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Algebraic products of tensor products

Neil Hindman * Dona Strauss �

Abstract

Given a discrete semigroup (S, ·), there is a natural operation on the
Stone-Čech compactification βS of S which extends the operation of S and
makes (βS, ·) a compact right topological semigroup with S contained in
its topological center. If S and T are discrete semigroups, p ∈ βS, and
q ∈ βT , then the tensor product p ⊗ q is a member of β(S × T ). It is
known that tensor products are both algebraically and topologically rare
in β(S × T ). We investigate when the algebraic product of two tensor
products is again a tensor product. We get a simple characterization for
a large class of semigroups. The characterization is in terms of a notion
of cancellation. We investigate where that notion sits among standard
cancellation] notions.

1 Introduction

Given a discrete space S we take the Stone-Čech compactification βS of S to
consist of the ultrafilters on S, with the points of S identified with the principal
ultrafilters. Given A ⊆ S we let A = c`βSA = {p ∈ βS : A ∈ p} and let
A∗ = A \A.

Definition 1.1. Let S and T be discrete spaces, let p ∈ βS, and let q ∈ βT .
Then the tensor product of p and q is defined by

p⊗ q = {A ⊆ S × T : {x ∈ S : {y ∈ T : (x, y) ∈ A} ∈ q} ∈ p} .

Tensor products were apparently first introduced in the proof of [9, Theorem
6.7]. They are also a special case of the notion of sums of ultrafilters introduced
by Froĺık in [5] which were used to provide the first ZFC proof that βN is not
homogeneous, where N is the set of positive integers.
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Tensor products have been used extensively in model theory. (See [4] and
the already cited [9].) Several results about tensor products were included in
[2] and used in [3, Chapter 7].

Tensor products can be characterized in terms of limits as follows. If p ∈ βS
and q ∈ βT , then p ⊗ q = lim

s→p
lim
t→q

(s, t), where s denotes a member of S and t

denotes a member of T . An alternate notation involves the notion of p-limit.
If p ∈ βS, A ∈ p, and and f is a function from S to a compact Hausdorff
space X, then p-lim

s∈A
f(s) = y if and only if for every neighborhood U of y,

{s ∈ A : f(s) ∈ U} ∈ p. Then given any A ∈ p and any B ∈ q, p ⊗ q =
p-lim
s∈A

q-lim
t∈B

(s, t). Observe that the statement p-lim
s∈A

f(s) = y is equivalent to the

statement that lim
s→p

f(s) = y where s denotes a member of A; i.e. it is equivalent

to the statement that f̃(p) = y where f̃ : βS → X denotes the continuous
extension of f . See [7, Section 3.5] for more information about p-limits.

We shall frequently use the following basic facts. Given q ∈ βT , the function
Rq : βS → β(S × T ) defined by Rq(p) = p⊗ q is continuous. And, given s ∈ S,
the function Ls : βT → β(S × T ) defined by Ls(q) = s⊗ q is continuous.

If · is a binary operation on S, then the operation extends uniquely to βS
so that, for every q ∈ βS, the function ρq : βS → βS is continuous, and for
each s ∈ S, the function λs : βS → βS is continuous, where ρq(p) = p · q and
λs(q) = s ·q. This extended operation has the property that p ·q = lim

s→p
lim
t→q

(s · t)
for every p, q ∈ βS, where s and t denote elements of S. If p, q ∈ βS and A ⊆ S,
then A ∈ p · q if and only if {s ∈ S : s−1A ∈ q} ∈ p where s−1A = {t ∈ S : st ∈
A}. If the operation on S is associative, then so is the extended operation. The
reader is referred to [7, Chapter 4] for basic information about the extended
operation.

This property of binary operations has an immediate application to Ramsey
Theory. Let · be any binary operation on a set S. Let F be a family of finite
subsets of F and let G be a family of arbitrary subsets of S. Suppose that, given
any finite coloring of S, there exists F ∈ F and G ∈ G which are monochromatic.
Then, given any finite coloring of S, there exist F ∈ F and G ∈ G for which
F · G is monochromatic. This was proved in [1] as Theorem 1.1 (b). But it
seems worth pointing out in this paper that it is an immediate consequence
of the property of binary operations that we have just stated. We can choose
ultrafilters p and q in βS such that every member of p contains a set F ∈ F and
every member of q contains a set G ∈ G by [7, Theorem 5.7]. To see that every
member of p · q contains a set of the form F · G, where F ∈ F and G ∈ G, let
A ∈ p · q. Then {s ∈ S : s−1A ∈ q} ∈ p so pick F ∈ F such that for each s ∈ F ,
s−1A ∈ q. Since F is finite,

