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Abstract. Strongly summable ultrafilters on a commutative semigroup are those that
are generated by sets of finite sums. We establish several facts about strongly summable
ultrafilters on a countable abelian group G that were previously known to hold only for
the group (Z,+) and for Boolean groups. It is shown that Martin’s Axiom implies the
existence of nonprincipal strongly summable ultrafilters, that their existence cannot be
established in ZFC, and that, if G is embeddable in the circle group, they satisfy strong
algebraic properties regarding uniqueness of solutions to certain equations.

1. Introduction.

We regard the points of the Stone-Čech compactification βG of the discrete space G as
being ultrafilters on G, with the points of G itself being identified with the principal
ultrafilters. The topology of βG can be defined by choosing the sets of the form A =
{x ∈ βG : A ∈ x}, where A ⊆ G, as a base for the open sets. Then A is a clopen subset
of βG and is, in fact, equal to clβG(A). We shall use A∗ to denote A\A. We shall use
the fact that, for every x ∈ βG and every neighbourhood U of x in βG, G ∩ U ∈ x.

If (G,+) is a semigroup, then the semigroup operation on G can be extended in a
natural way to βG by putting x+ y = lim

s→x
lim
t→y

(s+ t), where x and y denote elements of

βG and s and t denote elements of G. Although we use the symbol + for the extended
operation, it is usually very far from being commutative, even when G is commutative.
With this operation, βG is a right topological semigroup. This means that, for every
x ∈ βG, the map ρx : βG → βG, defined by ρx(y) = y + x, is continuous. It is also
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true that the map λx : βG → βG, defined by λx(y) = x + y, is continuous for every
x ∈ G. We note that, for every x, y ∈ βG, x+ y is the ultrafilter which has as base the
sets of the form

⋃
s∈X(s + Ys), where X ∈ x and Ys ∈ y for every s ∈ X. See [5] for

an elementary derivation of these properties, as well as for other unfamiliar facts cited
below.

There are significant algebraic implications which follow from the statement that
a semigroup has a topology for which it is compact, Hausdorff and right topological. A
simple and important example is the fact that it contains idempotents; i.e. elements x
for which x+ x = x.

If S is any set, Pf (S) will denote the set of finite non-empty subsets of S. If G is a
commutative semigroup, then for any non-empty X ⊆ G, FS〈X〉 will denote {

∑
x∈F x :

F ∈ Pf (X)}. If 〈xn〉∞n=1 is a sequence in G, FS〈xn〉∞n=1 will denote {
∑

n∈F xn : F ∈
Pf (N)}. (If G is not commutative, one needs to specify the order in which the sums are
taken. We shall not be concerned with this situation in this paper.)

It is well known that, if G is a commutative semigroup and q ∈ G∗ is idempotent,
then every member of q contains a set of the form FS〈X〉 for some infinite subset X of
G. However, we do not normally expect that FS〈X〉 ∈ q.

1.1 Definition. Let G be a commutative semigroup. An ultrafilter p ∈ βG which has
a base of sets of the form FS〈X〉 is called strongly summable.

Thus p is strongly summable if and only if, for every A ∈ p, there exists X ⊆ G

such that FS〈X〉 ∈ p and FS〈X〉 ⊆ A.

Throughout the rest of this paper, (G,+) will denote a countable abelian group.
The restriction to a group rather than an arbitrary semigroup is made for our conve-
nience. We need the group properties for some of the proofs. Once this restriction is
made, we lose nothing by adding the countability assumption. Indeed, any strongly
summable ultrafilter on an abelian group has some countable member [8, Theorem 3].

The principal ultrafilter on G which has {0} as a member is a trivial example
of a strongly summable ultrafilter. This is the only example of a strongly summable
ultrafilter on G whose existence can be established in ZFC. We shall show that Martin’s
Axiom implies that there are nonprincipal strongly summable ultrafilters on G, but that
their existence cannot be demonstrated in ZFC.

If G can be embedded in the unit circle, we shall show that a strongly summable
ultrafilter p on G has the property that the equation p+ x = p has the unique solution
x = p in G∗, and so does the equation x + p = p. We shall also show that Martin’s
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Axiom implies the existence of certain strongly summable ultrafilters p on G with the
property that x+ y = p, with x, y ∈ G∗, implies that x and y are both in G+ p.

Our results generalise theorems already known for the case in which G = Z ([2]
and [1]) and the case in which G is Boolean [6].

We note in passing that strongly summable ultrafilters on G give rise to interesting
topologies. (See [5, Section 9.2].) Any strongly summable ultrafilter p ∈ G∗ defines an
extremally disconnected regular left invariant topology on G for which

{
{0}∪A : A ∈ p

}
is the filter of neighbourhoods of 0. This topology has the property of being maximal
subject to having no isolated points. In the case in which G is Boolean, G is a topological
group in this topology. It is not known whether every ultrafilter converging to 0 on a
maximal topological group has to be strongly summable. It is also an open question
whether the existence of extremally disconnected topological groups without isolated
points can be demonstrated in ZFC.

If q ∈ βG is a given idempotent and B ∈ q, we shall use B? to denote {b ∈ B :
b+ q ∈ B}. We shall use the fact that B? ∈ q and that, for every b ∈ B?, −b+B? ∈ q
[5, Lemma 4.14].

We shall use T to denote the unit circle R/Z, and shall use the element t ∈ (− 1
2 ,

1
2 ]

to represent the element t+ Z of T. It is well known that any countable abelian group
can be embedded in the direct sum

⊕
n∈N T of countably many copies of T and so we

shall assume that G ⊆
⊕

n∈N T and shall use πn for the projection map from
⊕

n∈N T
onto its n’th factor.

Of course, any ultrafilter q ∈ βG converges to a point γ(q) ∈ ×n∈N T where
×n∈N T has the product topology. (By this we mean - slightly incorrectly - that
every neighbourhood of γ(q) contains a member of q). It is easy to prove that the
mapping γ : βG → ×n∈N T is a continuous homomorphism. In particular, γ(q) = 0
if q is idempotent. We shall prove that any strongly summable ultrafilter p on G is
idempotent. However, prior to proving this, we can conclude that γ(p) = 0, because
every member of p contains three points of the form a, b and a+ b.

