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1. Introduction

I am deeply honored by the existence of this conference and those who chose
to attend. Whenever I give a lecture and there are young people present I
repeat the following advice, which has done wonders for me throughout my
lengthy career. That is to find people who are smarter than you are and get
them to put your name on their papers. All of the invited speakers at this
conference fit that description, and before I get to the main topic, I would like
to record my gratitude to each of them.

Dona Strauss has collaborated with me on forty three papers and a book
since I first met her in 1990. She informs me that I was polite at the time, but
I confess that I was not impressed at our initial meeting when I was introduced
to her by John Pym. She had just learned about the topic of algebra in the
Stone-Cech compactification, and told me some things I already knew. Soon
thereafter, we began a correspondence — initially pen and paper, envelopes, and
stamps — and I soon discovered that she could prove circles around me.
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I was introduced to Vitaly Bergelson in a letter from Bruce Rothschild who
was visiting in Jerusalem where Vitaly was a student. Since then Vitaly and
I have collaborated on twenty two papers. And I shall be eternally grateful to
Vitaly for introducing me to central sets, a topic to which I will return later.

Another topic to which I will return later is image partition regularity of
matrices. A matrix A is kernel partition regular over N if and only if whenever N
is partitioned into finitely many cells (or “finitely colored”) there exists a vector
Z, all of whose entries are in the same cell (or “are monochromatic”) such that
AZ = 0. The matrix A is image partition regular over N if and only if whenever
N is finitely colored there exists a vector & with entries from N such that the
entries of AZ are monochromatic. (The terms “kernel” and “image” both refer
to the linear transformation # — AZ.) Finite kernel partition regular matrices
were completely characterized by R. Rado in 1932 [29]. Rado called a subset of
N large provided it contained solutions to all kernel partition regular matrices
and conjectured that whenever a large set was partitioned into finitely many
pieces, one of those pieces must be large. This conjecture was proved by W.
Deuber in 1973 who used certain image partition regular matrices in his proof.
Especially since image partition regular matrices are naturally associated with
many of the classic theorems of Ramsey Theory, I was surprised to discover in
the late 1980’s that there was no known characterization of finite image partition
regular matrices. I worked on the problem and only succeeded in characterizing
weakly image partition regular matrices. (The definition is the same as for image
partition regular matrices except that the entries of & are allowed to come from
Z.) Twrote to Imre Leader with my solution and he succeeded in coming up with
the first characterization of image partition regular matrices. And of course, in
keeping with my advice above, my name is on the paper [18]. Imre and I have
collaborated on a total of thirteen papers.

I collaborated with Randall McCutcheon on five papers over a period of five
years, including the time he had a post doctoral fellowship at the University of
Maryland, which is just down the road from my house. Randall has an inventive
mind, and a talent for making difficult concepts easy to understand.

I have only three joint papers with Andreas Blass, but that significantly
understates his value to me. The web site for the conference in honor of his 60"
birthday at the Fields Institute in Toronto referred to his “legendary patience”,
and I have been foremost among the beneficiaries of that patience. Whenever
I have a question about any of his many areas of expertise, I send him some
email and will usually have a response by the next day. A year and a half ago I
sent him email asking whether it was consistent that ultrafilters with a certain
property exist, and he wrote back patiently explaining that the answer could be
found in a paper by Blass and Hindman.

Finally, I have only two joint papers with my dissertation advisor, Wis Com-
fort. But I owe him an unpayable debt. He taught me how to prove theorems.
He taught me how to teach. He taught me how to deal fairly and honestly with
everyone — but not so honestly as to cause unneeded hurt. And he told me
about a question of Fred Galvin’s which led eventually to what is widely known
as “Hindman’s Theorem”.



Theorem 1.1. Theorem. Let r € N and let N = |Ji_, A;. There exist i €
{1,2,...,7} and a sequence (x,)2, such that for every finite nonempty subset
F OfN, ZtEF Tt € Al

Unfortunately, I have lost the letter from Wis, but I recall that in that
letter he told me that Erdés had asked him whether there existed an “almost
translation invariant ultrafilter” on N, that is, an ultrafilter p on N such that
foral Aep, {x eN:x+ A€p}ep.

