
This paper was published in Topology and its Applications 158 (2011),
1815-1830. To the best of my knowledge, this is the final version as it was

submitted to the publisher. –NH

Polynomials at Iterated Spectra Near Zero

Vitaly Bergelson1

Department of Mathematics
Ohio State University
Columbus, OH 43210

USA

Neil Hindman2

Department of Mathematics
Howard University

Washington, DC 20059

USA

Dona Strauss

Department of Pure Mathematics
University of Leeds

Leeds LS2 9J2
UK

Abstract

Central sets in N are sets known to have substantial combinatorial structure.
Given x ∈ R, let w(x) = x − bx + 1

2c. Kronecker’s Theorem [19] says that if
1, α1, α2, . . . , αv are linearly independent over Q and U is an open subset of
(− 1

2 , 1
2 )v, then {x ∈ N : (w(α1x), . . . , w(αvx)) ∈ U} is nonempty and Weyl [22]

showed that this set has positive density. In a previous paper we showed that if
0 is in the closure of U , then this set is central. More generally, let P1, P2, . . . , Pv

be real polynomials with zero constant term. We showed that

{x ∈ N : (w(P1(x)), . . . , w(Pv(x))) ∈ U}

is non empty for every open U with 0 ∈ c`U if and only if it is central for every
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such U and we obtained a simple necessary and sufficient condition for these to
occur.

In this paper we show that the same conclusion applies to compositions of
polynomials with functions of the form n 7→ bαn + γc where α is a positive
real and 0 < γ < 1. (The ranges of such functions are called nonhomogeneous
spectra and by extension we refer to the functions as spectra.) We characterize
precisely when we can compose with a single function of the form n 7→ bαnc or
n 7→ bαn+1c. With the stronger assumption that U is a neighborhood of 0, we
show when we can allow the composition with two such spectra and investigate
some related questions.

Key words: central set, IP set, Stone-Čech compactification, spectra of
numbers, iterated spectra
2000 MSC: 05D10, 54D35

1. Introduction

Let v ∈ N, let P1, P2, . . . , Pv be real polynomials with zero constant term,
and let U be an open subset of (− 1

2 , 1
2 )v with 0 ∈ c`U . Let ν(x) = bx + 1

2c,
the nearest integer to x, and let w(x) be defined as in the abstract, so that
w(x) = x− ν(x). In [8] we showed that if

{x ∈ N :
(
w

(
P1(x)

)
, . . . , w

(
Pv(x)

))
∈ U} 6= ∅

for every such U , then it is large; it must be central , in fact strongly central .
(We will present the definitions of these terms shortly.) Related results from
[12] and [10] deal with the function ||x|| = |w(x)|. When one is dealing with
neighborhoods of 0, both notations are equally convenient. But the use of w(x)
allows us to distinguish between points which are close to zero from the right
and points which are close to zero from the left.

We take N to be the set of positive integers and ω = N ∪ {0}.

Definition 1.1. Let α be a positive real and let 0 ≤ γ ≤ 1. The function
gα,γ : N → N is defined by gα,γ(n) = bαn + γc for each n ∈ N.

In terminology introduced by Graham, Lin, and Lin in [13], gα,γ [N] is called
the γ-non homogeneous spectrum of α. See [6] for a discussion of the history of
the study of such spectra.

We shall be concerned in this paper primarily with determining conditions
under which one may conclude that {x ∈ N :

(
w

(
P1(x)

)
, . . . , w

(
Pv(x)

))
∈ U}

is central or strongly central where U is only assumed to have 0 in its closure
and each Pi is a polynomial composed with one or more functions of the form
gα,γ .

In order to discuss the notions of largeness with which we are dealing, we
need to briefly discuss the algebraic structure of the Stone-Čech compactification
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of a discrete semigroup. For an elementary introduction to this structure and
any unfamiliar facts mentioned here, see [18]. Or see the papers [1], [2], or [3],
with the caution that there βS is taken to be left topological rather than right
topological.

Let (S, +) be a discrete semigroup. (We shall be primarily concerned with
subsemigroups of (R,+) so we shall denote the operation by +. However, we are
not assuming that S is commutative. And even if S is commutative, it is very
unlikely that (βS,+) is commutative. In particular, if S is a subsemigroup of
(R,+), then (βS,+) is not commutative.) The points of βS are the ultrafilters
on S, the principal ultrafilters being identified with the points of S, allowing us
to pretend that S ⊆ βS. There is a unique extension of the operation to βS
making (βS,+) a right topological semigroup (meaning that for each p ∈ βS,
the function ρp is continuous where ρp(q) = q + p) with the additional properth
that for each x ∈ S, the function λx is continuous where λx(q) = x + q. Given
A ⊆ S, A = {p ∈ βS : A ∈ p} and {A : A ⊆ S} is a basis for the open sets (as
well as a basis for the closed sets) of βS. Given p, q ∈ βS and A ⊆ S, A ∈ p + q
if and only if {x ∈ S : −x + A ∈ q} ∈ p where −x + A = {y ∈ S : x + y ∈ A}.
(There no requirement that S has an identity, nor, even if it does, that it is a
group. However, if S is a group, then −x + A = {−x + y : y ∈ A}.)

Any compact Hausdorff right topological semigroup (T,+) has idempotents
[11, Lemma 1]. Let E(T ) be the set of idempotents in T . A set A ⊆ S is
said to be an IP set if and only if A is a member of an idempotent in βS.
Equivalently, A is an IP set if and only if there is a sequence 〈xn〉∞n=1 such that
FS(〈xn〉∞n=1) ⊆ A, where FS(〈xn〉∞n=1) = {

∑
t∈F xt : F ∈ Pf (N)} and for any

set X, Pf (F ) is the set of finite nonempty subsets of X. The sums in
∑

t∈F xt

are taken in increasing order of indices. A set A ⊆ S is an IP* set if and only
if it has nontrivial intersection with every IP set. Equivalently A is an IP* set
if and only if it is a member of every idempotent in βS.

Any compact Hausdorff right topological semigroup (T,+) has a smallest
two sided ideal K(T ), which is the union of all minimal left ideals of T and is
also the union of all minimal right ideals of T . The intersection of any minimal
left ideal and any minimal right ideal is a group, and any two such groups are
isomorphic. An idempotent is said to be minimal if and only if it is a member
of K(T ).

If S is a discrete space and C is a compact Hausdorff space, then any mapping
f : S → C has a continuous extension f̃ : βS → C.

Central subsets of N were introduced by Furstenberg in [12], defined in terms
of the notions proximal and uniformly recurrent of topological dynamics. The
property of being central was shown in [5] (with help from B. Weiss) to be
equivalent to being a member of a minimal idempotent. (Later Shi and Yang
[21] showed that the natural extension of Furstenberg’s definition to an arbitrary
semigroup S is equivalent to membership in a minimal idempotent of βS.) We
take this to be the definition of central. That is, A ⊆ S is central if and only
if A is a member of some minimal idempotent. And A is central* if and only
if it is a member of every minimal idempotent, equivalently it has nontrivial
intersection with every central set. From the above description, one easily sees
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that A is central if and only if there is a minimal left ideal L of βS such that
A is a member of some idempotent in L. We say that A is strongly central if
and only if for every minimal left ideal L of βS, there is some idempotent p ∈ L
such that A ∈ p.

Central sets are guaranteed to contain substantial combinatorial structure.
(See [12, Chapter 8] and [18, Chapters 14 through 16] for examples of much of
this structure.) Further, from the definition, it is easy to see that the notions
of central and IP are partition regular. That is, if A is central (respectively
IP), and A is divided into finitely many sets, then one of those sets is central
(respectively IP).

If A is a subset of N which contains arbitrarily long intervals, then A contains
a left ideal of βN by [7, Theorem 2.9]. Therefore if both A and its complement
contain arbitrarily long intervals, then A is central but not strongly central. For
example A could consist of those integers that have even maximum of their bi-
nary supports. We will show that several of the sets with which we are interested
in this paper are strongly central if and only if they are central.

In Section 2 we shall show that the characterization given in [8] describing
when {x ∈ N : (w(P1(x)), . . . , w(Pv(x))) ∈ U} is central extends to polynomials
composed with finitely many functions of the form gα,γ with 0 < γ < 1. For
example, suppose P1(x) = x2 and P2(x) = 2x3 − x, α and δ are positve reals,
and γ and µ are elements of the interval (0, 1). Then, with

Q1(x) = P1 ◦ gα,γ ◦ gδ,µ(x) =
⌊
αbδx + µc+ γ

⌋2 and
Q2(x) = P2 ◦ gα,γ ◦ gδ,µ(x) = 2

⌊
αbδx + µc+ γ

⌋3 −
⌊
αbδx + µc+ γ

⌋
,

and with U any open subset of (− 1
2 , 1

2 )2 with 0 ∈ c`U , one is guaranteed
that {x ∈ N :

(
w

(
Q1(x)

)
, w

(
Q2(x))

))
∈ U} is large exactly when {x ∈ N :(

w
(
P1(x)

)
, w

(
P2(x))

))
∈ U} is large.

The functions gα,0 and gα,1 are not nearly so nice. We will characterize
precisely when we can guarantee that

{x ∈ N :
(
w

(
Q1(x)

)
, w

(
Q2(x)

)
, . . . , w

(
Qv(x)

))
∈ U}

is large where Qu(x) = Pu ◦ gα,i and i ∈ {0, 1}.
In Section 3 we address the issues of when we can guarantee that

{x ∈ N :
(
w

(
Q1(x)

)
, w

(
Q2(x)

)
, . . . , w

(
Qv(x)

))
∈ U}

is large where Qu(x) = Pu ◦ gα,i ◦ gδ,j and i, j ∈ {0, 1}. We are only able to do
this under the much stronger assumption that U is a neighborhood of 0. And,
surprisingly, the answer depends on whether or not i = j.