We note that, if f is any function from G to a set S and if q ∈ βG, then {T ⊆ S :
f−1[T ] ∈ q} is an ultrafilter on S. We shall use f(q) to denote this ultrafilter. (So f
also denotes also the continuous extension of f mapping βG to βS.)

2. Existence.

We show in this section that Martin’s Axiom implies the existence of nonprincipal
strongly summable ultrafilters on G.
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2.1 Lemma. Let p ∈ βG. Suppose that, for every A ∈ p, there exists a sequence
〈xn〉∞n=1 in G such that FS〈xn〉∞n=1 ⊆ A and x1 + FS〈xn〉∞n=2 ∈ p. Then −p+ p = p.

Proof. Let B ∈ p and suppose that {x ∈ G : x + B ∈ p} /∈ p. Let A = B\{x ∈ G :
x+B ∈ p}. Pick a sequence 〈xn〉∞n=1 as guaranteed for A. Now x1 ∈ A so x1 +B /∈ p.
But x1 + FS〈xn〉∞n=2 ∈ p and x1 + FS〈xn〉∞n=2 ⊆ x1 +A ⊆ x1 +B, a contradiction.

2.2 Lemma. Let p be a strongly summable ultrafilter on G and let B = {b ∈ G : πi(b) ∈
{0, 1

2} for every i ∈ N}. If B /∈ p, then −p+ p 6= p.

Proof. Suppose that B /∈ p. We consider two cases.
Case (i). Suppose that there exists i ∈ N such that

{
b ∈ G : πi(b) /∈ {0, 1

2}
}
∈ p.

Let P = {b ∈ G\B : πi(b) ∈ (0, 1
2 )} and Q = {b ∈ \B : πi(b) ∈ (− 1

2 , 0)}. If b ∈ Q, the
fact that p converges to 0 implies that b + p converges to b and hence that b + p ∈ Q.

Thus Q+ p ⊆ Q. So, if P ∈ p, we have Q ∈ −p and −p+ p ⊆ Q+ p ⊆ Q. Similarly, if
Q ∈ p, we have −p+ p ∈ P .

Case (ii). Now suppose that, for every i ∈ N,
{
b ∈ G : πi(b) ∈ {0, 1

2}
}
∈ p. Since

πi(p) converges to 0, this implies that {b ∈ G : πi(b) = 0} ∈ p. For each b ∈ G\B, let
m(b) = min

{
i ∈ N : πi(b) /∈ {0, 1

2}
}
. We now put P = {b ∈ G\B : πm(b)(b) ∈ (0, 1

2 )} and
Q = {b ∈ G\B : πm(b)(b)(− 1

2 , 0)}. Let b ∈ Q. If X = {x ∈ G : πi(x) = 0 for every i ≤
m(b)}, then X ∈ p. Since b + X ⊆ Q, b + p ∈ Q. So, if P ∈ p, we have Q ∈ −p and
−p+ p ∈ Q+ p ⊆ Q. Similarly, if Q ∈ p, we have −p+ p ∈ P .

2.3 Theorem. Let p be a strongly summable ultrafilter on G. Then p is an idempotent.

Proof. Notice that 0 is an idempotent, so we may presume that p ∈ G∗. Assume first
that the hypotheses of Lemma 2.1 do not hold and pick A ∈ p such that there is no
sequence 〈xn〉∞n=1 in G with FS〈xn〉∞n=1 ⊆ A and x1 + FS〈xn〉∞n=2 ∈ p.

Let B ∈ p and suppose that B /∈ p+ p so that {x ∈ G : −x+B ∈ p} /∈ p. Then

(
(A ∩B)\{x ∈ G : −x+B ∈ p}

)
∈ p

so pick 〈xn〉∞n=1 such that FS〈xn〉∞n=1 ⊆ (A∩B)\{x ∈ G : −x+B ∈ p} and FS〈xn〉∞n=1 ∈
p. Notice that

FS〈xn〉∞n=1 = FS〈xn〉∞n=2 ∪ {x1} ∪ (x1 + FS〈xn〉∞n=2) .

Now p is nonprincipal and by assumption x1 +FS〈xn〉∞n=2 /∈ p so FS〈xn〉∞n=2 ∈ p. Also
FS〈xn〉∞n=2 ⊆ −x1 +B and so −x1 +B ∈ p, a contradiction.
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We may therefore suppose that the hypotheses of Lemma 2.1 are satisfied and hence
that −p+ p = p. It then follows from Lemma 2.2 that B = {b ∈ G : πi(b) ∈ {0, 1

2} for
every i ∈ N} ∈ p. However, this implies that −p = p. So we again have p+ p = p.

2.4 Definition. Let p ∈ βG. We shall say that p is a sparse strongly summable ultra-
filter if and only if for every A ∈ p, there exists a set X ⊆ G and a set Y ⊆ X such that
X\Y is infinite, FS〈Y 〉 ∈ p and FS〈X〉 ⊆ A.

We shall show that Martin’s Axiom implies that nonprincipal strongly summable
ultrafilters exist on G. Indeed, we shall show that Martin’s Axiom implies that any
family of subsets of G which is contained in an idempotent and has cardinality less than
c, is contained in a sparse strongly summable idempotent.

We remind the reader of the version of Martin’s Axiom which we shall use. A
partially ordered set Q is said to satisfy the countable chain condition if every anti-
chain in Q is countable. A subset D is said to be dense if, for every a ∈ Q, there exists
d ∈ D such that d ≤ a. A non-empty subset Φ of Q is called a filter if it satisfies the
two following conditions:

(i) for every a ∈ Φ and b ∈ Q, a ≤ b implies that b ∈ Φ and
(ii) for every a, b ∈ Φ, there exists c ∈ Φ such that c ≤ a and c ≤ b.

Then Martin’s Axiom asserts that, if Q satisfies the countable chain condition and if
F is a family of dense subsets of Q for which |F| < c, then there is a filter in Q which
meets every set in F .

