need the following result, but feel that it is worth noting.

6.4 Theorem. Let (S·) be a semigroup satisfying SFC, let A ⊆ S, and let t ∈ S. Then
d(tA) ≥ d(A). There exist a countable commutative semigroup (S,+) satisfying SFC
and a subset A of S such that d(A) = 0 but for each t ∈ S, λt is exactly two-to-one and
d(t+A) = 1.

Proof. For the first assertion, note that A ⊆ t−1(tA) so that d(A) ≤ d
(
t−1(tA)

)
=

d(tA) by Theorem 6.3.

For the second assertion, let S = ({0, 1},+)× (N,+) where 0+0 = 0+1 = 1+0 =
1 + 1 = 0, let A = {1} × N, and let t ∈ S. Since S is commutative, we have that S
satisfies SFC by Theorem 7.2. (Or see the verification below that d(t + A) = 1 which
establishes also that S satisfies SFC.)

To see that d(A) = 0, suppose instead one has some ε > 0 such that d(A) > ε. Pick
K ∈ Pf (S) such that |K\(t+K)| < ε·|K| and |A∩K| ≥ ε·|K|. Then A∩K ⊆ K\(t+K)
so ε · |K| < ε · |K|, a contradiction.

To see that d(t + A) = 1, let H ∈ Pf (S) and let ε > 0. Let F = π2[H]. Pick
L ∈ Pf (N) such that minL > π2(t) (so that L ⊆ π2(t) + N) and for all s ∈ F ,
|L \ s + L| < ε · |L|. (Any sufficiently long interval begining after π2(t) will do.) Let
K = {0}×L. Then for any s ∈ H, |K \s+K| = |L\s+L| < ε · |L| = |L\s+L| < ε · |K|,
and K ⊆ t+A.
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6.5 Theorem. Let (S, ·) be a semigroup which satisfies SFC. Then ∆∗(S) is a left ideal
of (βS, ·). If there exists b ∈ N such that for all x ∈ S, ρx is at most b-to-1, then ∆∗(S)
is a right ideal of (βS, ·).

Proof. It is routine to verify that if A and B are subsets of S and d(A ∪B) > 0, then
d(A) > 0 or d(B) > 0 and so, by [14, Theorem 3.11], ∆∗(S) 6= ∅.

To see that ∆∗(S) is a left ideal, let p ∈ ∆∗(S), let q ∈ βS, and let A ∈ q · p. Pick
x ∈ S such that x−1A ∈ p. Then d(A) = d(x−1A) > 0 by Theorem 6.3.

Now assume that we have b ∈ N such that for all x ∈ S, ρx is at most b-to-
1. Let p ∈ ∆∗(S), let q ∈ βS, and let A ∈ p · q. Let B = {x ∈ S : x−1A ∈ q}.
Then B ∈ p so pick α > 0 such that d(B) > α. We claim that d(A) ≥ α

b . Suppose
instead that d(A) < α

b . Pick H ∈ Pf (S) and ε > 0 such that for all K ∈ Pf (S), if
(∀s ∈ H)(|K \ sK| < ε · |K|), then |K ∩A| < α

b · |K|.
Pick L ∈ Pf (S) such that (∀s ∈ H)(|L \ sL| < ε

b · |L|) and |B ∩ L| > α · |L|.
Then

⋂
x∈B∩L x−1A ∈ q so pick y ∈

⋂
x∈B∩L x−1A. Let K = Ly. Now, given s ∈ H,

K \ sK ⊆ ρy[L \ sL] so

|K \ sK| ≤ |L \ sL| < ε

b
· |L| ≤ ε · |K| .

Now ρy : B ∩ L→ A ∩K and ρy is at most b-to-1, so

α · |L| < |B ∩ L| ≤ b · |A ∩K| < α · |K| ≤ α · |L| ,

a contradiction.

6.6 Corollary. Let (S, ·) be a semigroup which satisfies SFC. Then ∆∗(S) is a left
ideal of (βS, ·). If S is left cancellative or there exists b ∈ N such that for all x ∈ S, ρx

is at most b-to-1, then ∆∗(S) is a right ideal of (βS, ·).

Proof. Assume that S is left cancellative. By [16, Theorems 2.12, 2.14, and 5.9], ∆∗ is
a right ideal of (βS, ·). The rest of the corollary follows from Theorem 6.5.