⋂
s∈F s

−1A ∈ q so one may pick G ∈ G such that
G ⊆

⋂
s∈F s

−1A ∈ q.
Let · be any binary operation on a set S and let g : S × S → S be defined

by g(s, t) = s · t. Then g extends to a continuous function g̃ : β(S × S) → βS.
For every p ∈ βS and q ∈ βT , g̃(p⊗ q) = lim

s→p
lim
t→q

g(s, t) = lim
s→p

lim
t→q

(s · t) = p · q,
where s and t denote elements of S.
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In [8] we showed that the set of tensor products in β(S × S) is both alge-
braically and topologically thin. For example, by [8, Corollary 2.5], βS ⊗ βS is
not a Borel subset of β(S×S). And it is a consequence of [8, Corollary 2.9] that
if S is a countable and cancellative semigroup, then βS⊗βS does not meet the
smallest ideal of β(S × S).

The main question that we address in this paper is the following.

Question 1.2. Let (S, ·) and (T, ·) be infinite semigroups and let p, r ∈ βS and
q, w ∈ βT . Under what conditions is (p⊗ q) · (r ⊗ w) a tensor product?

The question can be rephrased as When is the algebraic product of tensor
products a tensor products? The answer which we will develop in Section 2
is this: Assuming that S and T are countably infinite and suitably civilized,
p, r ∈ βS, and q, w ∈ βT , then (p⊗ q) · (r ⊗ w) is a tensor product if and only
if either r ∈ S or q ∈ T , in which case (p⊗ q) · (r⊗w) = (p · r)⊗ (q ·w). What
“suitably civilized” means involves some weak notions of cancellation.

Definition 1.3. Let (S, ·) be a semigroup and let A ⊆ S.

(a) The set A is a left solution set iff there exist w, z ∈ S such that A = {s ∈
S : w · s = z}.

(b) The set A is a right solution set iff there exist w, z ∈ S such that A =
{s ∈ S : s · w = z}.

Definition 1.4. Let (S·) be a semigroup.

(a) S is weakly left cancellative iff every left solution set in S is finite.

(b) S is weakly right cancellative iff every right solution set in S is finite.

(c) S is quasi cancellative iff for every w, z ∈ βS, {s ∈ S : s · w = z} is finite.

(d) A subset A of S is a QC-set iff there exist w, z ∈ βS, s · w = z for all
s ∈ A.

Thus a semigroup is quasi cancellative if it does not contain any infinite QC-
sets. Quasi cancellative is a one sided notion, and we would call it “quasi right
cancellative” or “right quasi cancellative”, but either of those names suggest that
any right cancellative semigroup is quasi cancellative, which we shall see is not
true. Note that if S is quasi cancellative, then S∗ is a right ideal of βS. (Suppose
p ∈ S∗, q ∈ βS, and p·q = z ∈ S. Then {s ∈ S : sq = z} = {s ∈ S : s−1{z} ∈ q}
is a member of p, so is infinite.)

If S is cancellative, the QC-sets in S are the singletons ([7, Corollary 8.2]).
However, if S is only weakly cancellative, S itself could be a QC-set. This is the
case, for example, if S = (N,max) or if S = (Pf (X),∪), where Pf (X) is the set
of finite nonempty subsets of the set X.

In Section 2 we shall show that “S and T are suitably civilized” means that
S is weakly left cancellative and T is quasi cancellative.

In Section 3 we shall investigate where the notion of quasi cancellative sits
among the standard notions of cancellativity, as well as a couple of other hybrid
notions.
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2 When the algebraic product of tensor prod-
ucts is a tensor product

The following very simple result tells us that if the algebraic product of two
tensor products is a tensor product, we know what tensor product it is.

Theorem 2.1. Let (S, ·) and (T, ·) be semigroups, let p, r ∈ βS, and let q, w ∈
βT . If u ∈ βS, v ∈ βT , and (p⊗ q) · (r ⊗w) = u⊗ v, then u = pr and v = qw.