2.5 Definition. We now assume that the elements of G have been arranged as a se-
quence, and write s < t if s occurs before t in this sequence. Then every infinite subset
X of G defines a unique sequence 〈xn〉∞n=1 in G with the property that xn < xn+1 for
every n and X = {xn : n ∈ N}. We put FSm〈X〉 = FS(〈xn〉∞n=m) for each m ∈ N and
FS∞〈X〉 =

⋂
m∈N clβG(FSm〈X〉).

2.6 Lemma. Let F denote a family of subsets of G with the finite intersection property.
Suppose that B ∈ F and that B contains an idempotent q ∈ G∗. Suppose also that
B? = {b ∈ B : B ∈ b+q} ∈ F and that −b+B? ∈ F for every b ∈ B?. Then, if |F| < c,
it follows from Martin’s Axiom that there exists a set X ⊆ G such that FS〈X〉 ⊆ B and
X ∩A 6= ∅ for every A ∈ F .

Proof. We may suppose that F is closed under finite intersections.
Let Q = {F ∈ Pf (G) : FS〈F 〉 ⊆ B?}. We define a partial order on Q by stating

that F ′ ≤ F if F ⊆ F ′. Since Q is countable, it is trivial that it satisfies the countable
chain condition.
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For each A ∈ F , let D(A) = {F ∈ Q : F ∩ A 6= ∅}. To see that D(A) is dense in
Q, let F ∈ Q. We can choose a ∈ A ∩ B? ∩

⋂
b∈FS〈F 〉(−b + B?). Then F ∪ {a} ∈ Q,

F ∪ {a} ≤ F and F ∪ {a} ∈ D(A).

Thus it follows from Martin’s Axiom that there is a filter Φ ⊆ Q such that Φ ∩
D(A) 6= ∅ for every A ∈ F . Let X =

⋃
Φ.

If H is any finite subset of X, H ⊆ F for some F ∈ Q and so FS〈H〉 ⊆ B. Thus
FS〈X〉 ⊆ B. Furthermore, for any A ∈ F , there exists F ∈ Φ∩D(A) and so X∩A 6= ∅.

2.7 Lemma. Let F be a family of subsets of G contained in an idempotent q ∈ G∗. If
|F| < c, it follows from Martin’s Axiom that there exists an infinite subset X of G such
that FS∞〈X〉 ⊆

⋂
A∈F A.

Proof. Let F denote the family of sets which are finite intersections of sets in

F ∪ {B? : B ∈ F} ∪ {−b+B? : B ∈ F , b ∈ B?} ∪ {G\F : F ∈ Pf (G)} .

We note that F ⊆ q. Let F be well ordered as 〈Aλ〉λ≤κ. By Lemma 2.6, there exists a
subset X0 of G for which FS〈X0〉 ⊆ A0 and X0 ∩A 6= ∅ for every A ∈ F .

We then make the inductive assumption that 0 < β ≤ κ and that we have defined
Xα ⊆ G for every α < β so that the following conditions are satisfied:

(a) FS〈Xα〉 ⊆ Aα and Xα ∩A 6= ∅ for every A ∈ F and

(b) if α′ < α, then X∗
α ⊆ X∗

α′ .

We apply Lemma 2.6, with F ∪ {Xα : α < β} in place of F and Aβ in place of B. By
this lemma, there exists a set Wβ ⊆ G such that FS〈Wβ〉 ⊆ Aβ and Wβ ∩ A ∩Xα 6= ∅
for every A ∈ F and every α < β. By [5, Corollary 12.12], there exists an infinite subset
Xβ of G such that X∗

β ⊆ Wβ ∩A ∩Xα for every A ∈ F and every α < β. We may
suppose that Xβ ⊆Wβ .

It is clear that conditions (a) and (b) are satisfied with β in place of α. We can
therefore define Xα for every α ≤ κ so that these conditions hold.

We put X = Xκ. If α ≤ κ, X∗ ⊆ X∗
α and so X\Xα is finite. Thus, for every

m ∈ N, there exists n ∈ N for which FSn〈X〉 ⊆ FSm〈Xα〉. So FS∞〈X〉 ⊆ FSm〈Xα〉
and therefore FS∞〈X〉 ⊆ FS∞〈Xα〉 ⊆ Aα.

2.8 Theorem. Let F be a family of subsets of G contained in an idempotent q ∈ S∗.
If |F| < c, Martin’s Axiom implies that there is a sparse strongly summable ultrafilter p
on G for which F ⊆ p.
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Proof. We assume Martin’s Axiom.

Let 〈Sα〉α<c be an enumeration of P(G). We can choose Z0 ∈ {S0, G\S0} such
that Z0 ∈ q. By Lemma 2.7, we can choose an infinite subset X0 of S such that
FS∞〈X0〉 ⊆ A ∩ Z0\{0} for every A ∈ F . We can then choose an infinite subset Y0 of
X0 for which X0\Y0 is infinite. We now make the inductive assumption that 0 < β < c

and that Yα ⊆ Xα ⊆ G have been defined for every α < β so that the following
conditions hold:

(a) FS∞〈Xα〉 ⊆ Sα or FS∞〈Xα〉 ⊆ G\Sα;

(b) if α′ < α, then FS∞〈Xα〉 ⊆ FS∞〈Yα′〉; and

(c) Xα\Yα is infinite.

By [5, Lemma 5.11],
⋂

α<β FS∞〈Yα〉 is a compact subsemigroup of βG and therefore
contains an idempotent r ∈ βG. Since 0 /∈

⋂
α<β FS∞〈Yα〉, r ∈ G∗. We can choose

Zβ ∈ {Sβ , G\Sβ} satisfying Zβ ∈ r. By Lemma 2.7 (applied to {FSm〈Yα〉 : α <

β and m ∈ N} ∪ {Zβ} in place of F) we can choose Xβ ⊆ S such that FS∞〈Xβ〉 ⊆ Zβ

and FS∞〈Xβ〉 ⊆ FSm〈Yα〉 for every α < β and every m ∈ N. Thus FS∞〈Xβ〉 ⊆
FS∞〈Yα〉 for every α < β. We choose Yβ to be an infinite subset of Xβ for which
Xβ\Yβ is infinite. Then conditions (a) - (c) are satisfied with β in place of α.