I showed that no such ultrafilter could exist, found out that the question
originated with Galvin, and told him the answer. He said something like “that’s
nice, but I wanted a downward almost translation invariant ultrafilter.” That
is,forall A € p, {r e N: —z+ A € p} € p, where —x+A={yeN:z+y € A}.
The reason he wanted such an ultrafilter is that he knew it would provide a
simple proof of Theorem 1.1.

A few years later, Galvin ran into Steven Glazer and found out that a down-
ward almost translation invariant ultrafilter was simply an idempotent in the
compact right topological semigroup (8N, +), and every compact (Hausdorff)
right topological semigroup has idempotents. Consequently, Theorem 1.1, which
had been very difficult to prove, now became a triviality. And my long love af-
fair with the algebra of the Stone-Cech compactification of a discrete semigroup
and its applications to Ramsey Theory began.

All of my Ph.D. students have written dissertations on Ramsey Theory,
the algebra of (S, applications of one of these areas to the other, or some
combination of these topics. In this paper, I shall group the dissertations by
subject matter, discussing some of the questions answered and some of the
questions remaining. I apologize in advance to each of my students because I
will necessarily have to omit mention of many of the results in their dissertations
and even of some of the broad topics covered. Many of the theses could be
featured in more than one of the sections that follow. My guiding principle in
choosing material to present was to try to find among their results those which
are reasonably easy to describe without introducing a lot of notation.

Section 2 will present background material which is necessary to understand
the problems addressed and solved in the dissertations. For a reader interested
in some but not all of the dissertations, I would suggest temporarily skipping
Section 2 and referring back to it as needed.

2. Preliminaries

In this section we present a summary of background material needed to
understand the rest of the paper. For an elementary derivation of these facts,
the reader is referred to [21].

Given a discrete semigroup (S, ), we take the points of 85 to be the ultra-
filters on S, identifying the principal ultrafilters with the points of S and thus
pretending that S C 3S. Given A C S, cl(A) = A= {pe 3S: A€ p} The
operation on S can be extended to S so that 3S is right topological mean-
ing that for each p € 3S, p, is continuous, where p,(¢) = ¢ - p, with .S con-



tained in its topological center, meaning that for each = € S, A, is continuous,
where A\;(q) = z-¢q. Given p,q € S and A C S, A € p-q if and only if
{reS:271A € q} € pwhere x71A ={y e S:zye A}. If the operation is
written additively, A € p+ ¢ if and only if {x € S : —x + A € ¢} € p where
—z+A={yeS:x+yec A}

Any compact right topological semigroup T has a smallest two sided ideal,
K(T) which is the union of all minimal right ideals of T and is also the union
of all minimal left ideals of T'. Given any minimal left ideal L and any minimal
right ideal R, L N R is a group, and any two such groups are isomorphic.

Given any idempotent p in a semigroup S, we let H(p) be the union of all
subgroups of S with p as identity. Then H(p) is the maximal group associated
with p.

There are several notions of size in a semigroup which arise in some of
the studies below. All of these except IP-set have their origins in topological
dynamics, and all of them are one-sided notions. We refer to these as the “right”
versions to correspond to our choice of S as a right topological semigroup. The
use of the term without the right or left modifier always means the right version.

If X is a set, we write P¢(X) for the set of finite nonempty subsets of X.
If (S,) is a semigroup and (z,,)22 is a sequence in S, then FP({z,)52 ) =
{Ilcp Tn : F € Pp(N)}, where [[,cp 2 is computed in increasing order of
indices. (For the “left” version, the product would be computed in decreasing
order of indices.) If the operation on S is denoted by +, we write F'S((x,)52,) =

n=1

{>oner Tn s F € Pr(N)}. Similarly if (H,,)p2, is a sequence in Pr(w), we write

n=1

FU((Hn)p21) = {Unep Hn s F € Pr(N)}.
Definition 2.1. Let (S,-) be a semigroup and let A C S.

(a) The set A is (right) syndetic if and only if there exists H € Py(S) such
that S = J,cqy t A

(b) The set A is (right) thick if and only if for every F € P¢(S) there exists
x € S such that Fx C A.

(c) The set A is a (right) IP-set if and only if there exists a sequence (x,,)52 4
in S such that FP((x,)22,) C A.

(d) The set A is (Tight) piecewise syndetic if and only if there exists H € Py (S)
such that (J,c; t71A is (right) thick.

(e) Theset Aisa (right) IP*-set if and only if, whenever (x,,)$2 ; is a sequence
in S, AN FP({(x,)5,) # 0.