Proof. Let π1 and π2 denote the projections from S×T to S and T respectively
and let π̃1 : β(S × T ) → βS and π̃2 : β(S × T ) → βT be their continuous
extensions. It is routine to show that if x ∈ βS and y ∈ βT , then π̃1(x⊗ y) = x
and π̃2(x⊗ y) = y.

Now π1 and π2 are homomorphisms and therefore by [7, Corollary 4.22] so
are π̃1 and π̃2. Therefore π̃1

(
(p ⊗ q) · (r ⊗ w)

)
=
(
π̃1(p ⊗ q) · π̃1(r ⊗ w)

)
= pr

and π̃2
(
(p⊗ q) · (r ⊗ w)

)
=
(
π̃2(p⊗ q) · π̃2(r ⊗ w)

)
= qw.

Lemma 2.2. Let (S, ·) and (T, ·) be infinite semigroups and assume that w, z ∈
βT and Q = {t ∈ T : tw = z} is infinite. Let q ∈ Q∗ and let p, r ∈ βS. Then
(p⊗ q) · (r ⊗ w) = (pr)⊗ (qw).

Proof. It is routine to establish from the definition that for s ∈ S and t ∈ T ,
(s, t) · (r⊗w) = (sr)⊗ (tw). Note also that, since for all t ∈ Q, tw = z, qw = z
and for any s ∈ S, q-lim

t∈Q

(
(sr)⊗ (tw)

)
= q-lim

t∈Q

(
(sr)⊗ z

)
=
(
(sr)⊗ z

)
. Thus we

have

(p⊗ q) · (r ⊗ w) =
(
p-lim
s∈S

q-lim
t∈Q

(s, t)
)
· (r ⊗ w)

= p-lim
s∈S

q-lim
t∈Q

(
(s, t) · (r ⊗ w)

)
since ρr⊗w is continuous

= p-lim
s∈S

q-lim
t∈Q

(
(sr)⊗ (tw)

)
= p-lim

s∈S

(
(sr)⊗ z

)
=
(
p-lim
s∈S

(
sr)
)
⊗ z since Rz is continuous

= (pr)⊗ (qw)

where the last equality holds because ρr is continuous and qw = z.

Lemma 2.3. Let (S, ·) and (T, ·) be semigroups, let p, r ∈ βS, and let q, w ∈ βT .
If either r ∈ S or q ∈ T , then (p⊗ q) · (r ⊗ w) = (pr)⊗ (qw).

Proof. Assume first that r ∈ S. Using successively the facts that ρr⊗w : β(S ×
T )→ β(S×T ) is continuous and for (s, t) ∈ S×T , λ(s,t) : β(S×T )→ β(S×T )
is continuous one sees that

(p⊗ q) · (r ⊗ w) = p-lim
s∈S

q-lim
t∈T

w-lim
v∈T

(
(s, t) · (r, v)

)
.

Using successively the facts that Rqw : βS → β(S × T ) is continuous and for
s ∈ S, Lsr : βT → β(S × T ) is continuous, one sees that

(pr)⊗ (qw) = p-lim
s∈S

q-lim
t∈T

w-lim
v∈T

(
(sr, tv)

)
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so the conclusion holds.
Now assume that q ∈ T . Using the facts that ρr⊗w : β(S×T )→ β(S×T ) is

continuous and for s ∈ S, λ(s,q) : β(S×T )→ β(S×T ) is continuous one sees that

(p⊗ q) · (r⊗w) = p-lim
s∈S

r-lim
u∈S

w-lim
v∈T

(
(s, q) · (u, v)

)
. Using successively the facts

that Rqw : βS → β(S × T ) is continuous and for s, u ∈ S, Lsu : βT → β(S × T )
is continous, one sees that (pr) ⊗ (qw) = p-lim

s∈S
r-lim
u∈S

w-lim
v∈T

(
(su, qv)

)
so the

conclusion holds.

Lemma 2.4. Let (S, ·) and (T, ·) be infinite semigroups. If S is not weakly left
cancellative, then there exist r ∈ S∗ and p ∈ S such that for all q and w in βT ,
(p⊗ q) · (r ⊗ w) = (pr)⊗ (qw)

Proof. Assume that S is not weakly left cancellative. Pick p and y in S such
that H = {u ∈ S : pu = y} is infinite and pick r ∈ H∗. Let q and w in βT be
given.

Using the facts that ρr⊗w : β(S × T )→ β(S × T ) is continuous and for any
t ∈ T , λ(p,t) : β(S× T )→ β(S× T ) is continuous we see that (p⊗ q) · (r⊗w) =
q-lim
t∈T

r- lim
u∈H

w-lim
v∈T

(pu, tv).