6.7 Definition. Let S be a semigroup. Then

∆m(S) = {x ∈ βS : (∀A ∈ x)
(
∃µ ∈ LIM(S)

)
(µ(A ) > 0)} .

6.8 Theorem. Let S be a left amenable semigroup. Then ∆m(S) is a closed ideal of
βS, ∆∗(S) ⊆ ∆m(S), and if S is left cancellative, ∆∗(S) = ∆m(S).

Proof. It is clear that ∆m(S) is closed. To see that it is a left ideal, let x ∈ ∆∗(S), let
y ∈ βS, and let A ∈ yx. Pick s ∈ S such that s−1A ∈ x and pick µ ∈ LIM(S) such
that µ( s−1A ) > 0. Then µ(A ) = µ( s−1A ) > 0.
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To see that ∆m(S) is a right ideal, let x ∈ ∆∗(S), let y ∈ βS, and let B ∈ xy. Then
ρ−1

y [B ] is a neighborhood of x in βS and therefore ρ−1
y [B ]∩ S ∈ x. So ν(ρ−1

y [B ]) > 0
for some ν ∈ LIM(S). We can define a Borel probability measure σ on βS by putting
σ(E) = ν(ρ−1

y [E]) for every Borel subset E of βS. Since ρ−1
y [s−1E] = s−1ρ−1

y [E] for
every E ⊆ βS, σ is left invariant. We claim that σ is regular. To see this, let E be a
Borel subset of βS and let ε > 0. We can choose a compact subset C of ρ−1

y [E] such
that ν(C) > ν(ρ−1

y [E])− ε. Now ρy[C] is a compact subset of E. Since C ⊆ ρ−1
y ρy[C],

we have σ(ρy[C]) = ν(ρ−1
y ρy[C]) ≥ ν(C) > ν(ρ−1

y [E]) − ε = σ(E) − ε. So σ is regular
and hence σ ∈ LIM(S). Since σ(B) > 0, it follows that xy ∈ ∆m(S). Thus ∆m(S) is a
right ideal.

That ∆∗(S) ⊆ ∆m(S) follows from Lemma 2.2. Finally, assume that S is left
cancellative and let p ∈ ∆m(S). To see that p ∈ ∆∗(S), let A ∈ p. Pick µ ∈ LIM(S)
such that µ(A ) > 0. By [16, Theorems 2.12 and 2.14] we have that d(A) ≥ µ(A ).

We now concentrate on a proof of the second assertion of Theorem 1.10. For this
proof we shall need (as did the authors of [3]) the following strong result of Furstenberg
and Katznelson.

6.9 Theorem. Let F be a finite set, let X be a compact metric space, let E be a σ-
algebra of subsets of X, let ν be a nonnegative countably additive measure on E with
ν(X) = 1, and for each n ∈ N and f ∈ F , let Rf

n : X → X be a continuous trans-
formation such that for each E ∈ E, (Rf

n)−1[E] ∈ E and ν
(
(Ri

n)−1[E]
)

= ν(E). As-
sume further that if n,m ∈ N and f, g ∈ F , then Rf

n ◦ Rg
m = Rg

m ◦ Rf
n. If E ∈ E

and ν(E) > 0, then there exists k ∈ N and n1 < n2 < . . . < nk in N such that
ν
(
E ∩

⋂
f∈F (Rf

n1
◦Rf

n2
◦ . . . ◦Rf

nk
)−1[E]

)
> 0.

Proof. [11, Theorem A].

Previous applications of Theorem 6.9 to semigroups have relied on Furstenberg’s
Correspondence Principle, and as such have been restricted to countable semigroups.
By using a metrizable quotient of βS we avoid that restriction in the following theorem.

6.10 Theorem. Let (S,+) be a commutative semigroup and let A ⊆ S be such that
µ(A ) > 0 for some µ ∈ LIM(S). Then A is a J-set.

Proof. Let T = NS and let F ∈ Pf (T ). Let M denote the subsemigroup of S
generated by {f(n) : f ∈ F and n ∈ N} and let B denote the countable Boolean
algebra of subsets of S generated by {A} ∪ {−t+A : t ∈M}. We define an equivalence
relation ∼ on βS by stating that x ∼ y if and only if (∀B ∈ B)(B ∈ x ⇔ B ∈ y).
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Let X = βS/ ∼ and let π : βS → X be the projection map. Note that for B ∈ B,
π−1

[
π[B ]

]
= B. Consequently X is Hausdorff and, as the continuous image of a

compact space, is compact. Also, if B ∈ B, then π[B ] is open (in fact clopen) so the
topology with basis {π[B ] : B ∈ B} is a Hausdorff topology contained in the (compact
Hausdorff) quotient topology. These topologies must therefore be equal. That is, the
quotient topology has a countable base, so by the Urysohn Metrization Theorem, X is
metrizable.