This shows that we can define Xα and Yα for every α < c so that conditions (a) -
(c) are satisfied. We put p = {B ⊆ G : FS∞〈Yα〉 ⊆ B for some α < c}. It is clear that
p is a filter. For every S ⊆ G, S ∈ p or G\S ∈ p, and so p is an ultrafilter. It is evident
that p is a sparse strongly summable ultrafilter and that F ⊆ p.

3. Independence.

We now set out to show that the existence of a nonprincipal strongly summable ul-
trafilter on G cannot be demonstrated in ZFC. We shall do this by showing that the
existence of an ultrafilter of this kind implies the existence of a P-point in N∗. It is well
known that this cannot be proved in ZFC [10, VI §4].

3.1 Definition. For each x ∈ G\{0}, we put min(x) = min{n ∈ N : πn(x) 6= 0} and
max(x) = max{n ∈ N : πn(x) 6= 0}.

We omit the easy proof of the following lemma.

3.2 Lemma. Let 〈xn〉∞n=1 be a sequence in (0, 1
2 ) with the property that xn > 4xn+1 for

every n. Then xn >
∑∞

i=n+1 3xi for every n. Furthermore, if
∑∞

n=1 anxn =
∑∞

n=1 bnxn,
where each an and bn is 0, 1 or 2, then an = bn for every n.
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3.3 Lemma. Suppose that p is a nonprincipal strongly summable ultrafilter on G. If
{x ∈ G\{0} : πmin(x)(x) = 1

2} /∈ p, then there is a P-point in N∗.

Proof. We may suppose without loss of generality that {x ∈ G\{0} : πmin(x)(x) ∈
(0, 1

2 ]} ∈ p.
For each i ∈ {0, 1, 2}, we put Xi =

⋃∞
m=0[

1
23m+i+2 ,

1
23m+i+1 ). We choose j ∈ {0, 1, 2}

such that X = {x ∈ G\{0} : πmin(x)(x) ∈ Xj} ∈ p. Let 〈xn〉∞n=1 be a sequence in G for
which FS〈xn〉∞n=1 ∈ p and FS〈xn〉∞n=1 ⊆ X.

Given i ∈ N, let Mi = {n ∈ N : min(xn) = i}. If n and n′ are distinct elements
of Mi, then min(xn + xn′) = i, because πi(xn + xn′) 6= 0 since 0 < πi(xn) < 1

2 and
0 < πi(xn′) < 1

2 . It follows that πi(xn) and πi(xn′) cannot be in the same interval of
the form [ 1

2m+1 ,
1

2m ). So πi(xn) < πi(xn′) implies that 4πi(xn) < πi(xn′). Consequently,
if F ∈ Pf (Mi), then min(

∑
n∈F xn) = i.

Let x ∈ G\{0}. Suppose that min(x) = i and that x =
∑

n∈F anxn, where F ∈
Pf (N) and each an ∈ {1, 2}. We claim that min(xn) ≥ i for every n ∈ F . To see
this, let m = min{min(xn) : n ∈ F}. Let H = {n ∈ F ∩ Mm : an = 2}. Then
πm(

∑
n∈F∩Mm

anxn) 6= 0, because both πm(
∑

n∈F∩Mm
xn) and πm(

∑
n∈H xn) are in

(0, 1
2 ). It follows that min(x) = m and hence that m = i.

Suppose that F,H ∈ Pf (N) and that x =
∑

n∈F anxn =
∑

n∈H bnxn, where each
an and bn is 1 or 2. We claim that F = H and that an = bn for every n ∈ F . To see
this, suppose that x ∈ Mi. Then πi(x) =

∑
n∈F∩Mi

anπi(xn) =
∑

n∈H∩Mi
bnπi(xn).

It follows from Lemma 3.2 that πi[F ∩Mi] = πi[H ∩Mi] and that an = bn for every
n ∈ F ∩ Mi. We have observed that, if n 6= n′ in Mi, then πi(xn) 6= πi(xn′). So
F ∩ Mi = H ∩ Mi and an = bn for every n ∈ F ∩ Mi. The terms anxn for which
n ∈ F ∩Mi can then be cancelled from the equation

∑
n∈F anxn =

∑
n∈H bnxn and the

argument repeated. Thus F = H and an = bn for every n ∈ F .

In consequence, for any F,H ∈ Pf (N),
∑

n∈F xn +
∑

n∈H xn ∈ FS〈xn〉∞n=1 implies
that F ∩ H = ∅. It also follows that, for every x ∈ FS〈xn〉∞n=1, there is a unique set
Hx ∈ Pf (N) for which x =

∑
n∈Hx

xn.

We now claim that for each ` ∈ N, FS〈xn〉∞n=`+1 ∈ p. Otherwise since

FS〈xn〉∞n=1 = FS〈xn〉∞n=`+1 ∪ FS〈xn〉`n=1 ∪
⋃
{a+ FS〈xn〉∞n=`+1 : a ∈ FS〈xn〉`n=1}

and FS〈xn〉`n=1 is finite, there is some a ∈ FS〈xn〉`n=1 such that a+ FS〈xn〉∞n=`+1 ∈ p.
Pick 〈yn〉∞n=1 such that FS〈yn〉∞n=1 ⊆ a + FS〈xn〉∞n=`+1. Then y1 =

∑
n∈F xn, y2 =∑

n∈H xn, y1 + y2 ∈ FS〈xn〉∞n=1, and F ∩H 6= ∅, a contradiction.
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We define h : FS〈xn〉∞n=1 → N by h(x) = max(Hx). We shall show that h(p) is a
P-point in N∗. To see this, we choose any function f : N → N and show that there is a
set in h(p) on which f is bounded or a set in h(p) on which f has finite preimages.

Let P = {x ∈ FS〈xn〉∞n=1 : min(Hx) ≥ f
(
max(Hx)

)
}. Suppose that P ∈ p.