In (N,+4) a set is syndetic if and only if it has bounded gaps and a set is
thick if and only if it contains arbitrarily long blocks.

Another very important notion of size is central. This notion, originally
defined by Furstenberg [17] in terms of the dynamical notions of prozimal and
uniformly recurrent, has a simple algebraic characterization which we take as
the definition. (It also has a very complicated elementary characterization.)



Definition 2.2. Let (S,-) be a semigroup and let A C S. The set A is (right)
central if and only if there exists an idempotent p € K(5S5) N A.

Each of the notions defined in Definition 2.1 has a simple algebraic charac-
terization.

Theorem 2.3. Let (S,-) be a semigroup and let A C S.
(a) The set A is syndetic if and only if for every left ideal L of 3S, LN A # ().

(b) The set A is thick if and only if there exists a left ideal L of 8S such that
LCA.

(c) The set A is an IP-set if and only if there exists an idempotent p € A.
(d) The set A is piecewise syndetic if and only if K(3S) N A # (.
(e) The set A is an IP*-set if and only if {p € BS :p-p=p} C A.

Proof. (a) [8, Theorem 2.9(d)].

(b) [8, Theorem 2.9(c)].

(c) [21, Theorem 5.12].

(d) [21, Theorem 4.40] .

(e) This is an immediate consequence of (¢) and the fact that A is an IP*-set
if and only if S\ A is not an IP-set. O

Notice that IP, central, and piecewise syndetic are partition regular prop-
erties, in the sense that if the finite union of sets has the named property, one
of those sets must have that property. Notice also that the intersection of any
two IP*-sets is an TP*-set.

It is clear from Definition 2.2 and Theorem 2.3 that the following pattern
of implications holds. A table presented in [7] shows that none of the missing
implications is valid in (N, +).

Ip* thick

PN

syndetic central

L/ N\

piecewise syndetic 1P

Central sets are important because on the one hand they are partition regular
(meaning that if the finite union of sets is central, one of them is central) and
they have remarkably strong combinatorial properties, which are consequences
of the Central Sets Theorem. For example, If C is a central set in (N, +4), A is
a u x v kernel partition regular matrix with rational entries, and B is a u X v
image partition regular matrix with rational entries, then there exist ¥ € C"
and 7 € N¥ such that AZ = 0 and By € C".



The original Central Sets Theorem is [17, Proposition 8.21], which applied to
central subsets of (N, +). Following is what is currently the strongest version of
the Central Sets Theorem for commutative semigroups. There is also a version
for arbitrary semigroups, but that version is much more complicated to state.

Theorem 2.4 (Central Sets Theorem). Let (S,+) be a commutative semi-

group and let T = NS’, the set of sequences in S. Let C be a central subset of
S. There exist functions o : Pp(T) — S and H : Py(T) — Ps(N) such that

(1) if F,G € Py(T) and F C G, then max H(F) < min H(G) and
(2) whenever m € N, G1,Ga,...,Gy € Py(T), G1 € G2 C ... € Gy, and

= =

for each i € {1,2,...,m}, (Yin)or, € G;, one has
Y1 ((Gi) + Yiena,) i) €C.

Proof. [14, Theorem 2.2]. O

Definition 2.5. Let (S, +) be a semigroup and let (z,)52; be a sequence in S.
The sequence (y,,)5%; is a sum subsystem of (x,)? ; if and only if there exists
a sequence (H,)>"; in Py(N) such that for each n € N, y, = >°, .y x4 and
max H,, < min H, ;.

Both parts of the following theorem are consequences of Theorem 1.1.

Theorem 2.6. (a) Let r € N and let Py(N) = U._; A;. There ezist i €
{1,2,...,r} and a sequence (H,)?2; in Py(N) such that FU({H,)52;) C
A; and for each n € N, max H,, < min H,, ;1.

(b) Let (S,4) be a semigroup, let (x,)>2, be a sequence in S, let r € N,
and let FS((xn)52q) = U,_y Ai. There exist i € {1,2,...,7} and a sum
subsystem (Yn)o2q of (xn )52 such that FS({yn)22,) C A;.

Proof. [21, Corollaries 5.15 and 5.17]. O

3. Algebraic Structure of 35

Even the simplest of semigroups S can have surprisingly rich algebraic struc-
ture in 4S. For example, (N, +) is the granddaddy of all semigroups. And it has
been known for some time [20] that the maximal groups in the smallest ideal
of (BN, +) all contain a copy of the free group on 2¢ generators, where ¢ = |R|.
And many questions remain. For example, it is not known whether there is any
nontrivial continuous homomorphism from SN to N* = N\ N.