In Section 4 we turn our attention to the generalized polynomials studied
in [14], [4], [9], [10], [15], and [17]. Generalized polynomials allow expressions
involving the greatest integer function such as 2x2

⌊
x + 3x5b2x2 − 3xc

⌋
. The

examples of Q1 = P1 ◦gα,γ ◦gδ,µ and Q2 = P2 ◦gα,γ ◦gδ,µ given three paragraphs
above are also generalized polynomials. We obtain a characterization of those
generalized polynomials P that have the property that {x ∈ R : w

(
αP (x)

)
∈ U}

is IP* whenever α ∈ R and U is a neighborhood of 0.
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2. Evaluating Polynomials at Iterated Spectra

In [6] it was shown that if 0 < γ < 1, then gα,γ (see Definition 1.1) preserves
much of the largeness structure of N. In particular, it takes central sets to
central sets. A key to this was the fact that, while gα,γ is not a homomorphism,
its continuous extension to βN is a homomorphism on a natural subset of βN
containing all of the idempotents.

We regard the circle group T as being R/ Z, and we shall denote it additively.
We shall use real numbers in [− 1

2 , 1
2 ) to denote the corresponding elements of

T. Then w can be regarded as a mapping from R to T, and is then, of course,
the canonical homomorphism from R onto R/ Z. It follows that, if Rd denotes
R with the discrete topology, then w̃ : βRd → T is also a homomomorphism (by
[18, Corollary 4.22], due originally to P. Milnes in [20]). Recall that ω = N∪{0}.

Definition 2.1. Let α be a positive real, let hα = gα,1/2, and define fα : N → T
by fα(x) = w(αx). Let h̃α : βN → βω and f̃α : βN → T be their continuous
extensions. Then

Zα = {p ∈ βN : f̃α(p) = 0} ,
Xα = {p ∈ βN : {x ∈ N : 0 < fα(x) < 1

2} ∈ p}, and
Yα = {p ∈ βN : {x ∈ N : − 1

2 < fα(x) < 0} ∈ p} .

Note that for x ∈ N, fα(x) = αx− hα(x).

Theorem 2.2. Let α be a positive real. Then Zα is a compact subsemigroup of
βN containing the idempotents and h̃α is an isomorphism and a homeomorphism
from Zα onto Z1/α. If α is irrational, then Xα and Yα are subsemigroups of
βN, Zα = Xα∪Yα, and h̃α takes Xα onto Y1/α and takes Yα onto X1/α. If α is
irrational, 0 < γ < 1, and g̃α,γ : βN → βω is the continuous extension of gα,γ ,
then for all p ∈ Zα, g̃α,γ(p) = h̃α(p).

Proof. [6, Lemma 5.7 and Theorems 5.8 and 5.10]. �

The following lemma is Lemma 5.12(a) of [6], except that we had an unnec-
essary additional hypothesis there.

Lemma 2.3. Let (S, +) be a compact Hausdorff right topological semigroup and
let T be a compact subsemigroup of S. If M is a minimal left ideal of S and
M ∩ T 6= ∅, then M ∩ T is a minimal left ideal of T .

Proof. Trivially M ∩ T is a left ideal of T , so pick a minimal left ideal L
of T such that L ⊆ M ∩ T . To see that M ∩ T ⊆ L let x ∈ M ∩ T . Pick an
idempotent e ∈ L. Then e ∈ M and M + e is a left ideal of S contained in M
so M = M + e. Therefore x ∈ M + e and so x = x+ e so x ∈ T + e. Since T + e
is a left ideal of T contained in L, L = T + e, so x ∈ L. �

Lemma 2.4. Let (S, +) be a compact Hausdorff right topological semigroup and
let T be a compact subsemigroup of S. If K(S)∩ T 6= ∅ and L is a minimal left
ideal of T , then there is a minimal left ideal M of S such that M ∩ T = L.
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Proof. Pick x ∈ L. Then x ∈ K(T ) ⊆ K(S) so S+x is a minimal left ideal of S.
By Lemma 2.3, (S+x)∩T is a minimal left ideal of T and L = T +x ⊆ (S+x)∩T
so L = (S + x) ∩ T . �

We now show that we can preserve the characterization given by [8, Theorem
2.8] when the polynomials are replaced by the composition of polynomials with
finitely many iterated spectra.

Theorem 2.5. Let v,m ∈ N and for u ∈ {1, 2, . . . , v}, let Pu be a polynomial
with real coefficients and zero constant term. For t ∈ {1, 2, . . . ,m}, let αt be a
positive real and let 0 < γt < 1. For u ∈ {1, 2, . . . , v} let Qu = Pu ◦ gα1,γ1 ◦ · · · ◦
gαm,γm . The following statements are equivalent.

(a) Whenever U is an open subset of (− 1
2 , 1

2 )v with 0 ∈ c`U ,
{x ∈ N :

(
w

(
P1(x)

)
, w

(
P2(x)

)
, . . . , w

(
Pv(x)

))
∈ U} is strongly central.

(b) Whenever U is an open subset of (− 1
2 , 1

2 )v with 0 ∈ c`U ,
{x ∈ N :

(
w

(
P1(x)

)
, w

(
P2(x)

)
, . . . , w

(
Pv(x)

))
∈ U} is central.

(c) Whenever U is an open subset of (− 1
2 , 1

2 )v with 0 ∈ c`U ,
{x ∈ N :

(
w

(
P1(x)

)
, w

(
P2(x)

)
, . . . , w

(
Pv(x)

))
∈ U} 6= ∅.

(d) Any nontrivial linear combination of
{
Pu : u ∈ {1, 2, . . . , v}

}
over Q has

at least one irrational coefficient.

(e) Whenever U is an open subset of (− 1
2 , 1

2 )v with 0 ∈ c`U ,
{x ∈ N :

(
w

(
Q1(x)

)
, w

(
Q2(x)

)
, . . . , w

(
Qv(x)

))
∈ U} is strongly central.

(f) Whenever U is an open subset of (− 1
2 , 1

2 )v with 0 ∈ c`U ,
{x ∈ N :

(
w

(
Q1(x)

)
, w

(
Q2(x)

)
, . . . , w

(
Qv(x)

))
∈ U} is central.

(g) Whenever U is an open subset of (− 1
2 , 1

2 )v with 0 ∈ c`U ,
{x ∈ N :

(
w

(
Q1(x)

)
, w

(
Q2(x)

)
, . . . , w

(
Qv(x)

))
∈ U} 6= ∅.

Proof. Statements (a) through (d) are equivalent by [8, Theorem 2.8] and
statement (g) trivially implies statement (c). So it suffices to show that state-
ment (a) implies statement (e). The proof is by induction on m. Let m ∈ N
and assume the conclusion holds for m − 1. (In the case that m = 1, we are
simply assuming that statement (a) holds.)

Let U be an open subset of (− 1
2 , 1

2 )v with 0 ∈ c`U and let

B = {x ∈ N :
(
w

(
Q1(x)

)
, w

(
Q2(x)

)
, . . . , w

(
Qv(x)

))
∈ U} .

For u ∈ {0, 1, . . . ,m− 1}, let Ru = Pu ◦ gα1,γ1 ◦ · · · ◦ gαm−1,γm−1 and let

C = {x ∈ N :
(
w

(
R1(x)

)
, w

(
R2(x)

)
, . . . , w

(
Rv(x)

))
∈ U} .

Let L be a minimal left ideal of (βN,+). By the induction hypothesis, we know
there is an idempotent r ∈ L ∩ C. Consequently, we have by Theorem 2.2 that
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L∩Zαm 6= ∅ and therefore is a minimal left ideal of Zαm by Lemma 2.3. Let k be
the restriction of g̃αm,γm

to Zαm
. Then by Theorem 2.2, k is a homeomorphism

and an isomorphism onto Z1/αm
and so M = k[L∩Zαm

] is a minimal left ideal
of Z1/αm

and is therefore the intersection of a minimal left ideal M ′ of βN with
Z1/αm

. Pick an idempotent p ∈ M ′ ∩ C. Then p ∈ Z1/αm
so k−1(p) is an

idempotent in L. Since C ∈ p, g−1
αm,γm

[C] ∈ k−1(p). And g−1
αm,γm

[C] ⊆ B. �

As was shown in [6, Section 6], if α is irrational, then the functions gα,0 and
gα,1 have much weaker properties than gα,γ for 0 < γ < 1. They take central*
sets to central sets, but they do not even take all central sets to IP sets. We
characterize now when we can add one function of the form gα,0 or gα,1 where
we could add finitely many of the form gα,γ with 0 < γ < 1.

Theorem 2.6. Let v ∈ N and for u ∈ {1, 2, . . . , v}, let Pu be a polynomial with
real coefficients and zero constant term. Let α be a positive irrational. The
following statements are equivalent.

(a) For every minimal left ideal L of βN and every open U ⊆ (− 1
2 , 1

2 )v with
0 ∈ c`U , there is an idempotent q ∈ L ∩Xα such that
{x ∈ N :

(
w

(
P1(gα,0(x))

)
, w

(
P2(gα,0(x))

)
, . . . , w

(
Pv(gα,0(x))

))
∈ U} ∈ q.

(a′) For every minimal left ideal L of βN and every open U ⊆ (− 1
2 , 1

2 )v with
0 ∈ c`U , there is an idempotent q ∈ L ∩ Yα such that
{x ∈ N :

(
w

(
P1(gα,1(x))

)
, w

(
P2(gα,1(x))

)
, . . . , w

(
Pv(gα,1(x))

))
∈ U} ∈ q.