Then P ? = {x ∈ P : x + p ∈ P} ∈ p and, for every x ∈ P ?, −x + P ? ∈ p. Let
x ∈ P ? and let ` = max(Hx). Suppose that y ∈ (−x + P ?) ∩ FS〈xn〉∞n=`+1. Then
min(Hx) = min(Hx+y) ≥ f

(
max(Hx+y)

)
= f

(
max(Hy)

)
, and so f is bounded on a set

in h(p).
We may therefore suppose that Q = {x ∈ FS〈xn〉∞n=1 : min(Hx) < f

(
max(Hx)

)
} ∈

p. Let 〈yn〉∞n=1 be a sequence in G for which FS〈yn〉∞n=1 ∈ p and FS〈yn〉∞n=1 ⊆ Q ∩
FS〈xn〉∞n=1. We note that, for any n 6= n′ in N, the fact that yn + yn′ ∈ FS〈xn〉∞n=1

implies that Hy ∩Hy′ = ∅.
We shall show that f has finite preimages on h[FS〈yn〉∞n=1]. To see this, suppose

on the contrary that, for some k ∈ N, f assumes the value k infinitely often on this set.
Choose any z1 ∈ FS〈yn〉∞n=1 with f

(
max(Hz1)

)
= k. Suppose that z1 =

∑
n∈F1

yn,
where F1 ∈ Pf (N). This implies that Hz1 =

⋃
n∈F1

Hyn
. We can choose z ∈ FS〈yn〉∞n=1

such that f
(
max(Hz)

)
= k and max(Hz) > max(Hyn

) for every n ∈ F1. Suppose that
z =

∑
n∈H yn, where H ∈ Pf (N). We put F2 = H\F1 and z2 =

∑
n∈F2

yn. We observe
that max(Hz2) = max(Hz) and so f

(
max(Hz2)

)
= k. In this way, we can construct

a sequence 〈zn〉∞n=1 in G and a pairwise disjoint sequence 〈Fn〉∞n=1 in Pf (N) such that
f
(
max(Hzn

)
)

= k and zn =
∑

i∈Fn
yi for every n.

We have min(Hzn
) < f

(
max(Hzn

)
)

= k for every n. So there exists n 6= n′ in N
for which min(Hzn

) = min(Hzn′ ). This is a contradiction, because Hzn
∩Hzn′ = ∅.

3.4 Lemma. Let p be a nonprincipal strongly summable ultrafilter on G such that,
for every n ∈ N, {x ∈ G\{0} : πi(x) = 0(∀i ≤ n)} ∈ p. Let X ∈ p. Suppose that
max(p) is not a P-point in N∗. Then there exist a function f : N → N, a sequence
〈xn〉∞n=1 in G, a pairwise disjoint sequence 〈Fn〉∞n=1 in Pf (N) and an integer k ∈ N
such that FS〈xn〉∞n=1 ⊆ X ∩ {x ∈ G\{0} : min(x) < f

(
max(x)

)
}, min(

∑
i∈Fn

xi) <
f(max

∑
i∈Fn

xi) = k for every n ∈ N, and max
∑

i∈Fn
xi < max

∑
i∈Fn+1

xi for every
n ∈ N.

Proof. There is a function f : N → N with the property that, for every P ∈ p, f
is unbounded on max[P ] and does not have finite preimages on this set. Let P =
{x ∈ G\{0} : min(x) ≥ f

(
max(x)

)
}. Suppose that P ∈ p. Then P ? = {y ∈ P :

y + p ∈ P} ∈ p and, for every y ∈ P ?, −y + P ? ∈ p. Pick any y ∈ P ? and let
A = (−y + P ?) ∩ {z ∈ G\{0} : πi(x) = 0

(
∀i ≤ max(y)

)
}. Then A ∈ p and if z ∈ A,

9



then min(y) = min(y + z) ≥ f
(
min(y + z)

)
= f

(
max(z)

)
so f is bounded on max[A].

We may therefore suppose that Q = {x ∈ G\{0} : min(x) < f
(
max(x)

)
} ∈ p. We

can choose a sequence 〈xn〉∞n+1 in G for which FS〈xn〉∞n=1 ∈ p and FS〈xn〉∞n=1 ⊆ X ∩Q.
Since f does not have finite preimages on max[FS〈xn〉∞n=1], there exists k ∈ N for which
there are an infinite number of values of t in max[FS〈xn〉∞n=1] satisfying f(t) = k.

Choose any y1 ∈ FS〈xn〉∞n=1 with f
(
max(y1)

)
= k. Suppose that y1 =

∑
n∈F1

xn,
where F1 ∈ Pf (N). We can choose w ∈ FS〈xn〉∞n=1 such that f

(
max(w)

)
= k and

max(w) > max(xn) for every n ∈ F1. Suppose that w =
∑

n∈H xn, where H ∈ Pf (N).
We put F2 = H\F1 and y2 =

∑
n∈F2

xn, noting that max(y2) = max(w). In this way,
we can construct a sequence 〈yn〉∞n=1 in G and a pairwise disjoint sequence 〈Fn〉∞n=1 in
Pf (N) such that f

(
max(yn)

)
= k and yn =

∑
i∈Fn

xi for every n.
For every n ∈ N, we have min(yn) < f

(
max(yn)

)
= k.

3.5 Lemma. Let p be a nonprincipal strongly summable ultrafilter on G with the
property that, for every n ∈ N, {x ∈ G : πi(x) = 0(∀i ≤ n)} ∈ p. Suppose that
X = {x ∈ G\{0} : πmin(x)(x) = 1

2} ∈ p. Then max(p) is a P-point in N∗.

Proof. Suppose that max(p) is not a P-point in N∗. Let 〈xn〉∞n=1, 〈Fn〉∞n=1 and k have
the properties guaranteed by Lemma 3.3. For each n ∈ N, let yn =

∑
i∈Fn

xi. We may
suppose that there exists m ∈ N such that min(yn) = m for every n, because this could
be achieved by replacing 〈Fn〉∞n=1 by a subsequence. We observe that min(

∑
i∈H yi) < k

for every H ∈ Pf (N), because
∑

i∈H yi ∈ FS〈xn〉∞n=1 and max(
∑

i∈H yi) = max(yt)
where t = maxH.