When I was first introduced to the algebra of 85, I took (3S,-) to be left
topological, and therefore my early students also took that approach. When I
cite their results in what follows, I will convert them to the right topological
viewpoint. (This only matters if the reader decides to consult the original
sources.)



Dennis Davenport

As is well known, given any discrete space X, the compact subsets of X
correspond exactly to the filters on X.

Definition 3.1. Let X be a discrete space and let A be a filter on X. Then
A={pepX: ACp}

Given any filter A on X, A is a closed subset of 3X. Further, if T is a
closed subset of 83X and A = (T, then T = A. If S is a discrete semigroup
and A is a filter on S, one is naturally interested in knowing whether A is a
subsemigroup of 85, and if so, is it a right ideal or a left ideal? Furthermore, if
A is a subsemigroup of 39, it is then a compact right topological semigroup, and
so is guaranteed to have a smallest two sided ideal. One is naturally interested
in knowing which ultrafilters in A are members of the smallest ideal. Davenport
solved these problems in [12]. (The main results are also published in [13].)

Theorem 3.2. Let (S,-) be a semigroup and let A be a filter on S.

(a) The set A is a subsemigroup of 3S if and only if for each A € A and each
B C S, if S\B & A, then there exists F € Py(B) such that \J,cp 2 'A €
A.

(b) The set A is a left ideal of S if and only if for each A € A and for each
reS, zlAc A

(c) The set A is a right ideal of 3S if and only if for each A € A and each B C
S, if S\ B ¢ A, then there exists F' € Py(B) such that S =J,cp 27 A.

In [12] Davenport also characterized the minimal left ideals of A, the minimal
right ideals of A, K(.A), and, with certain additional assumptions, the closure

of K(.A). He showed that the additional assumptions are not necessary, and the
main unanswered question is to find a characterization of the closure of K(.A)
without special assumptions. In particular, while the closure of a right ideal in
A is necessarily a right ideal, it is not known whether the closure of K(.A) is a

left ideal of A.
Hanson Umoh

If 8S\ S is an ideal of 58S (as holds if S is cancellative), then S* - S* is
an ideal of S, and so K(8S) C S* - S*. The question naturally arises as
to whether S* - §* contains the closure of K(35). In [34], part of which was
published earlier in [35], Umoh determined a class of countable left cancellative
semigroups, which he called inflatable and proved the following theorem.

Theorem 3.3. Let (S,-) be an inflatable semigroup. Then clK (3S)\(S*-S5*) #
0.



In [36], Umoh proved that any countable cancellative semigroup is inflat-
able, and established that Theorem 3.3 holds for a strictly wider class than the
inflatable semigroups.

Lakeshia Legette

We have seen that maximal groups in A4S can be large. In fact if S is
cancellative and |S| = &, then there exists an idempotent p € S such that
H(p) contains a copy of the free group on 22" generators. In [22], Legette
showed that it is consistent that maximal groups in such semigroups are as
small as possible.

Theorem 3.4. Let S and G be respectively the free semigroup and the free
group on a countably infinite set of generators. For an idempotent p € (35,
let Hs(p) and Hg(p) be the mazimal groups associated with p in 3S and G
respectively. Assume Martin’s Axiom. Then there is an idempotent p € 5S such

that Hg(p) = Ha(p) = {p}.

The ultrafilters which Legette produces for the proof of Theorem 3.4 are es-
sentially equivalent to ordered union ultrafilters introduced in [9], and the exis-
tence of ordered union ultrafilters is known to be independent of ZFC. However,
we do not know whether it can be proved in ZFC that there are trivial maximal
groups in 3S for the free semigroup on two or countably many generators, or
on any cancellative semigroup, for that matter.