For each t ∈ M , define Tt : X → X by Tt

(
π(x)

)
= π(t+ x). To see that Tt is well

defined, assume that x ∼ y and let B ∈ B. Then

B ∈ (t+ x) ⇔ (−t+B) ∈ x

⇔ (−t+B) ∈ y

⇔ B ∈ (t+ y) .

Since for each B ∈ B, T−1
t

[
π[B ]

]
= π[−t+B ] we have that Tt is continuous.

Let ν be the image measure of µ defined by ν(E) = µ(π−1[E]) for every Borel
subset E of X. Now let t ∈M and let B ∈ B. Then

ν(π[B ]) = µ
(
π−1

[
π[B ]

])
= µ[B ]

= µ[−t+B ]

= µ
(
π−1

[
π[−t+B ]

])
= ν(π[−t+B ])

= ν
(
T−1

t

[
π[B ]

])
.

Since ν and ν ◦ T−1
t agree on a countable basis for the topology for X, they agree

on every Borel subset of X. That is, if E is a Borel subset of X and t ∈ M , then
ν(E) = ν(T−1

t [E]). Note that for any t, s ∈M , Tt ◦ Ts = Tt+s = Ts+t = Ts ◦ Tt.

For f ∈ F and n ∈ N we put Rf
n = Tf(n). The hypotheses of Theorem 6.9 are

satisfied with E as the set of Borel subsets of X. Since ν(π[A ]) = ν[A ], it follows that
there exist k ∈ N and n1 < n2 < . . . < nk in N such that

ν
(
π[A ] ∩

⋂
f∈F (Rf

n1
◦Rf

n2
◦ . . . ◦Rf

nk
)−1
[
π[A ]

])
> 0 .

Pick x ∈ βS such that π(x) ∈ π[A ] ∩
⋂

f∈F (Rf
n1
◦ Rf

n2
◦ . . . ◦ Rf

nk
)−1
[
π[A ]

]
. Let

H = {n1, n2, . . . , nk}. Then A ∩
⋂

f∈F (−
∑

n∈H f(n) +A) ∈ x. Pick

d ∈ A ∩
⋂

f∈F (−
∑

n∈H f(n) +A) .
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Then d+
∑

n∈H f(n) ∈ A for every f ∈ F . So A is a J-set.

6.11 Theorem. Let S be a commutative semigroup and let E be a subset of S. If
∆m(S) ∩ c`(E) contains an idempotent, then E is a C-set.

Proof. Theorems 6.10 and 2.5.

We now restate Theorem 1.10.

6.12 Theorem.

(a) Let (S, ·) be a left cancellative semigroup which satisfies SFC. Then ∆∗(S) is a two
sided ideal of (βS, ·) so if C is a central subset of S, then d(C) > 0.

(b) If (S,+) is any commutative semigroup and if E is a subset of S for which ∆∗(S)∩
c`(E) contains an idempotent, then E is a C-set.

Proof. By Corollary 6.6, ∆∗(S) is a two sided ideal of βS and thereforeK(βS) ⊆ ∆∗(S).

Now assume that S is commutative, that E ⊆ S, and that there is an idempotent
in ∆∗(S) ∩ c`(E). By Theorem 6.10 and Lemma 2.2, ∆∗(S) ⊆ J(S) so Theorem 2.5
applies.

7. A simple elementary proof that

commutative semigroups satisfy SFC

Argabright and Wilde [2, Theorem 4] established that all commutative semigroups sat-
isfy SFC, using the fact that all commutative cancellative semigroups satisfy SFC. (We
present a version of their proof in Theorem 7.2 below.) However, showing this latter
fact involved the following chain of reasoning.

First, any commutative semigroup is amenable. This fact is stated in [5]. (The
review in Mathematical Reviews incorrectly says that it is proved in [5]. In fact in [5]
one is simply referred to [4] for the proof. And the result is not explicitly stated in [4]
– the term “amenable” occurs nowhere in that paper.)