Let ` denote the largest positive integer for which there exists an infinite pairwise
disjoint sequence 〈Hn〉∞n=1 in Pf (N) such that min(

∑
i∈Hn

yi) = ` for every n. Let
Kn = H2n−1 ∪ H2n. Then ` < min(

∑
i∈Kn

yi) < k. So there exists `′ > ` and an
infinite subsequence 〈Knr

〉∞r=1 of 〈Kn〉∞n=1 such that min(
∑

i∈Knr
xi) = `′ for every r,

contradicting our choice of `.

3.6 Theorem. The existence of a nonprincipal strongly summable ultrafilter on G im-
plies the existence of a P-point in N∗.

Proof. Let p be a nonprincipal strongly summable ultrafilter on G. If G ⊆ T, it follows
from Lemma 3.3 that the existence of a nonprincipal strongly summable ultrafilter on
G implies the existence of a P-point in N∗. We observe that, for each i ∈ N, πi(p)
is a strongly summable ultrafilter on πi[G]. If πi(p) were a nonprincipal ultrafilter,
the existence of a P-point in N∗ would follow. So we may assume that πi(p) is the
principal ultrafilter which has {0} as a member. This implies that, for any n ∈ N,
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{x ∈ G : πi(x) = 0(∀i ≤ n)} ∈ p. The conclusion then follows immediately from
Lemmas 3.3 and 3.5.

4. Solving the Equation x+ y = p.

We see in this section that if G ⊆ T and p is a strongly summable ultrafilter on G, then
there is only one solution to the equations p + x = p and x + p = p. Moreover, if p is
a sparse strongly summable ultrafilter on G, then there are only the trivial solutions to
the equation x+ y = p.

4.1 Theorem. Suppose that G ⊆ T and that p is a nonprincipal strongly summable
ultrafilter on G. Then the equation p+ x = p has the unique solution x = p in G∗.

Proof. We may suppose that (0, 1
2 ) ∈ p. For each i ∈ {0, 1, 2}, we put Xi =⋃∞

m=0[
1

23m+i+2 ,
1

23m+i+1 ). We choose j ∈ {0, 1, 2} such that Xj ∈ p. Assume that
p+ x = p for some x ∈ G∗ with x 6= p. Pick P ∈ p and Q ∈ x such that P ∩Q = ∅. Let
〈xn〉∞n=1 be a sequence in G for which FS〈xn〉∞n=1 ∈ p and FS〈xn〉∞n=1 ⊆ P ∩Xj .

Exactly as in the proof of Lemma 3.3, we can conclude that, for any n 6= n′ in N,
xn 6= xn′ . Furthermore, xn < xn′ implies that 4xn < xn′ . It follows from Lemma 3.2
that, if xn1 > xn2 > . . . > xnk

, then xn1 > 3
∑k

i=2 xni
.

Consider the equation

xn1 + xn2 + . . .+ xnk
+ t = xm1 + xm2 + . . .+ xm`

,

where k and ` are in N, xn1 > xn2 > . . . > xnk
, xm1 > xm2 > . . . > xm`

and t ∈ T
satisfies −xnk

< 2t < xnk
.

We claim that this implies that t ∈ FS〈xn〉∞n=1. To see this, note that we cannot
have xn1 > xm1 , because otherwise we should have xn1 + t > 1

2xn1 > xm1 + xm2 +
. . . + xm`

. We also cannot have xn1 < xm1 , because otherwise we should have xm1 >

xn1 +xn2 + . . .+xnk−1 +2xnk
> xn1 +xn2 + . . .+xnk

+ t. So xn1 = xm1 . This term can
be cancelled from the equation and the argument can be repeated if k > 1. We shall
eventually have t ∈ FS〈xn〉∞n=1.

We note that the equation p+ x = p implies that x converges to 0. Let Q ∈ x. Let
Y denote the set of elements of the form y+t, where y =

∑
n∈F xn for some F ∈ Pf (N),

t ∈ Q and −min{xn : n ∈ F} < 2t < min{xn : n ∈ F}. Then Y is a member of p+ x.
So there is an element y + t of this form in FS〈xn〉∞n=1. We have seen that this implies
that t ∈ FS〈xn〉∞n=1 ⊆ P . So P ∩Q 6= ∅, a contradiction.
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4.2 Lemma. Suppose that G ⊆ T and that p is a nonprincipal strongly summable
ultrafilter on G, with (0, 1

2 ) ∈ p. Suppose that x + y = p, where x, y ∈ G∗, and that y
converges to 0. For each i ∈ {0, 1, 2}, let Xi =

⋃∞
m=0[

1
23m+i+2 ,

1
23m+i+1 ). Let j ∈ {0, 1, 2}

be such that Xj ∈ p. Suppose that 〈xn〉∞n=1 is a sequence in G for which FS〈xn〉∞n=1 ∈ p
and FS〈xn〉∞n=1 ⊆ Xj. Let B =

{∑∞
n=1 anxn : each an ∈ {0, 1}

}
. Then B ∈ x.

Proof. We note that (0, 1
2 ) ∈ x, because a < 0 implies that a+ y ∈ (− 1

2 , 0) and hence,
if (− 1

2 , 0) ∈ x, then (− 1
2 , 0) ∈ x+ y, contradicting the assumption that x+ y = p.

We may assume that FS〈xn〉∞n=1 /∈ x because FS〈xn〉∞n=1 ⊆ B.

We first note that, if n and n′ are distinct elements of N, then xn and xn′ cannot
be in the same interval of the form [ 1

2m+1 ,
1

2m ). So xn < xn′ implies that 4xn < xn′ .

Let A = {a ∈ (0, 1
2 )\FS〈xn〉∞n=1 : a + y ∈ FS〈xn〉∞n=1}. Then A ∈ x. Let a ∈ A.