4. The Right Continuous and Left Continuous Operations on 35

As we remarked earlier, the choice of continuity for (4S,-) is arbitrary, and
in fact, I used to customarily take (35, -) to be left topological. For the present
section denote by ® the operation on 4S5 which extends the operation on S with
respect to which ), is continuous for each p € 35 and p, is continuous for each
x € S. If S is commutative, then for any p,q € 55 one has p- ¢ =q®p. In
particular, subsemigroups of (35, -) are subsemigroups of (35, ®) and vice versa;
left ideals of (8, ) are right ideals of (85, ®) and vice versa; and K(3S,-) =
K(8S,®). In [16], El-Mabhou, Pym, and Strauss showed that if S is the free
semigroup on a countably infinite set of generators, then there is a subsemigroup
H of (3S,-) with the property that H N (35S ® 3S) = (. This semigroup resided
far away from the smallest ideals of either (55, -) or (4S5, ®). The dissertations
discussed in this section addressed the question of how different K(3S,-) and
K(BS,0)

Patty Anthony

In [3], also published in [4], Anthony established the following two theorems.

Theorem 4.1. Let S be the free semigroup on two generators. Then

K(8S,-)\ ctK(BS,©) # 0 and K(8S,0)\ clK(BS,-) # 0.



Theorem 4.2. Let S be any semigroup. Then K(BS,-) NclK(BS,®) # 0 and
K(3S,) N cLK(35,) £0.

The following corollary is of combinatorial interest since piecewise syndetic
sets are translates of central sets, so any translation invariant structure which
is guaranteed to be present in a central set is also guaranteed to be present in
a piecewise syndetic set.

Theorem 4.3. Let S be any semigroup, let v € N, and let S = J,_, A;. There
exists i € {1,2,...,r} such that A; is both left piecewise syndetic and right
piecewise syndetic.

Proof. Pick p € K(8S,-) N clK(8S,®) and pick ¢ € {1,2,...,r} such that
A; € p. By Theorem 2.3(d), A; is both left piecewise syndetic and right piecewise
syndetic. O

Shea Burns

In [10], also published in [11], Burns extended Theorem 4.1.

Theorem 4.4. Let S be either the free semigroup or the free group on 2 gen-
erators. Then K(3S,-)NK(B8S,®) = 0.

As with all of the dissertations I am discussing, there is material in [3] and
[10] that I have not mentioned. However, neither of these dissertations come
close to characterizing those semigroups for which K (35, ) and K(3S,®) are
different or those semigroups for which they are disjoint. (Lack of commutativity
is not enough, nor is an empty center enough. For example, if S is a left zero
semigroup — that is ab = a for all @ € S — then (85, ) and (55, ®) are both also
left zero semigroups.)

5. Sums and Products

One of the first results proved after the discovery of the Galvin-Glazer proof
of the Finite Sums Theorem was the following, first proved in 1975 (though not
published until 1979).

Theorem 5.1. Let r € N and let N = |Ji_, A;. There exist i € {1,2,...,r}
and sequences {x,)52 1 and (yn)2, in N such that

FS({xn)nz) U FP((yn)nZs) € Ai-

Proof. See [21, Corollary 5.22]. O

For a few years, it remained an open question as to whether one could choose
the sequences (x,)22 ; and (y,)%2; to be the same. The answer was “no”. In
fact there is a finite partition of N so that no cell contains all of the pairwise

sums and pairwise products from some infinite sequence. (See [21, Theorem
17.16].)



I customarily refer to the following conjecture as a “fact”, while acknowledg-
ing that I cannot prove it. And I was tempted to write it that way below, but I
am afraid that someone browsing through this as a published paper would not
notice the disclaimers.

Conjecture 5.2. Let r,m € N. Whenever N = J;_; A;, there must exist
i€{1,2,...,r} and a finite sequence (x,)"_, in N such that

FS({@n)n=1) UFP((zn)n=y) € Ai.

This conjecture has only been proved to be true for m = r = 2. That proof
was done by computer by R. Graham who showed that if {1,2,...,252} is two
colored there exist x,y such that {x,y, x + y, zy} is monochromatic (and 252 is
the best possible).

Gregory Smith

Smith considered the sums of a fixed number of products from a given se-
quence.

Definition 5.3. Let m € N and let (x¢)72; be a sequence in N. Then

SPn((x)f2y) = {20t [liep, @t : F1, Fa, ..., Fy € Pp(N) and for each
ke{1,2,...,m—1}, max F, < min Fj4;}.

Using strongly the algebraic structure of (AN, +) and (SN, -), Smith proved
the following theorem in [30], also published in [31].

Theorem 5.4. Let m,r € N and let (x;)72, be a sequence in N. Assume that
SPy({z)721) = Ui, Ai. Then there exist i € {1,2,...,r} and a sequence
(ye)$2q such that SP,({(y:)2,) C A;.