(b) For every open U ⊆ (− 1
2 , 1

2 )v with 0 ∈ c`U ,
{x ∈ N :

(
w

(
P1(gα,0(x))

)
, w

(
P2(gα,0(x))

)
, . . . , w

(
Pv(gα,0(x))

))
∈ U} is

strongly central.

(b′) For every open U ⊆ (− 1
2 , 1

2 )v with 0 ∈ c`U ,
{x ∈ N :

(
w

(
P1(gα,1(x))

)
, w

(
P2(gα,1(x))

)
, . . . , w

(
Pv(gα,1(x))

))
∈ U} is

strongly central.

(c) For every open U ⊆ (− 1
2 , 1

2 )v with 0 ∈ c`U ,
{x ∈ N :

(
w

(
P1(gα,0(x))

)
, w

(
P2(gα,0(x))

)
, . . . , w

(
Pv(gα,0(x))

))
∈ U} is

central.

(c′) For every open U ⊆ (− 1
2 , 1

2 )v with 0 ∈ c`U ,
{x ∈ N :

(
w

(
P1(gα,1(x))

)
, w

(
P2(gα,1(x))

)
, . . . , w

(
Pv(gα,1(x))

))
∈ U} is

central.

(d) For every open U ⊆ (− 1
2 , 1

2 )v with 0 ∈ c`U ,
{x ∈ N :

(
w

(
P1(gα,0(x))

)
, w

(
P2(gα,0(x))

)
, . . . , w

(
Pv(gα,0(x))

))
∈ U} is

an IP set.

(d′) For every open U ⊆ (− 1
2 , 1

2 )v with 0 ∈ c`U ,
{x ∈ N :

(
w

(
P1(gα,1(x))

)
, w

(
P2(gα,1(x))

)
, . . . , w

(
Pv(gα,1(x))

))
∈ U} is

an IP set.
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(e) For every open U ⊆ (− 1
2 , 1

2 )v with 0 ∈ c`U , there exists q ∈ Zα such that
{x ∈ N :

(
w

(
P1(gα,0(x))

)
, w

(
P2(gα,0(x))

)
, . . . , w

(
Pv(gα,0(x))

))
∈ U} ∈ q.

(e′) For every open U ⊆ (− 1
2 , 1

2 )v with 0 ∈ c`U , there exists q ∈ Zα such that
{x ∈ N :

(
w

(
P1(gα,1(x))

)
, w

(
P2(gα,1(x))

)
, . . . , w

(
Pv(gα,1(x))

))
∈ U} ∈ q.

(f) If P0(x) = 1
αx, and (c0, c1, . . . , cv) ∈ Qv+1 \ {0}, then

∑v
u=0 cuPu has at

least one irrational coefficient.

Proof. Let k = max
{

deg(Pu) : u ∈ {1, 2, . . . , v}
}

and pick 〈au,s〉ks=1 in R for
each u ∈ {1, 2, . . . , v} such that for x ∈ R, Pu(x) =

∑k
s=1 au,sx

s.
It suffices to show that (e) implies (f), (e′) implies (f), (f) implies (a), and

(f) implies (a′).
To see that (e) implies (f), assume that (e) holds and that (f) does not.

Then there are integers, c0, c1, c2, · · · , cv, not all zero, for which
∑v

u=0 cuPu has
integer coefficients. So w

( ∑v
u=0 cuPu(n)

)
= 0 for every n ∈ N. If c0 = 0, then

by Theorem 2.5, there is some open U ⊆ (− 1
2 , 1

2 )v with 0 ∈ c`U such that

{x ∈ N :
(
w

(
P1(x)

)
, w

(
P2(x)

)
, . . . , w

(
Pv(x)

))
∈ U} = ∅ .

So we may assume that c0 > 0.
Let τ : Tv → T be defined by τ(t1, t2, . . . , tv) =

∑v
u=1 cutu. Now choose

d ∈ (0, 1
2 ) for which w( c0

α ) /∈ (−d, d) and let U = τ−1[(−d, 0)] ∩ (− 1
2 , 1

2 )v. Let
A = {n ∈ N :

(
w

(
P1(gα,0(n))

)
, w

(
P2(gα,0(n))

)
, . . . , w

(
Pv(gα,0(n))

))
∈ U} and

pick q ∈ Zα such that A ∈ q.
First suppose that q ∈ Xα and let B = {n ∈ N : bnαc < nα < bnαc + dα

c0
}.

Then B ∈ q so pick n ∈ A ∩ B and let m = bnαc. Then c0n > c0m
α > c0n − d

and c0m
α = c0P0

(
gα,0(n)

)
so −d < w

(
c0P0(gα,0(n))

)
< 0. Since

τ
(
w

(
P1(gα,0(n))

)
, w

(
P2(gα,0(n))

)
, . . . , w

(
Pv(gα,0(n))

))
= −w

(
c0P0(gα,0(n))

)
we have a contradiction to the fact that n ∈ A.

Now suppose that q ∈ Yα and let

B = {n ∈ N : bnαc+ 1− dα
c0

< nα < bnαc+ 1} .

Then B ∈ q so pick n ∈ A∩B and let m = bnαc. Then c0n < c0
α (m+1) < c0n+d

so 0 < w
(

c0
α (m + 1)

)
< d. Also

τ
(
w

(
P1(gα,0(n))

)
, w

(
P2(gα,0(n))

)
, . . . , w

(
Pv(gα,0(n))

))
= −w

(
c0P0(gα,0(n))

)
,

c0m
α = c0P0

(
gα,0(n)

)
, and n ∈ A so 0 < w( c0m

α ) < d. We thus have integers k
and l such that k < c0

α (m+1) < k +d and l < c0m
α < l+d from which it follows

that w( c0
α ) ∈ (−d, d), a contradiction.

The fact that (e′) implies (f) can be shown in a similar way. We omit the
details.

To see that (f) implies (a), let

B = {x ∈ N :
(
w

(
P1(gα,0(x))

)
, w

(
P2(gα,0(x))

)
, . . . , w

(
Pv(gα,0(x))

))
∈ U} .
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Note that by [6, Theorem 5.5], there is a right ideal Uα of βN such that Xα =
Uα ∩Zα, so there is an idempotent in L∩Uα and thus L∩Xα 6= ∅. By Lemma
2.3, L ∩ Xα is a minimal left ideal of Xα. By [6, Lemma 5.9 and Theorem
5.10], g̃α,0 is an isomorphism and a homeomorphism from Xα onto Y1/α so
g̃α,0[L ∩Xα] is a minimal left ideal of Y1/α. Pick by Lemma 2.4 a minimal left
ideal M of βN such that M ∩ Y1/α = g̃α,0[L ∩ Xα]. Let ε = min{ 1

2 , 1
α}. Let

C = {y ∈ N :
(
w

(
P0(y)

)
, w

(
P1(y)

)
, . . . , w

(
Pv(y)

))
∈ (−ε, 0)×U}. By Theorem

2.5, pick an idempotent p ∈ M ∩ C. Since p is an idempotent, p ∈ Z1/α.
Since C ⊆ {y ∈ N : w( 1

αy) ∈ (−ε, 0)}, p ∈ Y1/α. Thus there is an idempotent
q ∈ L ∩ Xα such that p = g̃α,0(q). By [6, Lemma 5.9 and Theorem 5.10],
g̃1/α,1(p) = q. Since C ∈ p it suffices to show that g1/α,1[C] ⊆ B. So let y ∈ C

and let x = g1/α,1(y). Then since w( 1
αy) ∈ (−ε, 0), x − ε < 1

αy < x and so
y < αx < y + εα ≤ y + 1 and thus y = gα,0(x) and so x ∈ B.

The proof that (f) implies (a′) has only obvious changes from the proof that
(f) implies (a). �

3. Results assuming that U is a neighborhood of 0

In this section we establish some results utilizing a much stronger assump-
tion. That is, we assume that U is a neighborhood of 0, rather than just an open
set with 0 in its closure. (Of course, we would rather use the weaker assumption
if we could.)

To set the stage, we note the following consequence of Theorem 4.2, showing
that the stronger assumption can produce stronger conclusions. (The set B in
the following theorem could not be an IP* set if both U and its complement
had 0 in their closures.)

Theorem 3.1. Let v,m ∈ N and for u ∈ {1, 2, . . . , v}, let Pu be a polynomial
with real coefficients and zero constant term. For t ∈ {1, 2, . . . ,m}, let αt be a
positive real and let 0 < γt < 1. For u ∈ {1, 2, . . . , v} let

Qu = Pu ◦ gα1,γ1 ◦ · · · ◦ gαm,γm

and let U be a neighborhood of 0 in (− 1
2 , 1

2 )v. Then

B = {x ∈ N :
(
w

(
Q1(x)

)
, w

(
Q2(x)

)
, . . . , w

(
Qv(x)

))
∈ U}

is an IP∗ set in N.

Proof. Let p be an idempotent in βN, let k = gα1,γ1 ◦ · · · ◦ gαm,γm
, and let

q = k̃(p). Then by Theorem 2.2 applied m times, q is an idempotent so by
Theorem 4.2, if C = {x ∈ N :

(
w

(
P1(x)

)
, w

(
P2(x)

)
, . . . , w

(
Pv(x)

))
∈ U}, then

C ∈ q. Consequently k−1[C] ∈ p and k−1[C] ⊆ B. �

We now turn our attention to seeing to what extent we can let the γ’s in
Theorem 3.1 be 0 or 1. Restricting our attention to gα,γ ◦ gδ,τ we obtain simple
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necessary and sufficient conditions for the existence of one (and thus many)
idempotents p with B as a member in Theorem 3.9 in the case γ = τ and
Theorem 3.11 in the case γ 6= τ .