Then, if Ya = {b ∈ G ∩ (−a
4 ,

a
4 ) : a + b ∈ FS〈xn〉∞n=1}, we have Ya ∈ y. Choose

any b ∈ Ya, and choose n1, n2, . . . , nk ∈ N with xn1 > xn2 > . . . > xnk
such that

a+ b = xn1 + xn2 + . . .+ xnk
. We note that xn1 ≤ xn1 + xn2 + . . . xnk

< 4
3xn1 and that

3a
4 < a+ b < 5a

4 . Hence 9a
16 < xn1 <

5a
4 . Now n1 is the unique positive integer for which

xn1 ∈ ( 9a
16 ,

5a
4 ), because n 6= n1 implies that xn > 4xn1 or 4xn < xn1 .

We define f : A→ {xn : n ∈ N} by putting f(a) = xn1 .

We claim that, for every a ∈ A, a− f(a) ∈ A. To see that a > f(a), we note that,
for every b ∈ Ya, we have an equation of the form a+ b = xn1 + xn2 + . . .+ xnk

, where
xn1 = f(a). This implies that f(a) ≤ a + b and hence that f(a) ≤ a. The possibility
that a = f(a) is ruled out by the assumption that a /∈ FS〈xn〉∞n=1. Thus we have shown
that 9a

16 < f(a) < a.

To see that a − f(a) /∈ FS〈xn〉∞n=1, suppose instead that a − f(a) = xr1 + xr2 +
. . . + xr`

with xr1 > xr2 > . . . > xr`
. This implies that f(a) + xr1 ≤ a and hence

that f(a) > xr1 , because otherwise we should have f(a) + xr1 ≥ 2f(a) > a. So
a ∈ FS〈xn〉∞n=1, a contradiction.

To see that
(
a − f(a)

)
+ y ∈ FS〈xn〉∞n=1, we note that, for every b ∈ Ya, we

have an equation of the form a + b = xn1 + xn2 + . . . + xnk
, with xn1 = f(a) and

xn1 > xn2 > . . . > xnk
. Thus

(
a − f(a)

)
+ b ∈ FS〈xn〉∞n=1, and so

(
a − f(a)

)
+ y ∈

FS〈xn〉∞n=1. Furthermore, if b ∈ Ya ∩ (−a−f(a)
4 , a−f(a)

4 ), then this equation implies that
xn2 = f

(
a− f(a)

)
. Thus f

(
a− f(a)

)
< f(a).

We now define a sequence 〈xni
〉∞i=1 by putting xn1 = f(a) and xni

= f(a −∑i−1
m=1 xnm

) if i > 1. By an immediate inductive argument, we have a−
∑i

m=1 xnm
∈ A

for every i ∈ N. To see that 〈xni
〉∞i=1 is decreasing, choose i > 1 and put c =

a −
∑i−1

m=1 xnm
. Then f

(
c − f(c)

)
= xni+1 < f(c) = xni

. We have observed that
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f(a) < a < 16
9 f(a) for every a ∈ A, and so 0 < a−

∑i
m=1 xnm < 16

9 xni+1 .
Thus a =

∑∞
m=1 xnm

.

4.3 Theorem. Suppose that G ⊆ T and that p is a nonprincipal strongly summable
ultrafilter on G. Then the equation x+ p = p has the unique solution x = p in G∗.

Proof. We may suppose that (0, 1
2 ) ∈ p. Suppose that x + p = p, where x ∈ G∗

and x 6= p. Let Xj ∈ p be defined as in Lemma 4.2. We can choose a sequence
〈xn〉∞n=1 in G for which FS〈xn〉∞n=1 ∈ p, FS〈xn〉∞n=1 /∈ x and FS〈xn〉∞n=1 ⊆ Xj . Let
B = {

∑∞
i=1 xni

: 〈ni〉∞i=1 is an infinite injective sequence in N}. By Lemma 4.2, B ∈ x.
So B + FS〈xn〉∞n=1 ∈ x+ p. By Lemma 3.2, this set is disjoint from FS〈xn〉∞n=1, which
is a member of p, contradicting the assumption that x+ p = p.

Remark. It is possible to prove in ZFC that there are idempotents p ∈ Z∗ for which
the equation x + p = p has the unique solution x = p in Z∗ [5, Theorem 9.10]. We do
not know of any ZFC proof that there are idempotents p ∈ Z∗ for which the equation
p + x = p has the unique solution x = p in Z∗. Indeed, we do not know of any ZFC
proof that there are idempotents in Z∗ which are maximal for the relation ≤L. (This is
the relation defined on idempotents by putting p ≤L q if p+ q = p.)

We now show that, if G ⊆ T, sparse strongly summable ultrafilters defined on G

have remarkable algebraic properties.

4.4 Lemma. Suppose that G ⊆ T and that p is a sparse strongly summable ultrafilter
on G. Let x, y ∈ G∗ satisfy x+ y = p. If y converges to 0, then x = y = p.

Proof. We may suppose that (0, 1
2 ) ∈ p and, by Theorem 4.1, that x 6= p. Let Xj be

defined as in the statement of Lemma 4.2. Suppose that 〈xn〉∞n=1 is a sequence in G for
which FS〈xn〉∞n=1 ∈ p, FS〈xn〉∞n=1 /∈ x and FS〈xn〉∞n=1 ⊆ Xj .

Let A = {a ∈ (0, 1
2 )\FS〈xn〉∞n=1 : a + y ∈ FS〈xn〉∞n=1} and let B = {

∑∞
i=1 xni :

〈ni〉∞i=1 is an injective sequence in N}. By Lemma 4.2, B ∈ x. Choose a ∈ A ∩ B and
choose an injective sequence 〈ni〉∞i=1 in N for which a =

∑∞
i=1 xni .

Let a′ be any other element of A∩B. There is a sequence of distinct positive integers
〈n′i〉∞i=1 for which a′ =

∑∞
i=1 xn′

i
. We can choose b ∈ G such that a+b and a′+b are both

in FS〈xn〉∞n=1. So a+
∑

n∈F xn = a′ +
∑

n∈F ′ xn for some F, F ′ ∈ Pf (N). By Lemma
3.2, this implies that the terms in the sequences 〈ni〉∞i=1 and 〈n′i〉∞i=1 are eventually the
same.