By purely combinatorial reasoning, he also showed that the cell guaranteed
by Theorem 5.4 strongly depends on the choice of m.

Theorem 5.5. Let m,n € N. There exist Ay, Ay such that N = Ay U Ay and
if (x4)22, is any sequence in N, then SP, ((x:)$2,) is not contained in Ay and
SP,({x4)$2,) is not contained in As.

Dan Tang

Tang began a direct computer based attack on the r = 3 case of Conjecture
5.2. One should note that coloring by three colors is vastly more complicated
than coloring by two. (If one is trying to avoid a configuration in color # 1
and x would complete the forbidden configuration, if one is two coloring one
knows x must go to color # 2, while one has no such information if one is three
coloring.)

Specifically, the question Tang investigated was the following:

10



Question 5.6. Let m € N. Does there exist n € N such that whenever {m, m+
1,m+2,...,n} = A1 U Ay U A3, there must be some i € {1,2,3} and some
x,y € N such that {x +y,zy} C A;?

That is, Tang investigated Conjecture 5.2 without the requirement that x
and y be in the specified color. (It is another result of Graham’s that if N is
two colored, then for each m € N| there exist z,y € N such that min{z,y} > m
and {x + y,zy} is monochromatic.) Tang established an affirmative answer to
Question 5.6 for each m < 42, finding the exact least value of n. (The minimum
value for m = 42 is 435.)

If the above question is modified to require that x # y then one of course
expects the value of n to increase. (In Schur’s Theorem, where {z,y,z + y}
is supposed to be contained in one cell of the partition, if x is required to be
distinct from gy, the bound almost exactly doubles.) Tang proved that if the
bound for the x # y version of the question is sufficiently small (no more than
[7£172)) then that bound is exactly the same as the bound when z = y is
allowed. Further, his computer results establish that the bound is sufficiently
small for 30 < m < 42.

Elaine Terry

We have seen that it is not true that whenever N is finitely colored, there
must exist one cell with a sequence whose finite sums and finite products are
monochromatic. However, any IP*-set in (N, +) must have substantial multi-
plicative structure.

Theorem 5.7. Let A be an IP*-set in (N,+) and let (yn)ne be any sequence
in N. There exists a sum subsystem (x,)52 1 of (yn)S>, such that F'S({x,)52 ;1)U
FP({zn)pZy) € A

Proof. [6, Theorem 2.6]. O
In her dissertation Terry significantly extended Theorem 5.7 to weak rings.

Definition 5.8. A weak ring is a triple (S, +,-) such that (S, +) and (S, -) are
semigroups and for all a,b,c € S, a-(b+c¢)=(a-b)+(a-c) and (a+b)-c=
(a-c)+ (b-c).

Notice that neither (S,4) nor (5, ) are required to be commutative. As an
example, let (S,+) be any commutative semigroup and let Hom(S) be the set
of homomorphisms from S to S. Then (Hom(S),+,0) is a weak ring and it is
unlikely that (Hom(S), o) is commutative.

Recall that in the definition of FP((x,)22 ), one required that the prod-
ucts be taken in increasing order of indices. Restricting to a finite sequence,
one has that FP((z,)3_, = {1, 22,73, 1122, 2173, 2273, v12273}. We define
AP((2,)2 1) to be the set of all finite products of distinct terms in any or-
der. Again restricting to a finite sequence, we have that AP((z,)2_,) =
{21, 22, T3, B1T2, Tox1, 13, T3T1, T2T3, T3Ta, T1T2T3, T1T3T2, ToT1T3, ToTaLl,
X3X1%2, T3x221 }. The main theorem of [33] is the following. (See [21, Theorem
17.16] for a proof.)

11



Theorem 5.9. Let (S,+,) be a weak ring, let A be an IP*-set in (S,+), and
let (yn)S2, be any sequence in N. There exists a sum subsystem (x,)52, of
(Yn)pzr such that FS((xy)p%,) U AP((z,)5%,) C A.

6. Size in Partial Semigroups

A partial semigroup is a set S together with an operation - which is defined
on a subset of S x S and is associative where it is defined, in the sense that for
all a,b,c € S, if either of a- (b-¢) or (a-b) - ¢ is defined, then so is the other
and they are equal. Such semigroups were introduced in [5] and used to prove
partition theorems about spaces of variable words.