By Rd we mean the set R with the discrete topology.

Lemma 3.2. Let p be an (additive) idempotent in βRd and let α ∈ R \ {0}.

(a) Let αp be the product in (βRd, ·). Then αp is an additive idempotent in
βRd.

(b) For every ε > 0, {x ∈ R : hα(x)− ε < αx < hα(x) + ε} ∈ p.

Proof. (a). If lα : R → R is defined by lα(x) = αx, then αp = l̃α(p) where
l̃α : βRd → βRd is the continuous extension of lα. Since lα is a homomor-
phism on (R,+), l̃α is a homomorphism on (βRd,+) by [18, Corollary 4.22]
(due originally to P. Milnes in [20]), so l̃α(p) is an idempotent.

(b) Since w : R → T is a homomorphism, so is w̃ : βRd → T. Since αp is an
idempotent, w̃(αp) = 0 so {y ∈ T : −ε < y < ε} is a neighborhood of w̃(αp) =
w̃ ◦ l̃α(p) so there exists A ∈ p such that w̃ ◦ l̃α[A] ⊆ {y ∈ T : −ε < y < ε}. Then

A ⊆ {x ∈ R : hα(x)− ε < αx < hα(x) + ε} .

�

Lemma 3.3. Let P be a polynomial with real coefficients and zero constant
term and let w̃ ◦ P : βRd → T be the continuous extension of w ◦ P . Then for
every idempotent p ∈ βRd and every q ∈ βRd, w̃ ◦ P (p) = 0 and w̃ ◦ P (q + p) =
w̃ ◦ P (q).

Proof. [8, Lemma 2.1]. �

Lemma 3.4. Let α and δ be positive irrationals and let p be an idempotent in
βN. Then {n ∈ N : hα

(
hδ(n)

)
= hαδ(n)} ∈ p. In particular, h̃α

(
h̃δ(p)

)
=

h̃αδ(p).

Proof. Let ε = min{ 1
4 , 1

4α}. Let A = {n ∈ N : hδ(n)−ε < δn < hδ(n)+ε} and
let B = {k ∈ N : hα(k)− ε < αk < hα(k) + ε}. Let P (x) = δx and Q(x) = αx.
By Lemma 3.3, w̃ ◦ P (p) = 0 so A ∈ p. By Theorem 2.2, h̃δ(p) is an idempotent
so by Lemma 3.3, w̃ ◦Q

(
h̃δ(p)

)
= 0 and consequently B ∈ h̃δ(p) and therefore

h−1
δ [B] ∈ p. We shall show that A ∩ h−1

δ [B] ⊆ {n ∈ N : hα

(
hδ(n)

)
= hαδ(n)}.

To this end, let n ∈ A ∩ h−1
δ [B], let k = hδ(n) and let m = hα(k). Then

k − ε < δn < k + ε so αk − αε < αδn < αk + αε .

Also m− ε < αk < m + ε. Therefore,

m− ε < αk < αδn + αε < αk + 2αε < m + 2αε + ε
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and consequently m− 1
2 ≤ m− ε− αε < αδn < m + ε + αε ≤ m + 1

2 . Therefore
hαδ(n) = m as required. �

The following lemma can be derived from [6, Lemmas 6.5 and 6.6]. We
present the simple self contained proof of part I, leaving part II to the reader.

Lemma 3.5. Let α and δ be positive irrationals.

(I) The following statements are equivalent.

(a) Xα ∩ Yδ 6= ∅.
(b) Xδ ∩ Yα 6= ∅.
(c) There do not exist m, r ∈ N such that mα− rδ ∈ Z.

(II) The following statements are equivalent.

(a) Xα ∩Xδ 6= ∅.
(b) Yδ ∩ Yα 6= ∅.
(c) There do not exist m, r ∈ N such that mα + rδ ∈ Z.

Proof. (I). We prove that (a) and (c) are equivalent. The equivalence of (b)
and (c) then follows by interchanging α and δ.

To see that (a) implies (c), pick p ∈ Xα ∩ Yδ and suppose that we have
m, r ∈ N and k ∈ Z such that mα− rδ = k. Let ε = 1

m+r . Then

{n ∈ N : hα(n) < αn < hα(n) + ε and hδ(n)− ε < δn < hδ(n)} ∈ p ,

so pick n ∈ N such that hα(n) < αn < hα(n) + ε and hδ(n) − ε < δn < hδ(n).
Let l = hα(n) and s = hδ(n). Then

lm < mαn < lm + εm and − rs < −rδn < −rs + εr

so lm− rs < kn < lm− rs + ε(m + r) = lm− rs + 1, a contradiction since kn
is an integer.

To see that (c) implies (a), we show that for every ε > 0,

Aε = {n ∈ N : hα(n) < αn < hα(n) + ε and hδ(n)− ε < δn < hδ(n)} 6= ∅ ,

so let ε > 0. If 1, α, and δ are linearly independent over Q, then one may apply
Kronecker’s Theorem directly to produce n ∈ Aε. So assume that we have
some m, r, s ∈ Q such that mα + rδ = s. By multiplying by a multiple of the
denominators, we may presume that m, r, and s are integers. If m = 0 we get
that δ ∈ Q, so we may assume without loss of generality that m > 0. If r = 0
we get that α ∈ Q, so by (c) we must have that r ∈ N and therefore s ∈ N. Pick
by Kronecker’s Theorem some n ∈ N such that hα(n) < αn < hα(n)+ ε

m+r and
let k = hα(n). Then kr < αnr < kr + εr

m+r < kr + ε. Also

km < αnm = sn− δnr < km + εm
m+r < km + ε

so ns− km− ε < δnr < ns− km. Therefore nr ∈ Aε. �

The following technical lemma is used in several parts of the subsequent
proofs.
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Lemma 3.6. Let α and δ be positive rationals, let ε > 0, let n ∈ N, let k =
hδ(n), and let m = hαδ(n). If k − ε < δn < k + ε and m − ε < αδn < m + ε,
then

m− ε− αε < αk < m + ε + αε .

Proof. We have αk − αε < αδn < αk + αε so

m− ε < αδn < αk + αε < αδn + 2αε < m + ε + 2αε

and therefore m− ε− αε < αk < m + ε + αε. �

Lemma 3.7. Let α and δ be positive irrationals, let r = dαe, let

γ = 1
2 min

{
|w( t

α )| : t ∈ {1, 2, . . . , r}
}

,

let p be an idempotent in βN, let Q : N → R, let s ∈ {−r,−r + 1, . . . , r − 1, r},
and assume that {n ∈ N : w

(
Q(n)

)
∈ (−γ, γ) and Q(n) = 1

αhαδ(n) + s
α} ∈ p.

Then s = 0.

Proof. Let A = {n ∈ N : w
(
Q(n)

)
∈ (−γ, γ) and Q(n) = 1

αhαδ(n) + s
α} and

let B = {n ∈ N : w
(

1
αhαδ(n)

)
∈ (−γ, γ)}. We are given that A ∈ p. Now h̃αδ(p)

is an idempotent by Theorem 2.2, so by Lemma 3.2, 1
α h̃αδ(p) is an idempotent

and so w̃
(

1
α h̃αδ(p)

)
= 0 and therefore B ∈ p. Pick n ∈ A ∩B. Then

w
(

1
αhαδ(n)

)
∈ (−γ, γ) and w

(
Q(n)

)
= w

(
1
αhαδ(n) + s

α

)
∈ (−γ, γ) .

Then |w( s
α )| < 2γ so s = 0 as required. �

Lemma 3.8. Let α and δ be positive irrationals, let p be an idempotent in βN,
and let r = dαe.

(a) If h̃δ(p) /∈ Xα ∩ Y1/δ, then there exists s ∈ {1, 2, . . . , r} such that
{n ∈ N : gα,0 ◦ gδ,0(n) = hαδ(n)− s} ∈ p.

(b) If h̃δ(p) /∈ Yα ∩X1/δ, then there exists s ∈ {1, 2, . . . , r} such that
{n ∈ N : gα,1 ◦ gδ,1(n) = hαδ(n) + s} ∈ p.

(c) If α > 1 and h̃δ(p) /∈ Xα∩X1/δ, then there exists s ∈ {1, 2, . . . , r−1}∪{−1}
such that {n ∈ N : gα,0 ◦ gδ,1(n) = hαδ(n) + s} ∈ p.

(d) If α > 1 and h̃δ(p) /∈ Yα∩Y1/δ, then there exists s ∈ {1, 2, . . . , r−1}∪{−1}
such that {n ∈ N : gα,1 ◦ gδ,0(n) = hαδ(n)− s} ∈ p.

Proof. (a). Case 1. h̃δ(p) /∈ Y1/δ. Then by Theorem 2.2, p ∈ Yδ. Let
ε = min{ α

1+α , r−α
1+α}. Let A = {n ∈ N : hδ(n)− 1

2 < δn < hδ(n)}. Since p ∈ Yδ,
A ∈ p. Let

B = {n ∈ N : hδ(n)− ε < δn < hδ(n) + ε and hαδ(n)− ε < αδn < hαδ(n) + ε} .
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By Lemma 3.2, B ∈ p. We shall show that

A ∩B ⊆
⋃r

s=1{n ∈ N : gα,0 ◦ gδ,0(n) = hαδ(n)− s} .

So let n ∈ A∩B, let k = hδ(n), and let m = hαδ(n). Since n ∈ A, gδ,0(n) = k−1
so gα,0 ◦ gδ,0(n) = bαk − αc. By Lemma 3.6,

m− ε− αε− α < αk − α < m + ε + αε− α .