We claim that FS〈xni
〉∞i=1 ∈ p. To see this, suppose the contrary. Then we can

choose a sequence 〈yn〉∞n=1 in G for which FS〈yn〉∞n=1 ∈ p, FS〈yn〉∞n=1∩FS〈xni
〉∞i=1 = ∅,
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and FS〈yn〉∞n=1 ⊆ FS〈xn〉∞n=1. We note that it follows from Lemma 3.2 that, for each
n ∈ N, there is a unique set Hn ∈ Pf (N) for which yn =

∑
i∈Hn

xi. Furthermore,
Hn 6⊆ {ni : i ∈ N} and Hn ∩Hn′ = ∅ if n 6= n′. By Lemma 4.2, with 〈yn〉∞n=1 in place of
〈xn〉∞n=1, we can choose a′ ∈ A ∩ B such that a′ =

∑∞
i=1 yri for some infinite injective

sequence 〈ri〉∞i=1 in N. This is a contradiction, because we then have a′ =
∑∞

i=1 xn′
i
,

where 〈n′i〉 is an injective sequence in N which contains infinitely many terms which are
not in {ni : i ∈ N}.

By the definition of a sparse strongly summable ultrafilter, we can now choose
a sequence 〈un〉∞n=1 in G and an infinite subsequence 〈vn〉∞n=1 of 〈un〉∞n=1 such that
FS〈vn〉∞n=1 ∈ p, FS〈un〉∞n=1 ⊆ FS〈xni

〉∞i=1 and M =
{
n ∈ N: un /∈ {vr : r ∈ N}

}
is

infinite. We apply an argument similar to the one used in the last paragraph. For each
n ∈ N, there is a unique set Kn ∈ Pf (N) such that un =

∑
i∈Kn

xni
and Kn ∩Kn′ = ∅

if n 6= n′. We can choose a′ ∈ A ∩B such that a′ =
∑∞

i=1 vri
for some infinite injective

sequence 〈ri〉∞i=1 in N. This is a contradiction because we then have a′ =
∑∞

i=1 xn′
i
,

where 〈n′i〉 is an injective sequence in N disjoint from {ni : i ∈
⋃

n∈M Kn}.

Remark. The conclusion of the following theorem is valid in the case in which G is a
Boolean group and p is any strongly summable ultrafilter on G [9, Corollary 4.4]. Notice
also that as a consequence of Theorem 2.6, if p is a strongly summable ultrafilter on
G ⊆ T, then the maximal group with p as identity is just a copy of G. This is known
to hold for any strongly summable ultrafilter on Z by [3, Corollary 3.2].

4.5 Theorem. Suppose that G ⊆ T and that p is a sparse strongly summable ultrafilter
on G. Let x, y ∈ G∗ satisfy x+ y = p. Then x, y ∈ G+ p.

Proof. Suppose that y converges to c ∈ T. Let H denote the subgroup of T generated
by G ∪ {c}. By Lemma 4.4, with H in place of G, we have −c + y = c + x = p. This
implies that c ∈ G, because otherwise c + G and G would be disjoint and would be
members of c+ x and p respectively.

4.6 Theorem. Suppose that G ⊆ T and that p ∈ G∗ is a srongly summable ultrafilter
on G. Let x, y ∈ G∗ satisfy the equation x+ y = y+ x = p. Then x and y are in G+ p.

Proof. We assume that (0, 1
2 ) ∈ p.

We first consider the case in which x and y converge to 0.

Let P ∈ p. For each i ∈ {0, 1, 2}, let Xi be defined as in the statement of Lemma
4.2, and let j ∈ {0, 1, 2} be such that Xj ∈ p. We can choose 〈xn〉∞n=1 ⊆ G such that
FS〈xn〉∞n=1 ⊆ P ∩Xj and FS〈xn〉∞n=1 ∈ p.
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If B =
{∑∞

n=1 anxn : each an ∈ {0, 1}
}
, then, by Lemma 4.2, B ∈ x and B ∈ y. If

X ∈ x and Y ∈ y, we can choose a ∈ X∩B and b ∈ Y ∩B such that a+b ∈ FS〈xn〉∞n=1.
By Lemma 3.2, this implies that a, b ∈ FS〈xn〉∞n=1 and hence that X ∩ P 6= ∅ and
Y ∩ P 6= ∅. So x = y = p.

In the general case, in which x and y do not necessarily converge to 0, we can prove
that x, y ∈ G+ p exactly as in Theorem 4.5.

Remark. The results in this paper were heavily dependent on the groups considered
being abelian. However, they have implications about the existence of idempotents with
remarkable algebraic properties in many non-commutative groups. Suppose that G is a
countable group which can be algebraically embedded in a compact topological group
C, and that V denotes the subgroup of βG which contains all the ultrafilters converging
to the identity in C. There is then a bijection ψ : N → G with the property that its
continuous extension ψ̃ : βN → βG defines an isomorphism from

⋂
n∈N 2nN onto V [5,

Theorem 7.28]. It thus follows easily from the results in this paper that Martin’s Axiom
implies the following statement: any family of subsets of G which has cardinality less
than c and is contained in an idempotent in βG, is also contained in an idempotent
p ∈ βG with the property that the equation xy = p has only trivial solutions in βG.
By this we mean that xy = p implies that there exists a ∈ G such that x = pa−1 and
y = ap. Thus the maximal group in βG which contains p is a copy of the subgroup
H = {g ∈ G : gp = pg} of G.

In the case in which G is the free group on two generators, a and b, Martin’s Axiom
implies that there is an idempotent in βG whose maximal group is a singleton. This
follows from the fact that there is a Gδ subset of G∗ which contains an idempotent and
has the property that none of its elements commute with any element of G, except the
identity. We shall give an outline of the proof that a set of this kind exists.

Let S ⊆ G denote the free semigroup with generators a and b, and let L =⋂
n∈N S

∗an and R =
⋂

n∈N b
nS∗. Then L is a left ideal in S∗ and R is a right ideal in

S∗, and so L ∩ R contains an idempotent in S∗ (by [5, Theorem 1.64]). We note that
L ∩ R is a Gδ subset of G∗. It is not hard to verify that, for any x ∈ L ∩ R and any
g ∈ G, gx = xg implies that g is the identity.
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