The utility of partial semigroups arises out of being able to concentrate on
cases where an operation either has a natural definition, or where a naturally
defined operation is well behaved. For example, if for F, G € P¢(N), one defines
FxG =FUGif FNG = ( and leaves F * G undefined otherwise, then
f: Py(N) — N defined by f(F) = |F| is a partial semigroup homomorphism
(defined in the obvious way).

Definition 6.1. Let (S, ) be a partial semigroup.
(a) Forz € S, p(z) ={y € S: -y is defined}.

(b) The partial semigroup S is adequate if and only if whenever F' € Py (),
anF (P(JJ) 7é @

(c) If S is adequate, 6S = [, cg clpso(T).

If S is adequate, (which is precisely what is required for 4.5 to be non-empty),
then the operation extends naturally to 65 in such a way that 6.5 is a compact
right topological semigroup, and so has all of the structure guaranteed to such
objects.

Jillian McLeod

Let (S, -) be a partial semigroup. All of the notions of size defined in Defini-
tion 2.1 have obvious analogues of their algebraic characterizations in Theorem
2.3 in terms of 4.5, and more-or-less obvious analogues of their combinatorial
definitions. For example, one defines a set A C S to be algebraically thick if
and only if there is a left ideal L of §S with L C A. And A is combinatorially
thick if and only if for each ' € Py (S), there exists y € (), () such that
F.-yCA.

McLeod denoted the algebraic analogues by the same name as used for semi-
groups and prefixed the combinatorial characterizations by “¢”. In [25] (also
published in [26]) she showed that all of the implications in the following table
hold among these notions and produced examples of partial semigroups show-
ing that none of the missing implications is valid in general. (Her diagram was
larger than this because she considered several other notions that we have not
mentioned.)

12



E—IP *
If* é—tf[ick

syndetic thick
¢-syndetic piecewise syndetic 1P
é-piecewise syndetic é-IP

7. Partition Regularity of Affine Transformations

We have already mentioned that in his 1933 paper [29] Rado characterized
the kernel partition regularity of linear transformations. In that same paper
he also characterized the kernel partition regularity of affine transformations.
These characterizations are not as well known as his linear characterizations,
probably because, with the exception of Theorem 7.1(b)(ii), the answer is that
the affine transformation is kernel partition regular if and only if it is trivially
so, that is it has a constant solution. (Given a number k we write k for a vector
with all terms equal to k.)

Theorem 7.1. Let u,v € N, let A be a u x v matriz with entries from Q, and
let b e Q“\ {0}.
(a) Whenever Z is finitely colored, there exists a monochromatic ¥ € Z¥ such
that AZ + b =0 if and only if there exists k € Z such that Ak + b = 0.

(b) Whenever N is finitely colored, there exists a monochromatic ¥ € NV such
that AZ + b =0 if and only if either

(i) there exists k € N such that Ak +b =0 or

(ii) there exists k € 7 such that Ak +b = 0 and the linear mapping
T +— AZ is kernel partition regular.

Proof. (a) [29, Satz VIII].
(b) [29, Satz V]. O
While on the subject of partition regularity of matrices, I should point out
that, while there are several partial results known, we are a long way from
characterization of either image or kernel partition regularity of infinite matrices.

Irene Moshesh

In [28] (also published in [19]), Moshesh considered several notions of image
partition regularity of affine transformations. She characterized image partition
regularity of an affine transformation over Z in a fashion nearly identical to
Rado’s characterization of kernel partition regularity.
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Theorem 7.2. Let u,v € N, let A be a u X v matrix with entries from Q, and
let b € Qu\ {0}. Whenever Z is finitely colored, there exists ¥ € Z° such that

the entries of AT + b are monochromatic if and only if there exist ¥ € Z" and
k € Z such that AZ +b=k.

The characterization in the following is significantly more interesting. (Note
in particular the appearance of central sets.)

Theorem 7.3. Let u,v € N, let A be a u x v matriz with entries from Q, and
let b € Q“\ {0}. Whenever N is finitely colored there exists T € Z° such that
the entries of AZ + b are monochromatic if and only if either

(i) there exists k € N and T € Z¥ such that AT +b =k or,

(i) there exists k € Z and T € Z¥ such that AT + b="Fk and for every central
set C in N, there exists & € Z' such that AZ € C".