Second, any left amenable semigroup satisfies FC. This fact is due to A. Frey [9]
and is based on the proof by E. Følner [8] for groups. A simplified proof is given by
Namioka [20, Theorem 3.5].

Third, any left cancellative semigroup which satisfies FC also satisfies SFC. This
is an easy elementary fact since then |(s+K) \K| = |K \ (s+K)| for any K ∈ Pf (S)
and any s ∈ S.
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We felt that, since the assumption and conclusion were both algebraic and elemen-
tary, there should be an elementary proof of the fact that all commutative semgroups
satisfy SFC. We present such a proof now.

7.1 Theorem. Let (S,+) be a commutative cancellative semigroup. Then S satisfies
FC (and therefore satisfies SFC).

Proof. Let F ∈ Pf (S) and let ε > 0. Pick n ∈ N such that 1
n < ε. Let

K =
{∑

s∈F mss : for each s ∈ F , ms ∈ {1, 2, . . . , n}
}
.

Now let t ∈ F be given. We shall show that |(t+K) \K| ≤ 1
n · |K|. Let

Mt =
{∑

s∈F\{t}mss : for each s ∈ F \ {t} , ms ∈ {1, 2, . . . , n}
}
.

If t+K ⊆ K, we are done so assume that (t+K) \K 6= ∅ and define

ψ :
(
(t+K) \K

)
× {1, 2, . . . , n} → K

as follows. Given x ∈ (t+K) \K we have, since x /∈ K, that x = (n+ 1)t+ u for some
u ∈Mt . Notice that, since S is cancellative, u is uniquely determined (even though the
choice of the ms’s need not be). Define ψ(x, k) = kt+ u.

We claim that ψ is injective so that |(t+K)\K
)
| ≤ 1

n · |K| as required. To this end
let (x, k) and (y, l) be in

(
(t+K)\K

)
×{1, 2, . . . , n} and assume that ψ(x, k) = ψ(y, l).

Pick u, v ∈ Mt such that x = (n+ 1)t+ u and y = (n+ 1)t+ v. Then kt+ u = lt+ v.
If k = l, then u = v so that (x, k) = (y, l) as required. So suppose without loss of
generality that k < l. Then (k + n + 1 − l)t + u = (n + 1)t + v so that y ∈ K, a
contradiction.

The following proof is a simplification of the proof of [2, Theorem 4].

7.2 Theorem. Let (S,+) be a commutative semigroup. Then S satisfies SFC.

Proof. Define a relation R on S by xRy ⇔ (∃u ∈ S)(x + u = y + u). Then R is
an equivalence relation on S. For x ∈ S, let [x] denote the R-equivalence class of x.
The operation [x] + [y] = [x + y] is well defined and makes S/R into a cancellative
commutative semigroup, which satisfies SFC by Theorem 7.1.

To see that S satisfies SFC, let F ∈ Pf (S) and ε > 0 be given. Pick B ∈ Pf (S/R)
such that for all x ∈ F , |B \ ([x] + B)| < ε · |B|. Choose A as a set of representatives
for B. That is, B = {[x] : x ∈ A} and if x, y ∈ A and [x] = [y], then x = y. Let
C = {(x, a, b) : x ∈ F , a, b ∈ A and [x+ a] = [b]}.
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Given (x, a, b) ∈ C, {u ∈ S : x + a + u = b + u} is an ideal of S and the finite
intersection of ideals is an ideal so we may pick u ∈ S such that for all (x, a, b) ∈ C,
x+ a+ u = b+ u. Let D = {a+ u : a ∈ A}.

Define ϕ : D → B by ϕ(a+ u) = [a] and observe that ϕ is well defined, one-to-one,
and onto B, and so |D| = |B|. Now let x ∈ F . We claim that ϕ[D \ (x + D)] ⊆
B \ ([x] +B). (Actually equality holds, but this is all we need.) To this end, let b ∈ A
such that b+u ∈ D \ (x+D). We claim that [b] ∈ B \ ([x]+B) so suppose instead that
we have some a ∈ A such that [b] = [x+ a]. Then (x, a, b) ∈ C so x+ a+ u = b+ u and
therefore b+ u ∈ x+D, a contradiction.

We thus have that |D \ (x+D)| ≤ |B \ ([x] +B)| < ε · |B| = ε · |D| as required.
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