Since ε ≤ α
1+α , ε + αε − α ≤ 0. Since ε ≤ r−α

1+α , −ε − αε − α ≥ −r. Therefore
m− r < αk − α < m so bαk − αc = m− s for some s ∈ {1, 2, . . . , r}.

Case 2. h̃δ(p) ∈ Y1/δ, in which case p ∈ Xδ and h̃δ(p) ∈ Yα. Let

A = {n ∈ N : hδ(n) < δn < hδ(n) + 1
2}, let

B = {k ∈ N : hα(k)− 1
2 < αk < hα(k)}, and let

C = {n ∈ N : hα

(
hδ(n)

)
= hαδ(n)} .

Then A ∈ p and B ∈ h̃δ(p) so h−1
δ [B] ∈ p. By Lemma 3.4, C ∈ p. We

shall show that A ∩ h−1
δ [B] ∩ C ⊆ {n ∈ N : gα,0 ◦ gδ,0(n) = hαδ(n) − 1}. So let

n ∈ A∩h−1
δ [B]∩C, let k = hδ(n), and let m = hα(k). Since n ∈ C, m = hαδ(n).

Since n ∈ A, k = gδ,0(n) and so gα,0

(
gδ,0(n)

)
= bαkc. Since k ∈ B, bαkc =

m− 1.
(b). This proof involves only obvious changes from the proof of (a). If

h̃δ(p) /∈ X1/δ, one shows that
⋃r

s=1{n ∈ N : gα,1 ◦ gδ,1(n) = hαδ(n) + s} ∈ p. If
h̃δ(p) ∈ X1/δ, one shows that {n ∈ N : gα,1 ◦ gδ,1(n) = hαδ(n) + 1} ∈ p.

(c). Case 1. h̃δ(p) /∈ X1/δ. Then by Theorem 2.2, p ∈ Xδ. Let ε =
min{α−1

1+α , r−α
1+α}. Let A = {n ∈ N : hδ(n) < δn < hδ(n) + ε}. Since p ∈ Xδ,

A ∈ p. Let

B = {n ∈ N : hδ(n)− ε < δn < hδ(n) + ε and hαδ(n)− ε < αδn < hαδ(n) + ε} .

By Lemma 3.2, B ∈ p. We shall show that

A ∩B ⊆
⋃r−1

s=1{n ∈ N : gα,0 ◦ gδ,1(n) = hαδ(n) + s} .

So let n ∈ A∩B, let k = hδ(n), and let m = hαδ(n). Since n ∈ A, gδ,1(n) = k+1
so gα,0 ◦ gδ,1(n) = bαk + αc. By Lemma 3.6,

m− ε− αε + α < αk + α < m + ε + αε + α .

Since ε ≤ α−1
1+α , m− ε− αε + α ≥ m + 1. Since ε ≤ r−α

1+α ,

m + ε + αε + α ≤ m + r .

Therefore m + 1 < αk − α < m + r so bαk + αc = m + s for some s ∈
{1, 2, . . . , r − 1}.
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Case 2. h̃δ(p) ∈ X1/δ, in which case p ∈ Yδ and hδ(p) ∈ Yα. Let

A = {n ∈ N : hδ(n)− 1
2 < δn < hδ(n)}, let

B = {k ∈ N : hα(k)− 1
2 < αk < hα(k)}, and let

C = {n ∈ N : hα

(
hδ(n)

)
= hαδ(n)} .

Then A ∈ p and B ∈ h̃δ(p) so h−1
δ [B] ∈ p. By Lemma 3.4, C ∈ p. We

shall show that A ∩ h−1
δ [B] ∩ C ⊆ {n ∈ N : gα,0 ◦ gδ,1(n) = hαδ(n) − 1}. So let

n ∈ A∩h−1
δ [B]∩C, let k = hδ(n), and let m = hα(k). Since n ∈ C, m = hαδ(n).

Since n ∈ A, gδ,1(n) = k and so gα,0

(
gδ,1(n)

)
= bαkc. Since k ∈ B, bαkc =

m− 1.
(d). This proof involves only obvious changes from the proof of (c). �

Theorem 3.9. Let α and δ be positive irrationals. The following statements
are equivalent.

(a) Whenever v ∈ N, P1, P2, . . . , Pv are real polynomials with zero constant
term, for each u ∈ {1, 2, . . . , v}, Qu = Pu ◦ gα,0 ◦ gδ,0, and U is a neigh-
borhood of 0 in (− 1

2 , 1
2 )v,

{n ∈ N :
(
w

(
Q1(n)

)
, w

(
Q2(n)

)
, . . . , w

(
Qv(n)

))
∈ U} is strongly central.

(a′) Whenever v ∈ N, P1, P2, . . . , Pv are real polynomials with zero constant
term, for each u ∈ {1, 2, . . . , v}, Qu = Pu ◦ gα,1 ◦ gδ,1, and U is a neigh-
borhood of 0 in (− 1

2 , 1
2 )v,

{n ∈ N :
(
w

(
Q1(n)

)
, w

(
Q2(n)

)
, . . . , w

(
Qv(n)

))
∈ U} is strongly central.

(b) Whenever v ∈ N, P1, P2, . . . , Pv are real polynomials with zero constant
term, for each u ∈ {1, 2, . . . , v}, Qu = Pu ◦ gα,0 ◦ gδ,0, and U is a neigh-
borhood of 0 in (− 1

2 , 1
2 )v,

{n ∈ N :
(
w

(
Q1(n)

)
, w

(
Q2(n)

)
, . . . , w

(
Qv(n)

))
∈ U} is central.

(b′) Whenever v ∈ N, P1, P2, . . . , Pv are real polynomials with zero constant
term, for each u ∈ {1, 2, . . . , v}, Qu = Pu ◦ gα,1 ◦ gδ,1, and U is a neigh-
borhood of 0 in (− 1

2 , 1
2 )v,

{n ∈ N :
(
w

(
Q1(n)

)
, w

(
Q2(n)

)
, . . . , w

(
Qv(n)

))
∈ U} is central.

(c) Whenever v ∈ N, P1, P2, . . . , Pv are real polynomials with zero constant
term, for each u ∈ {1, 2, . . . , v}, Qu = Pu ◦ gα,0 ◦ gδ,0, and U is a neigh-
borhood of 0 in (− 1

2 , 1
2 )v,

{n ∈ N :
(
w

(
Q1(n)

)
, w

(
Q2(n)

)
, . . . , w

(
Qv(n)

))
∈ U} is an IP set.

(c′) Whenever v ∈ N, P1, P2, . . . , Pv are real polynomials with zero constant
term, for each u ∈ {1, 2, . . . , v}, Qu = Pu ◦ gα,1 ◦ gδ,1, and U is a neigh-
borhood of 0 in (− 1

2 , 1
2 )v,

{n ∈ N :
(
w

(
Q1(n)

)
, w

(
Q2(n)

)
, . . . , w

(
Qv(n)

))
∈ U} is an IP set.

(d) For each polynomial P with real coefficients and zero constant term and
each neighborhood U of 0 in (− 1

2 , 1
2 ), if Q = P ◦ gα,0 ◦ gδ,0, then

{n ∈ N : w
(
Q(n)

)
∈ U} is an IP set.
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(d′) For each polynomial P with real coefficients and zero constant term and
each neighborhood U of 0 in (− 1

2 , 1
2 ), if Q = P ◦ gα,1 ◦ gδ,1, then

{n ∈ N : w
(
Q(n)

)
∈ U} is an IP set.

(e) Xα ∩ Y1/δ 6= ∅.

(e′) Yα ∩X1/δ 6= ∅.

(f) There do not exist m, r ∈ N such that mα− r
δ ∈ Z.

Proof. That (a) implies (b), (b) implies (c), and (c) implies (d) is trivial, as
is the fact that (a′) implies (b′), (b′) implies (c′), and (c′) implies (d′). The fact
that (e), (e′), and (f) are equivalent is Lemma 3.5(I).

To see that (e) implies (a), assume that Xα∩Y1/δ 6= ∅. Then by [6, Theorem
5.5], Xα ∩ Y1/δ is a right ideal of Z1/δ. By Lemma 2.3, L ∩Zδ is a minimal left
ideal of Zδ so by Theorem 2.2, h̃δ[L ∩ Zδ] is a minimal left ideal of Z1/δ. Pick
an idempotent q ∈ h̃δ[L ∩ Zδ] ∩ Xα ∩ Y1/δ and let p = h̃1/δ(q). Then p is an
idempotent in L ∩Xδ and h̃δ(q) = p.

Let
A = {n ∈ N : hα

(
hδ(n)

)
= hαδ(n)} ,

B = {n ∈ N : hδ(n) < δn < hδ(n) + 1
2}, and

C = {k ∈ N : hα(k) < αk < hα(k) + 1
2} .

By Lemma 3.4, A ∈ p. Since p ∈ Xδ, B ∈ p. Since q ∈ Xα, C ∈ q and so
h−1

δ [C] ∈ p. We claim that

A ∩B ∩ h−1
δ [C] ⊆ {n ∈ N : gα,0 ◦ gδ,0(n) = hαδ(n)} ,

so let n ∈ A ∩ B ∩ h−1
δ [C]. Let k = hδ(n) and let m = hα(k). Since n ∈ A,

m = hαδ(n). Since n ∈ B, k = gδ,0(n) and so gα,0 ◦gδ,0(n) = bαkc. Since k ∈ C,
bαkc = m as required.