Using the facts that Rqw : βS → β(S × T ) is continuous and for any
u ∈ S, Lpu : βT → β(S × T ) is continuous, we see that (pr) ⊗ (qw) =
r- lim
u∈H

q-lim
t∈T

w-lim
v∈T

(pu, tv). Since for all u ∈ H. pu = y, we have that

q-lim
t∈T

r- lim
u∈H

w-lim
v∈T

(pu, tv) = q-lim
t∈T

w-lim
v∈T

(y, tv)

= r- lim
u∈H

q-lim
t∈T

w-lim
v∈T

(pu, tv) .

The following is the main result of the section.

Theorem 2.5. Let (S, ·) and (T, ·) be infinite semigroups. Statements (2), (3),
and (4) are equivalent and imply statement (1). If S and T are countable, then
all four statements are equivalent.

(1) S is weakly left cancellative and T is quasi cancellative.

(2) (∀q ∈ T ∗)(∀r ∈ S∗)(∀p ∈ βS)(∀w ∈ βT )(
(p⊗ q) · (r ⊗ w) 6= (pr)⊗ (qw)

)
.

(3) For all p, r ∈ βS and all q, w ∈ βT , (p⊗ q) · (r ⊗w) = (pr)⊗ (qw)⇔ r ∈
S or q ∈ T .

(4) For all p, r ∈ βS and all q, w ∈ βT , (p ⊗ q) · (r ⊗ w) ∈ βS ⊗ βT ⇔ r ∈
S or q ∈ T .

Proof. (2) implies (3). Assume statement (2) holds, let p, r ∈ βS, and let
q, w ∈ βT . The sufficiency holds by Lemma 2.3. The necessity is an immediate
consequence of statement (2).
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Using Theorem 2.1, it is immediate that statements (3) and (4) are equiva-
lent.

It is trivial that statement (3) implies statement (2).
To see that statement (2) implies statement (1) assume that statement (2)

holds. By Lemma 2.4, S is weakly left cancellative and by Lemma 2.2, T is
quasi cancellative.

Finally, assume that S and T are countable and statement (1) holds. Let
q ∈ T ∗, r ∈ S∗, p ∈ βS, and w ∈ βT be given and suppose that (p⊗q) ·(r⊗w) =
(pr) ⊗ (qw). Let Q = {t ∈ T : tw = qw}. Since T is quasi cancellative, Q is
finite. Let T ′ = T \ Q and note that T ′ ∈ q. We claim that w /∈ Q. If so,
we would have ww ∈ T while, as we have noted. T ∗ is a right ideal of βT so
qw /∈ T .

Enumerate S and T ′ as 〈sn〉∞n=1 and 〈tn〉∞n=1 respectively. Write s ≺ s′ if s
preceeds s′ and t ≺ t′ if t preceeds t′ in these orderings. Define f : S → T ′ by,
for each n ∈ N, f(sn) = tn.

Given b ∈ T ′ we have bw 6= qw so pick Yb ∈ qw and Zb ∈ bw such that
Yb ∩ Zb = ∅. For t ∈ T ′, let Xt =

⋂
b�t Yb and let Wt =

⋂
b�t b

−1Zb. Then for
each t ∈ T ′, Xt ∈ qw, Wt ∈ w, and whenever b � t, bWt ∩Xt = ∅.

Let A =
⋃
a∈S({a} ×Xf(a)). Then A ∈ (pr)⊗ (qw) so A ∈ (p⊗ q) · (r⊗w).

Pick (s, t) ∈ S × T ′ such that (s, t)−1A ∈ r ⊗ w.
Let D = {(u, v) ∈ S × T ′ : t ≺ f(su) and v ∈ Wf(su)} We claim that

D ∈ r ⊗ w. First, since S is weakly left cancellative, {u ∈ S : f(su) � t}
is finite so, letting E = {u ∈ S : t ≺ f(su)}, we have that E ∈ r. We
claim that E ⊆ {u ∈ S : {v ∈ T : (u, v) ∈ D} ∈ w}, so let u ∈ E. Then
{v ∈ T : (u, v) ∈ D} = Wf(su) ∈ w as required.