8. The smallest ideal of BN

As we have observed, the smallest ideal K (SN) of (8N, +) is known to have
substantial algebraic structure. It contains 2¢ minimal left ideals and 2¢ minimal
right ideals, and we have already mentioned the fact that the intersection of any
minimal left ideal with any minimal right ideal contains a copy of the free group
on 2¢ generators.

Ambha Lisan

Much of the structure of K(SN), including the copies of the free semigroup
on 2¢ generators mentioned earlier, lie in K (SN) NH, where H = (2, ¢/(N2").
In [23], also published in [24], Lisan published the following When we write
that two subsets of 55 are algebraically and topologically isomorphic, we mean
that there is a single function which is simultaneously an isomorphism and a
homeomorphism.

Theorem 8.1. Let (x,)5%, be a sequence in N such that for each n € N,
Tpy1 > opeq Te. Then (oo_y clanFS((@n)52,,) is topologically and algebraic-
ally isomorphic to H.

In fact, Lisan’s proof with no substantive modification establishes the fol-
lowing theorem. When we say that a sequence (x,)5 , satisfies uniqueness of
finite products we mean that whenever F, H € P(N) and [[,cp 2t = [,y ¢,
one must have F' = H.

Theorem 8.2. Let (S,-) be a semigroup and let {x,)52, be a sequence in S

which satisfies uniqueness of finite products. Then (\oo_, clgsFP((x,)2%,,) is
topologically and algebraically isomorphic to H.

14



Since it is easy to construct sequences (2,,)°2 ; in N such that F.S({x,)%2 )

is not piecewise syndetic, one has that all of the algebraic structure found in H
can be found in parts of SN which miss the smallest ideal.

Gugu Moche

The identity function ¢ : NxN — NxN C Nx 6N has a continuous extension
T: B(NxN) — BNx N, and 7 [K (B(NxN))| = K(8N)x K(B8N) = K(3Nx 3N).
It has been known since the early 1970’s that there are points (p, q) € SN x SN
such that [271[{(p, ¢)}]| = 2¢ and that it follows from the Continuum Hypothesis
that there are points (p,q) € BN x N such that |2 ~1[{(p,q)}]| = 2.

In [27], Moche proved the following theorem.

Theorem 8.3. Let (p,q) € K(ON) x K(ON). Then

{re K(B(NxN)):7(r) = (p,a)}
18 infinite.

It is almost an axiom that all interesting subsets of OGN, or in this case
B(N x N), have as many points as SN, namely 2¢. And it is certainly a fact that
all closed infinite subsets of SN have 2¢ points. However, K (8(N x N)) is not
closed, so the following question remains.

Question 8.4. Let (p,q) € K(ON) x K(SN). Must

{re K(BINxN)):T(r) = (p,a)}| =2° 7

Chase Adams, II1

We saw in Theorem 8.1 that if (x,,)22  is a sequence in N such that for each
n €N, zop1 > Y0 @y, then (o, clgsFS((x,)52,,) contains much of the
known algebraic structure of K (SN). Adams proved in [1], also published in [2],
that several notions of size are equivalent for such nicely behaved sequences in

N.

Theorem 8.5. Let (x,)5%, be a sequence in N such that for each n € N,
Tnt1 > 2?21 xt. The following statements are equivalent:

(a) For allm € N, FS({x,)52,,) is central.

(b) FS({x,)52,) is central.

(c) For allm € N, FS((x,)5%,,,) is piecewise syndetic.
(d) FS({(x,)22,) is piecewise syndetic.

(e) {xns1 — Y 1y z¢ : n € N} is bounded.

(f) FS({x,)22 ) is syndetic.
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(g) For allm € N, FS((x,)5%,,) is syndetic.

(h) M= clas FS({xn)7lm) N K (BN) # 0.

In [1], given € > 0, Adams constructed a sequence (x,)52; in N such that
for each n € N, zp41 > D0 | @4, {@pg1 — D4y @t : n € N} is unbounded, and
the density d(FS({z,)52,)) > 1 — €. As a consequence one has much of the
algebraic structure of K (SN), specifically all of the structure of K (H), close to,
but disjoint from, K (GN).

9. Conclusion

People often accuse me of working. I steadfastly deny that, saying that I
teach and do mathematics — neither of which can be construed as work. (Well,
I do admit that grading exams is not exactly fun.) I would like to take this
opportunity to thank all of my collaborators, and especially my Ph.D. students,
for participating with me in this marvelous venture.
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