Now let D = {n ∈ N :
(
w

(
P1(n)

)
, w

(
P2(n)

)
, . . . , w

(
Pv(n)

))
∈ U}. Then by

Theorem 4.2, D ∈ h̃αδ(p) so h−1
αδ [D] ∈ p. Then

A∩B∩h−1
δ [C]∩h−1

αδ [D] ⊆ {n ∈ N :
(
w

(
Q1(n)

)
, w

(
Q2(n)

)
, . . . , w

(
Qv(n)

))
∈ U} .

The proof that (e′) implies (a′) is very similar and we omit it.
To see that (d) implies (e), let P (x) = 1

αx and let Q = P ◦ gα,0 ◦ gδ,0.
Let γ = 1

2 min
{
|w( t

α )| : t ∈ {1, 2, . . . , dαe}
}

and let U = (−γ, γ). Pick an
idempotent p ∈ βN such that {n ∈ N : w

(
Q(n)

)
∈ U} ∈ p. We claim that

h̃δ(p) ∈ Xα ∩Y1/δ. Suppose instead h̃δ(p) /∈ Xα ∩Y1/δ. Then by Lemma 3.8(a),
pick s ∈ {1, 2, . . . , dαe} such that {n ∈ N : gα,0 ◦ gδ,0(n) = hαδ(n) − s} ∈ p.
That is, {n ∈ N : Q(n) = 1

αhαδ(n)− s
α} ∈ p, contradicting Lemma 3.7.

The proof that (d′) implies (e′) is nearly identical, using Lemma 3.8(b). �

The situation with respect to gα,0◦gδ,1 and gα,1◦gδ,0 is significantly different.
In these cases it matters whether or not α > 1. (If α < 1, then the major
conclusions are simply true.)

We need one more preliminary lemma.
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Lemma 3.10. Let α and δ be positive irrationals with α < 1 and let p be an
idempotent in βN.

(a) If p ∈ Xδ, then {n ∈ N : gα,0 ◦ gδ,1(n) = hαδ(n)} ∈ p.

(b) If p ∈ Yδ, then {n ∈ N : gα,1 ◦ gδ,0(n) = hαδ(n)} ∈ p.

Proof. Let ε = min{ α
1+α , 1−α

1+α}. Let

A = {n ∈ N : hδ(n)− ε < δn < hδ(n) + ε and hαδ(n)− ε < αδn < hαδ(n) + ε} .

By Lemma 3.2, A ∈ p.
Assume first that p ∈ Xδ and let B = {n ∈ N : hδ(n) < δn < hδ(n) + 1

2}.
We claim that A ∩ B ⊆ {n ∈ N : gα,0 ◦ gδ,1(n) = hαδ(n)}, so let n ∈ A ∩ B, let
k = hδ(n), and let m = hαδ(n). Since n ∈ B, gδ,1(n) = k + 1 so gα,0 ◦ gδ,1(n) =
bαk + αc. By Lemma 3.6, m − ε − αε + α < αk + α < m + ε + αε + α. Since
ε ≤ α

1+α , m − ε − αε + α ≥ m. Since ε ≤ 1−α
1+α , m + ε + αε + α ≤ m + 1. Thus

bαk + αc = m.
Now assume that p ∈ Yδ and let B = {n ∈ N : hδ(n) − 1

2 < δn < hδ(n)}.
Then as above, one shows that A ∩B ⊆ {n ∈ N : gα,1 ◦ gδ,0(n) = hαδ(n)}. �

Theorem 3.11. Let α and δ be positive irrationals. Statements (e), (e′), and
(f) are equivalent and imply the other statements. If α < 1, then each of
statements (a), (a′), (b), (b′), (c), (c′), (d), and (d′) are true. If α > 1, then all
of the following statements are equivalent.

(a) Whenever v ∈ N, P1, P2, . . . , Pv are real polynomials with zero constant
term, for each u ∈ {1, 2, . . . , v}, Qu = Pu ◦ gα,0 ◦ gδ,1, and U is a neigh-
borhood of 0 in (− 1

2 , 1
2 )v,

{n ∈ N :
(
w

(
Q1(n)

)
, w

(
Q2(n)

)
, . . . , w

(
Qv(n)

))
∈ U} is strongly central.

(a′) Whenever v ∈ N, P1, P2, . . . , Pv are real polynomials with zero constant
term, for each u ∈ {1, 2, . . . , v}, Qu = Pu ◦ gα,1 ◦ gδ,0, and U is a neigh-
borhood of 0 in (− 1

2 , 1
2 )v,

{n ∈ N :
(
w

(
Q1(n)

)
, w

(
Q2(n)

)
, . . . , w

(
Qv(n)

))
∈ U} is strongly central.

(b) Whenever v ∈ N, P1, P2, . . . , Pv are real polynomials with zero constant
term, for each u ∈ {1, 2, . . . , v}, Qu = Pu ◦ gα,0 ◦ gδ,1, and U is a neigh-
borhood of 0 in (− 1

2 , 1
2 )v,

{n ∈ N :
(
w

(
Q1(n)

)
, w

(
Q2(n)

)
, . . . , w

(
Qv(n)

))
∈ U} is central.

(b′) Whenever v ∈ N, P1, P2, . . . , Pv are real polynomials with zero constant
term, for each u ∈ {1, 2, . . . , v}, Qu = Pu ◦ gα,1 ◦ gδ,0, and U is a neigh-
borhood of 0 in (− 1

2 , 1
2 )v,

{n ∈ N :
(
w

(
Q1(n)

)
, w

(
Q2(n)

)
, . . . , w

(
Qv(n)

))
∈ U} is central.

(c) Whenever v ∈ N, P1, P2, . . . , Pv are real polynomials with zero constant
term, for each u ∈ {1, 2, . . . , v}, Qu = Pu ◦ gα,0 ◦ gδ,1, and U is a neigh-
borhood of 0 in (− 1

2 , 1
2 )v,

{n ∈ N :
(
w

(
Q1(n)

)
, w

(
Q2(n)

)
, . . . , w

(
Qv(n)

))
∈ U} is an IP set.
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(c′) Whenever v ∈ N, P1, P2, . . . , Pv are real polynomials with zero constant
term, for each u ∈ {1, 2, . . . , v}, Qu = Pu ◦ gα,1 ◦ gδ,0, and U is a neigh-
borhood of 0 in (− 1

2 , 1
2 )v,

{n ∈ N :
(
w

(
Q1(n)

)
, w

(
Q2(n)

)
, . . . , w

(
Qv(n)

))
∈ U} is an IP set.

(d) For each polynomial P with real coefficients and zero constant term and
each neighborhood U of 0 in (− 1

2 , 1
2 ), if Q = P ◦ gα,0 ◦ gδ,1, then

{n ∈ N : w
(
Q(n)

)
∈ U} is an IP set.

(d′) For each polynomial P with real coefficients and zero constant term and
each neighborhood U of 0 in (− 1

2 , 1
2 ), if Q = P ◦ gα,1 ◦ gδ,0, then

{n ∈ N : w
(
Q(n)

)
∈ U} is an IP set.

(e) Xα ∩X1/δ 6= ∅.

(e′) Yα ∩ Y1/δ 6= ∅.

(f) There do not exist m, r ∈ N such that mα + r 1
δ ∈ Z.

Proof. That (a) implies (b), (b) implies (c), and (c) implies (d) is trivial, as
is the fact that (a′) implies (b′), (b′) implies (c′), and (c′) implies (d′). The fact
that (e), (e′), and (f) are equivalent is Lemma 3.5(II).

Assume first that α < 1. It suffices to show that statements (a) and (a′)
hold. To this end, let L be a minimal left ideal of βN and let P1, P2, . . . , Pv and
U be as in statements (a) and (a′). For u ∈ {1, 2, . . . , v}, let Qu = Pu ◦gα,0 ◦gδ,1

and let Q′
u = Pu ◦ gα,1 ◦ gδ,0. By [6, Theorem 5.5], Xδ and Yδ are right ideals of

Zδ. Further, by Theorem 2.2, L ∩ Zδ 6= ∅ and therefore L ∩ Zδ is a left ideal of
Zδ. Pick idempotents p ∈ L ∩Xδ and q ∈ L ∩ Yδ. Let

A = {n ∈ N : gα,0 ◦ gδ,1(n) = hαδ(n)} and
B = {n ∈ N : gα,1 ◦ gδ,0(n) = hαδ(n)} .

By Lemma 3.10, A ∈ p and B ∈ q.
Now let C = {n ∈ N :

(
w

(
P1(n)

)
, w

(
P2(n)

)
, . . . , w

(
Pv(n)

))
∈ U}. Then by

Theorem 4.2, C ∈ h̃αδ(p) ∩ h̃αδ(q) so h−1
αδ [C] ∈ p ∩ q. Then

A ∩ h−1
αδ [C] ⊆ {n ∈ N :

(
w

(
Q1(n)

)
, w

(
Q2(n)

)
, . . . , w

(
Qv(n)

))
∈ U} and

B ∩ h−1
αδ [C] ⊆ {n ∈ N :

(
w

(
Q′

1(n)
)
, w

(
Q′

2(n)
)
, . . . , w

(
Q′

v(n)
))

∈ U} .

Now assume that α > 1. The proofs that (e) implies (a) and (e′) implies (a′)
are very similar to the corresponding parts of Theorem 3.9. The proofs that (d)
implies (e) and (d′) implies (e′) are also similar to the corresponding parts of
Theorem 3.9, using Lemma 3.8(c) and Lemma 3.8(d) respectively. �
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4. Generalized Polynomials

As we have mentioned in the introduction, generalized polynomials have
been extensively studied. Loosely speaking, they are algebraic expressions which
allow applications of the greatest integer function as often as one wishes. The
functions of the form Pu ◦ gα1,γ1 ◦ . . . ◦ gαm,γm

with which we have been dealing
are all examples of generalized polynomials. In [10], generalized polynomials
were formalized as follows.