SinceD ∈ r⊗w, pick (u, v) ∈ D∩(s, t)−1A. Then (su, tv) ∈ A so tv ∈ Xf(su).
Also, (u, v) ∈ D so tv ∈ tWf(su). Thus Xf(su) ∩ tWf(su) 6= ∅, while t ≺ f(su), a
contradiction.

Corollary 2.6. If S and T are countably infinite cancellative semigroups, no
element of S∗ ⊗ T ∗ can be idempotent.

We now show that, if S is any infinite discrete semigroup which can be
embedded in the direct sum of a family of countable cancellative semigroups,
each of which has an identity, then no element of S∗ ⊗ S∗ can be idempotent.
We observe that all discrete abelian groups have this property by [6, Theorems
19.1 and 20.1].

Lemma 2.7. Let S, S′, T, T ′ be arbitrary semigroups, let f : S → S′, let g :
T → T ′, and let f̃ : βS → βS′ and g̃ : βT → βT ′ be their continuous extensions.
Assume that p ∈ βS, q ∈ βT , and that p ⊗ q is an idempotent in β(S ⊗ T ).
Assume also that there exist P ∈ p and Q ∈ q such that for every s ∈ P and
every t ∈ Q, Ps = {u ∈ S : f(su) = f(s)f(u)} ∈ p and Qt = {v ∈ T : g(tv) =

g(t)g(v)} ∈ q. Then f̃(p)⊗ g̃(q) is an idempotent in β(S′ × T ′).

Proof. Let h : S × T → S′ × T ′ be defined by h(s, t) =
(
f(s), g(t)

)
and let

h̃ : β(S × T ) → β(S′ × T ′) be its continuous extension. It is routine to verify
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from the definitions that h̃(p⊗ q) = f̃(p)⊗ g̃(q). Further

p⊗ q = (p⊗ q) · (p⊗ q)
= ρp⊗q

(
p-lim
s∈P

q-lim
t∈Q

(s, t)
)

= p-lim
s∈P

q-lim
t∈Q

(
(s, t) · p- lim

u∈Ps

q- lim
v∈Qt

(u, v)
)

= p-lim
s∈P

q-lim
t∈Q

p- lim
u∈Ps

q- lim
v∈Qt

(
(s, t)(u, v)

)
.

Let s ∈ P, u ∈ Ps, t ∈ Q and v ∈ Qt. Then

h
(
(s, t)(u, v)

)
=
(
f(su), g(tv)

)
=
(
f(s)f(u), g(t)g(v)

)
=
(
h(s, t)h(u, v)

)
.

Therefore

h̃(p⊗ q) = h̃
(
p-lim
s∈P

q-lim
t∈Q

p- lim
u∈Ps

q- lim
v∈Qt

(s, t)(u, v)
)

= p-lim
s∈P

q-lim
t∈Q

p- lim
u∈Ps

q- lim
v∈Qt

h
(
(s, t)(u, v)

)
= p-lim

s∈P
q-lim
t∈Q

p- lim
u∈Ps

q- lim
v∈Qt

(
h(s, t)h(u, v)

)
= p-lim

s∈P
q-lim
t∈Q

h(s, t) · h̃
(
p- lim
u∈Ps

q- lim
v∈Qt

(u, v)
)

=
(
h̃(p-lim

s∈P
q-lim
t∈Q

(s, t)
)
· h̃(p⊗ q)

= h̃(p⊗ q) · h̃(p⊗ q) .

Since h̃(p⊗ q) = f̃(p)⊗ g̃(q), we are done.

Theorem 2.8. Let 〈Sα〉α∈A be a family of countable cancellative semigroups.
Assume also that, for each α ∈ A, Sα has an identity eα. If S is a subsemigroup
of
⊕

α∈A Sα, no member of S∗ ⊗ S∗ can be an idempotent.

Proof. Let p, q ∈ S∗. Assume that p ⊗ q is an idempotent in β(S × S). As we
saw in the proof of Theorem 2.1, p and q are homomorphic images of p ⊗ q so
are idempotents.

Let e denote the identity of
⊕

α∈A Sα. For each finite non-empty subset F
of A, let SF denote

⊕
α∈F Sα, let πF denote the natural projection of

⊕
α∈A Sα

onto SF , and let π̃F : β(
⊕

α∈A Sα)→ βSF denote its continuous extension. Let
eF denote the identity of SF . For s ∈ A, we put supp(s) = {α ∈ A : πα(s) 6= eα}.