Definition 4.1. Let GP0 be the set of polynomials with real coefficients and
for n ∈ N, define

GPn = GPn−1 ∪ {P + Q : P,Q ∈ GPn−1} ∪
{P ·Q : P,Q ∈ GPn−1} ∪ {bP c : P ∈ GPn−1} .

Let GP =
⋃∞

n=0 GPn. Then P is a generalized polynomial if and only if P ∈ GP.

Theorem 4.2. Let P1, P2, . . . , Pv be generalized polynomials such that all poly-
nomials occurring in their representations have zero constant term and let U be
a neighborhood of 0 in (− 1

2 , 1
2 )v. Let

A =
{

x ∈ N :
(
w

(
P1(x)

)
, w

(
P2(x)

)
. . . , w

(
Pv(x)

))
∈ U

}
.

Then A is an IP* set.

Proof. [10, Theorem D]. �

Recall that ν(x) = bx + 1
2c = h1(x) and denotes the integer closest to x. In

this section we provide in Corollary 4.9 a characterization of those generalized
polynomials P that have the property that {x ∈ R : w

(
αP (x)

)
∈ U} is IP*

whenever α ∈ R and U is a neighborhood of 0. This characterization is in terms
of a set D of generalized polynomials which we define now.

Definition 4.3. Let D0 = {0} and let D1 be the set of linear polynomials
with zero constant term. Let φ(0) = 0 and let φ(P ) = 1 for P ∈ D1 \ {0}.
Given n > 1, assume that Dn−1 has been defined and φ(P ) has been defined
for P ∈ Dn−1. Let

Dn = {P + Q : P,Q ∈ Dn−1} ∪
{PQ : P,Q ∈ Dn−1 and φ(P ) + φ(Q) ≤ n} ∪
{α · (ν ◦ P ) : α ∈ R and P ∈ Dn−1} .

For P ∈ Dn \Dn−1, define φ(P ) = n. Let D =
⋃∞

n=0 Dn.
For each n ∈ ω, let En = {

∑r
i=1 Pi : r ∈ N and each Pi ∈ Dn}.

Notice that for each n ∈ N, Dn−1 ⊆ Dn and if α ∈ R and P ∈ Dn, then
αP ∈ Dn. Notice also that D includes all real polynomials with zero constant
term. In fact D is the smallest algebra of real functions which includes the
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real polynomials with zero constant term and has the property that ν ◦ P ∈ D
whenever P ∈ D.

Given an ultrafilter p on X and a function f : X → Y where Y is a topo-
logical space, p- lim

x∈X
f(x) = y if and only if for every neighborhood U of y,

{x ∈ X : f(x) ∈ U} ∈ p. This notion is very well behaved. (See [18, Section
3.5].) In particular, if g is a continuous function from the space Y to the space
Z, then p- lim

x∈X
g
(
f(x)

)
= g

(
p- lim

x∈X
f(x)

)
.

Lemma 4.4. For n ∈ N, let Cn = {p ∈ βRd : w̃ ◦ P (p) = 0 for every P ∈ Dn}.

(1) For every n ∈ N and every P ∈ Dn there exists X ⊆ R such that
C ∪E(βRd) ⊆ clβRd

(X) and, for each x ∈ X, there exists R ∈ En−1 such
that C ∪ E(βRd) ⊆ clβRd

(
{y ∈ R : P (x + y) = P (x) + P (y) + R(y)}

)
.

(2) For every n ∈ N, E(βRd) ⊆ Cn.

Proof. We proceed by induction.
Let n = 1. Then (1) clearly holds. Let P ∈ D1. Since P : R → R is a

homomorphism, P̃ : βRd → βRd is a homomorphism, by [18, Theorem 4.8]. So
w̃ ◦ P : βRd → T is a homomorphism and therefore (2) holds.

Now let n > 1 and assume that our lemma is true for all smaller positive
integers. It follows, in particular, that w̃ ◦R(p) = 0 for every p ∈ E(βRd) and
every R ∈ En−1. We claim that (1) then implies (2). To see this, let P ∈ Dn

and assume that (1) holds for P . Let x ∈ X be given and pick R ∈ En−1 as
guaranteed for x. Let p ∈ E(βRd) and let

Y = {y ∈ R : P (x + y) = P (x) + P (y) + R(y)} .

Then Y ∈ p so

w̃ ◦ P (x + p) = p- lim
y∈Y

w ◦ P (x + y)

= w ◦ P (x) + p- lim
y∈Y

w ◦ P (y) + p- lim
y∈Y

w ◦R(y)

= w ◦ P (x) + w̃ ◦ P (p) + w̃ ◦R(p)
= w ◦ P (x) + w̃ ◦ P (p)

where the second equality holds because addition in T is jointly continuous.
Therefore

w̃ ◦ P (p) = w̃ ◦ P (p + p)
= p- lim

x∈X
w̃ ◦ P (x + p)

= p- lim
x∈X

w ◦ P (x) + w̃ ◦ P (p)

= w̃ ◦ P (p) + w̃ ◦ P (p)

and therefore w̃ ◦ P (p) = 0.
We now show that (1) holds, so let P ∈ Dn. We consider three cases.
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(i) There exist U and V in Dn−1 such that P = U + V .

(ii) There exist U and V in Dn−1 such that φ(U) + φ(V ) ≤ n and P = UV .

(iii) There exist U ∈ Dn−1 and α ∈ R and P = α(ν ◦ U).

Case (i). This is obvious.
Case (ii). If U = 0 or V = 0 the conclusion is trivial. So we may assume

that φ(U) < n and φ(V ) < n. Let k = φ(U) and let l = φ(V ). Pick subsets X
and Z of R such that

(a) C ∪ E(βRd) ⊆ c`βRd
X;

(b) C ∪ E(βRd) ⊆ c`βRd
Z;

(c) for each x ∈ X there exists R ∈ Ek−1 such that
C ∪ E(βRd) ⊆ c`βRd

{y ∈ R : U(x + y) = U(x) + U(y) + R(y)}; and

(d) for each x ∈ Z there exists S ∈ El−1 such that
C ∪ E(βRd) ⊆ c`βRd

{y ∈ R : V (x + y) = V (x) + V (y) + S(y)}.

Then C ∪ E(βRd) ⊆ c`βRd
(X ∩ Z). Let x ∈ X ∩ Z and pick R ∈ Ek−1 and

S ∈ El−1 as guaranteed by (c) and (d). Define T : R → R by, for y ∈ R, T (y) =
U(x)V (y)+U(x)S(y)+U(y)V (x)+U(y)S(y)+R(y)V (x)+R(y)V (y)+R(y)S(y).
Then T ∈ En−1 and

{y ∈ R : U(x + y) = U(x) + U(y) + R(y)} ∩
{y ∈ R : V (x + y) = V (x) + V (y) + S(y)} ⊆
{y ∈ R : P (x + y) = P (x) + P (y) + T (y)} .

Case (iii). Pick X ⊆ R such that C ∪E(βRd) ⊆ c`βRd
X and for each x ∈ X

there exists R ∈ En−2 such that

C ∪ E(βRd) ⊆ c`βRd
{y ∈ R : U(x + y) = U(x) + U(y) + R(y)} .

Let Z = {x ∈ R : w
(
U(x)

)
∈ (− 1

6 , 1
6 )}. Then by (2) at n − 1, C ∪ E(βRd) ⊆

c`βRd
Z. Let x ∈ X ∩ Z and pick R ∈ En−2 such that

C ∪ E(βRd) ⊆ c`βRd
{y ∈ R : U(x + y) = U(x) + U(y) + R(y)} .

Let V = {y ∈ R : w
(
U(y)

)
∈ (− 1

6 , 1
6 ) and w

(
R(y)

)
∈ (− 1

6 , 1
6 )}. Then

C ∪ E(βRd) ⊆ c`βRd
V and for y ∈ V ,

ν
(
U(x) + U(y) + R(y)

)
= ν

(
U(x)

)
+ ν

(
U(y)

)
+ ν

(
R(y)

)
,

so V ∩ {y ∈ R : U(x + y) = U(x) + U(y) + R(y)} ⊆
{
y ∈ R : P (x + y) =

P (x) + P (y) + αν
(
R(y)

)}
. �

Lemma 4.5. Let P ∈ D. If α ∈ R and ε > 0, then

{x ∈ R : w
(
αP (x)

)
∈ (−ε, ε)}

is an IP* set in Rd.
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Proof. This is an immediate consequence of Lemma 4.4(2). �

Theorem 4.6. For every P ∈ GP there exist r ∈ N, a partition{
Xi : i ∈ {1, 2, . . . , r}

}
of R ,

members Q1, Q2, . . . , Qr of D, and {α1, α2, . . . , αr} ⊆ R such that for each
i ∈ {1, 2, . . . , r} and each x ∈ Xi, P (x) = Qi(x) + αi.

Proof. The set of functions GP for which this statement holds contains
all real polynomials and it is easy to see that it is closed under addition and
multiplication. So it is sufficient to prove that, if this statement holds for P ∈
GP, then it also holds for bP c. So pick r ∈ N, a partition{

Xi : i ∈ {1, 2, . . . , r}
}

of R ,

members Q1, Q2, . . . , Qr of D, and {α1, α2, . . . , αr} ⊆ R such that for each
i ∈ {1, 2, . . . , r} and each x ∈ Xi, P (x) = Qi(x) + αi.