For every finite non-empty subset F of A, π̃F (p) ⊗ π̃F (q) is an idempotent
in β(SF × SF ), by Lemma 2.7. By Corollary 2.6, π̃F (p)⊗ π̃F (q) /∈ S∗F ⊗ S∗F so
either π̃F (p) ∈ SF or π̃F (q) ∈ SF . Since π̃F is a homomorphism, if π̃F (p) ∈ SF ,
then π̃F (p) = eF and if π̃F (q) ∈ SF , then π̃F (q) = eF . So either (1) π̃F (p) = eF
for every finite non-empty subset F of A, or (2) π̃F (q) = eF for every finite non-
empty subset F of A. (If π̃F (p) 6= eF and π̃G(q) 6= eG, then π̃F∪G(p) 6= eF∪G
and π̃F∪G(q) 6= eF∪G.)

Assume that (1) holds. Define φ : S → ω = N ∪ {0} by φ(s) = |supp(s)|
and let φ̃ : βS → βω be its continuous extension. Then, for every s ∈ S,
φ(su) = φ(s) + φ(u) if πsupp(s)(u) = esupp(s) so, since π̃supp(s)(p) = esupp(s),
{u ∈ S : φ(su) = φ(s) + φ(u)} ∈ p.
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Since p, q ∈ S∗ and 0 is isolated in βω, we know that φ̃(p) 6= 0 and φ̃(q) 6= 0.

Let F be an arbitrary finite nonempty subset of A. By Lemma 2.7, φ̃(p)⊗ π̃F (q)

is an idempotent in β(ω × SF ) and thus φ̃(p) is an idempotent in βω and

π̃F (q) is an idempotent in βSF . Since φ̃(p) 6= 0, φ̃(p) ∈ ω∗ so by Corollary
2.6, π̃F (q) /∈ S∗F . We thus have that for every finite nonempty subset F of A,
π̃F (q) = eF so that for each s ∈ S, {u ∈ S : φ(su) = φ(s)+φ(u)} ∈ q. Therefore

by Lemma 2.7, φ̃(p) ⊗ φ̃(q) is an idempotent in β(ω × ω). Since φ̃(p) 6= 0 and

φ̃(q) 6= 0, we again get a contradiction to Corollary 2.6.
Similarly, we can refute the assumption that (2) holds.

3 The notion of quasi cancellative

In this section we show where the notion of quasi cancellative fits among several
other cancellation notions.
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Figure 1: Diagram of Implications

Except for A and B , the abbreviations used in Figure 1 should be obvious.
For example “wlc” abbreviates “weakly left cancellative”. “A” abbreviates the
statement “S is left cancellative and there is a finite bound on the size of right
solution sets.” “B” abbreviates the statement “S is right cancellative and, if
M =

{
s ∈ S : there is a finite bound on the size of sets of the form {x ∈ S :

sx = y} for y ∈ S
}

, then M is cofinite.”
We shall show that all of the indicated implications in Figure 1 are valid,

and with one exception, none of the missing implications can be added. The
one exception is that we do not know whether right cancellative and weakly left
cancellative implies quasi cancellative.
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All of the indicated implications are obvious except that A implies quasi
cancellative, B implies weakly left cancellative, and B implies quasi cancellative.
We set out to verify those implications now.

Theorem 3.1. Let (S, ·) be an infinite left cancellative semigroup and assume
that there is a finite bound on the size of right solution sets in S. Then S is
quasi cancellative.

Proof. Pick b ∈ N such that every right solution set has fewer than b elements.
Let w, z ∈ βS and let A = {s ∈ S : sw = z}. We shall show that A has fewer
than b elements. If w ∈ S and A 6= ∅, then A is a right solution set so has
fewer than b elements. So assume that w ∈ S∗ and suppose that |A| ≥ b. For
distinct s and t in A, let Bs,t = {u ∈ S : su = tu} and note that by [7, Lemma

8.5], Bs,t ∈ w. Pick distinct s1, s2, . . . sb ∈ A and pick u ∈
⋂b
j=2Bs1,sj and let

x = s1u. Then {s1, s2, . . . , sb} ⊆ {y ∈ S : yu = x}.

Theorem 3.2. Let (S, ·) be an infinite semigroup and assume that S is right
cancellative. Let M =

{
s ∈ S : there is a finite bound on the size of sets of the

form {x ∈ S : sx = y} for y ∈ S
}

and assume that M is cofinite. Then S is
weakly left cancellative and quasi cancellative.

Proof. To see that S is weakly left cancellative, suppose instead that we have
a, b ∈ S such that B = {x ∈ S : ax = b} is infinite. Since S is right cancellative,
{sa : s ∈ S} is infinite so pick s ∈ S such that sa ∈ M . Then (with y = sb),
{x ∈ S : sax = sb} is finite, while B ⊆ {x ∈ S : sax = sb}.

To see that S is quasi cancellative, let w, z ∈ βS and suppose that {s ∈ S :
sw = z} is infinite. Pick s ∈M such that sw = z. Pick t 6= s such that tw = z.
Let b = max{|{x ∈ S : sx = y}| : y ∈ S}. Let E = {u ∈ S : su = tu}. We shall
show that E ∈ w. This will be a contradiction since S is right cancellative so
E = ∅.

Suppose that E /∈ w. Define an equivalence relation ≈ on S \ E by u ≈ v
iff su = sv. Let F be the set of equivalence classes. For each F ∈ F , write
F = {uF,1, uF,2, . . . , uF,b}, with repetition if necessary. Pick i ∈ {1, 2, . . . , b}
such that {uF,i : F ∈ F} ∈ w and let U = {uF,i : F ∈ F}

Define f : S → S with no fixed points as follows. For u ∈ S \E, pick F ∈ F
such that u ∈ F and define f(su) = tuF,i. (This is well defined because, if
su = sv, then v ∈ F as well.) Pick an element z ∈ {su : u ∈ S \ E}. For

x ∈ S \ {su : u ∈ S \ E} let f(x) = z. Let f̃ : βS → βS be the continuous

extension of f . By [7, Theorem 3.34] f̃ has no fixed points so f̃(sw) 6= sw. But

for u ∈ U , f(su) = tu so f̃ ◦ λs agrees with λt on U so f̃(sw) = tw = sw, a
contradiction.

We now set out to show that, with one possible exception, none of the missing
implications in Figure 1 can be added. We begin by posing that question.

Question 3.3. If (S, ·) is an infinite semigroup which is right cancellative and
weakly left cancellative, must S be quasi cancellative?
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Now we present some very easy examples. Recall that a semigroup (S, ·) is
right zero iff ab = b for all a, b ∈ S and is left zero iff ab = a for all a, b ∈ S.

Theorem 3.4. (a) An infinite right zero semigroup is left cancellative and
not weakly right cancellative.

(b) An infinite left zero semigroup is quasi cancellative and right cancellative
and not weakly left cancellative.

(c) If (S, ·) is an infinite cancellative semigroup and R is a two element right
zero semigroup, then S×R satisfies statement A and is not right cancella-
tive.

(d) If (S, ·) is an infinite cancellative semigroup and L is a two element left
zero semigroup, then S×L satisfies statement B and is not left cancellative.

(e) For n,m ∈ N, let n ∨ m = max{m,n}. Then (N,∨) is weakly left can-
cellative and weakly right cancellative and is not quasi cancellative nor left
cancellative nor right cancellative.

Proof. All conclusions are immediate except possibly the fact that (N,∨) is not
quasi cancellative. For this note that if n ∈ N and p ∈ N∗, then since n∨m = m
for all m > n, one has that n ∨ p = p.

The remaining three needed results all utilize some special constructions.

Theorem 3.5. There is a countably infinite semigroup which is left cancellative
and weakly right cancellative but is not quasi cancellative.

Proof. Let D = {sn : n ∈ N} ∪ {un : n ∈ N} ∪ {wn : n ∈ N} be an alphabet
of distinct letters. Let S be the set of words over D that do not have any
occurrences of skum with k ≤ m. Given α, δ ∈ S, let α · δ = α_δ, the ordinary
concatenation of words, unless there exist γ, µ ∈ S ∪ {∅} and k ≤ m in N such
that α = γsk and δ = umµ in which case α · δ = γwmµ.

It is routine to verify that the operation is associative, S is left cancellative,
and S is weakly right cancellative.

To complete the proof, choose w ∈ S∗ with {un : n ∈ N} ∈ w. Given k < n
in N, λsk and λsn agree on {um : m ≥ n} so sk · w = sn · w.

Theorem 3.6. There is a countably infinite semigroup which is right cancella-
tive and weakly left cancellative but does not satisfy statement B.