Now, given i ∈ {1, 2, . . . , r} and x ∈ Xi, bP (x)c = ν
(
Qi(x)

)
+ ν(αi)− k for

some k ∈ {0, 1, 2}. So if Xi,k = {x ∈ Xi : bP (x)c = ν
(
Qi(x)

)
+ ν(αi) − k},

Then
{
Xi,k : i ∈ {1, 2, . . . , r} and k ∈ {0, 1, 2}

}
is the required partition of R.�

We omit the easy proof of the following corollary.

Corollary 4.7. Let P ∈ GP and let r,
{
Xi : i ∈ {1, 2, . . . , r}

}
, Q1, Q2, . . . , Qr,

and {α1, α2, . . . , αr} be as in the statement of Theorem 4.6. Then w̃ ◦ P (p) = 0
for every p ∈ E(βRd) if and only if αi ∈ Z for every i ∈ {1, 2, . . . , r} for which
Xi is an IP set.

Definition 4.8. H will denote the set of functions P ∈ GP for which there
exist an IP∗ subset X of R, r ∈ N, a partition

{
Xi : i ∈ {1, 2, . . . , r}

}
of X and

members Q1, Q2, . . . , Qr of D, such that, for every i ∈ {1, 2, . . . , r} and every
x ∈ Xi, P (x) = Qi(x).

Corollary 4.9. Let P ∈ GP. The following statements are equivalent.

(a) P ∈ H.

(b) For every α ∈ R and every p ∈ E(βRd), w̃ ◦ αP (p) = 0.

(c) For every α ∈ R and every ε > 0, {x ∈ R : w
(
αP (x)

)
∈ (−ε, ε)} is an IP*

set in R.

Proof. To see that (a) implies (b), pick X, r,
{
Xi : i ∈ {1, 2, . . . , r}

}
, and

Q1, Q2, . . . , Qr as guaranteed by the definition of H for P . Let α ∈ R and
let p ∈ E(βRd). Pick i ∈ {1, 2, . . . , r} such that Xi ∈ p. By Lemma 4.4(2),
w̃ ◦ αP (p) = w̃ ◦ αQi(p) = 0.

That (b) implies (c) is trivial. To see that (c) implies (a), by Theorem 4.6
pick r ∈ N, a partition

{
Xi : i ∈ {1, 2, . . . , r}

}
of R, members Q1, Q2, . . . , Qr of
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D, and {δ1, δ2, . . . , δr} ⊆ R such that for each i ∈ {1, 2, . . . , r} and each x ∈ Xi,
P (x) = Qi(x)+δi. By reordering, we may assume that we have s ∈ {1, 2, . . . , r}
such that for all i ∈ {1, 2, . . . , s}, Xi is an IP set and for all i ∈ {s+1, s+2, . . . , r},
if any, Xi is not an IP set. Let X =

⋃s
i=1 Xi. Then X is an IP* set.

We claim that for i ∈ {1, 2, . . . , s}, δi = 0. So let i ∈ {1, 2, . . . , s} and pick
an idempotent p such that Xi ∈ p. Suppose that δi 6= 0 and let α = 1

4|δi| .
Then {x ∈ R : w

(
αP (x)

)
∈ (− 1

8 , 1
8 )} ∈ p by assumption and, since αQi ∈ D,

{x ∈ R : w
(
αQi(x)

)
∈ (− 1

8 , 1
8 )} ∈ p by Lemma 4.5. Pick x ∈ Xi such that

w
(
αP (x)

)
∈ (− 1

8 , 1
8 ) and w

(
αQi(x)

)
∈ (− 1

8 , 1
8 ). Then w(αδi) ∈ (− 1

4 , 1
4 ), which

is a contradiction since |αδi| = 1
4 . �

Corollary 4.10. H is an ideal of GP.

Proof. Let P ∈ H and Q ∈ GP. It is sufficient to show that PQ ∈ H because
H is clearly an algebra.

We can choose an IP∗ subset X of Rd, r ∈ N, a partition {X1, X2, . . . , Xr}
of X and functions Q1, Q2, . . . , Qr ∈ D such that, for every i ∈ {1, 2, . . . , r}
and every x ∈ Xi, P (x) = Qi(x). We can also choose s ∈ N, a partition
{Y1, Y2, . . . , Ys} of R, numbers α1, α2, . . . , αs ∈ R and functions R1, R2, . . . , Rs

in D such that, for every j ∈ {1, 2, . . . , s} and every x ∈ Yj , Q(x) = Rj(x)+αj .
Then, for each i ∈ {1, 2, . . . , r} and each j ∈ {1, 2, . . . , s}, Qi(Rj + αj) ∈ D.
Since P (x)Q(x) = Qi(x)(Rj(x) + αj) if x ∈ Xi ∩ Yj and since{

Xi ∩ Yj : (i, j) ∈ {1, 2, . . . , r} × {1, 2, . . . , j}
}

is a partition of X, it follows that PQ ∈ H. �

The next result deals with admissible generalized polynomials. We now define
a subset GZ of G with the property that, for each P ∈ GZ, P [GZ] ⊆ Z.This is
defined to be the smallest set of real functions which contains the polynomials
with integer coefficients, is closed under sums and products, and whenever v ∈ N,
c1, c2, . . . , cv ∈ R, and p1, p2, . . . , pv ∈ GZ, then the function n 7→ b

∑v
i=1 cipi(n)c

is in GZ. (In [9], the set GZ, as defined here, is called the set of generalized
polynomials. However, this usage differs from the definition in [10], presented as
Definition 4.1 above, which includes all real polynomials in the set of generalized
polynomials.)

Definition 4.11. The class Ga of admissible generalized polynomials is defined
to be the smallest subset of GZ which includes the identity function and has the
following properties:

(1) P −Q ∈ Ga whenever P,Q ∈ Ga;

(2) PQ ∈ Ga whenever P ∈ Ga and Q ∈ GZ; and

(3) bc1P1 +c2P2 + . . .+cvPv +γc ∈ Ga whenevever v ∈ N, P1, P2, . . . , Pv ∈ Ga,
c1, c2, . . . , cv ∈ R, and 0 < γ < 1.
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Lemma 4.12. Ga ⊆ H.

Proof. It is clear that H contains the identity function and has the property
that H − H ⊆ H. By Corollary 4.10, HGZ ⊆ H. So it is sufficient to show
that, for every P1, P2, . . . , Pv ∈ H, every c1, c2, . . . , cv ∈ R and every γ ∈ (0, 1),
the function Q = bc1P1 + c2P2 + . . . + cvPv + γc ∈ H. To see this, let P =
c1P1 + c2P2 + . . . + cvPv ∈ H. Let X = {x ∈ R : −γ < w(P (x)) < 1− γ}. Then
X is an IP∗ set by Corollary 4.9 and, for every x ∈ X, Q(x) = ν(P (x)). It is
now routine to check that Q ∈ H. �

Theorem 4.13. Let P be an admissible generalized polynomial, let α ∈ R, and
let ε > 0. Then {x ∈ R : w

(
αP (x)

)
∈ (−ε, ε)} is an IP∗ set in Rd.

Proof. Lemma 4.12 and Corollary 4.9. �

It is an immediate consequence of Theorem 4.13 that if P is an admissible
generalized polynomial, α ∈ R, and ε > 0, then {x ∈ N : w

(
αP (x)

)
∈ (−ε, ε)}

is an IP∗ set in N. This fact is also a consequence of [9, Theorem A].
It is very easy to give examples of functions P ∈ D and open subsets U

of T for which {x ∈ R : w
(
P (x)

)
∈ U} = ∅. For example, if P (x) = ν(x),

(w ◦P )[R] = {0}. Just slightly less trivially, if P (x) = (x− ν(x))2, (w ◦P )[R] =
[0, 1

4 ]. However, we now see that, if {x ∈ R : w
(
P (x)

)
∈ U} is an IP set in Rd,

then it has a very rich structure.

Corollary 4.14. Let P ∈ D and let S be a subsemigroup of Rd. Let U be an
open subset of T and let A = {x ∈ S : w

(
P (x)

)
∈ U}. If A is an IP set in S,

then A is a strongly central subset and an IP∗+ subset of S.

Proof. Let p ∈ A∩E(βS) and let L be a minimal left ideal of βS. By Lemma
4.4, there is an IP∗ subset X of βRd such that for every x ∈ X there exists
R ∈ D such that Y = {y ∈ R : P (x + y) = P (x) + P (y) + R(y)} is IP∗ in Rd.
Since p + βS is a right ideal of βS, there is an idempotent q ∈ L ∩ (p + βS).
We observe that p + q = q. Let B = A ∩X ∩ {x ∈ R : w

(
P (x)

)
∈ (− 1

4 , 1
4 )} and

let x ∈ B. Since w
(
P (x)

)
∈ U and since w̃ ◦ P (q) = w̃ ◦R(q) = 0, it follows

that −x + A = {y ∈ S : w
(
P (x + y)

)
∈ U} ∈ q. Now {x + y : x ∈ B and y ∈

−x+A} ∈ p+ q = q. Since this set is contained in A, A ∈ q. Thus A is strongly
central in S.

A similar argument, using the fact that Y is IP∗ in Rd, shows that, for each
x ∈ B, −x + A is IP∗ in S. So A is an IP∗

+ set in S. �

Corollary 4.15. Let P ∈ D and let 0 < ε < 1
2 . Then at least one of the

following statements must hold:

(a) {x ∈ R : w(P (x)) = 0} is IP∗ in Rd;

(b) {x ∈ R : w(P (x)) ∈ (0, ε)} is strongly central and IP∗+ in βRd.

(c) {x ∈ R : w(P (x)) ∈ (−ε, 0)} is strongly central and IP∗+ in βRd.

Proof. Lemma 4.5 and Corollary 4.14. �
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