Proof. Let D = {s} ∪ {xl,t : l, t ∈ N and l ≤ t} ∪ {yt : t ∈ N} be an alphabet
of distinct letters. Let S be the set of words over D that do not have any
occurrences of sxl,t with l ≤ t. Given α, δ ∈ S, let α · δ = α_δ unless there
exist γ, µ ∈ S ∪{∅} and l ≤ t in N such that α = γs and δ = xl,tµ in which case
α · δ = γytµ.

It is routine to verify that the operation is associative, S is right cancellative,
and S is weakly left cancellative. To see that S does not satisfy statement B,
note that if t ∈ N, then |{x ∈ S : s · x = yt}| = t.
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Theorem 3.7. There is a countably infinite semigroup which is right cancella-
tive but not quasi cancellative.

Proof. Let S be the semigroup of [7, Example 8.3]. That is, S = {f : f is
an injective function from N to N and there exist m, r ∈ N such that (∀n ≥
m)(f(n) = 2rn)}. For f, g ∈ S, define f ∗ g = g ◦ f . It is routine to verify that
(S, ◦) is countable and left cancellative, so that (S, ∗) is right cancellative.

For i ∈ N, define gi ∈ T by gi(1) = 2i − 1 and for n > 1, gi(n) = 2n. To
complete the proof we shall need the following lemma.

Lemma 3.8. For every finite partition F of S and every m ∈ N, there exists
A ∈ F such that

⋂m
i=1A ◦ gi 6= ∅.

Proof. Let a finite partition F of S and m ∈ N be given. Let

E = {k ∈ S : k(1) < k(3) < . . . < k(2m− 1) and
(∀i ∈ {1, 3, . . . , 2m− 1})(k(i) is odd) and
(∀n ∈ N \ {1, 3, 5, . . . , 2m− 1})(k(n) = 2n)} .

Given D ∈ [2N − 1]m, define ψ(D) = k ∈ E as follows. List the elements
of D in order as {a1, a2, . . . , am}. For i ∈ {1, 2, . . . ,m}, let k(2i − 1) = ai and
for n ∈ N \ {1, 3, 5, . . . , 2m − 1}, let k(n) = 2n. Define ϕ : [2N − 1]m → F
by ϕ(D) = A if and only if ψ(D) ∈ A. By Ramsey’s Theorem there exists an
infinite subset X of 2N− 1 such that ϕ is constant on [X]m. Pick C ∈ [X]2m−1

and A ∈ F such that for all D ∈ [C]m, ϕ(D) = A.
List the elements of C in order as {a1, a2, . . . , a2m−1}. For i ∈ {1, 2, . . . ,

m}, let km−i+1 = ψ({ai, ai+1, . . . , ai+m−1}). So for i, j ∈ {1, 2, . . . ,m},
km−i+1(2j−1) = ai+j−1 and ki(2j−1) = am−i+j . Further, each ki ∈ A. Define
h ∈ S by h(1) = am and for n > 1, h(n) = 4n, Then for each i ∈ {1, 2, . . . ,m},
h = ki ◦ gi so h ∈

⋂m
i=1A ◦ gi as required.

By Lemma 3.8 and [7, Theorem 5.7], for each m ∈ N, pick pm ∈ βS such
that for each A ∈ pm,

⋂m
i=1A ◦ gi 6= ∅. Let w be a cluster point in βS of the

sequence 〈pm〉∞m=1. Let z = g1 ∗w, We shall show that for all j ∈ N, z = gj ∗w,
which will establish that (S, ∗) is not quasi cancellative. Suppose instead we
have some j ∈ N such that gj ∗ w 6= z. Pick B ∈ z such that S \ B ∈ qj ∗ w.

Pick C ∈ w such that g1 ∗ C ⊆ B and gj ∗ C ⊆ S \B. Pick m > j such that
pm ∈ C. Pick k1, kj ∈ C such that k1 ◦ g1 = kj ◦ gj . Then g1 ∗ k1 = k1 ◦ g1 ∈ B
while gj ∗ kj = kj ◦ gj ∈ S \B, a contradiction.

We leave it to the reader to verify that, with the one noted exception, none
of the missing implications in Figure 1 are valid. For example, to see that quasi
cancellative does not imply left cancellative use either Theorem 3.4(d) or Theo-
rem 3.4(b) and to see that quasi cancellative does not imply right cancellative,
use Theorem 3.4(c).
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