
This paper was published in J. Comb. Theory (Series A) 120 (2013), 1235-1245.

To the best of my knowledge this is the final version as it was submitted to the publisher. –NH

On additive properties of sets defined by the Thue-Morse word

Michelangelo Buccia, Neil Hindmanb,1, Svetlana Puzyninaa,c,2, Luca Q. Zambonia,d,3

aDepartment of Mathematics and Statistics & FUNDIM, University of Turku, Finland.
bDepartment of Mathematics, Howard University, USA.

cSobolev Institute of Mathematics, Russia.
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Abstract

In this paper we study some additive properties of subsets of the set N of positive integers: A subset A of N

is called k-summable (where k ∈ N) if A contains
{
∑

n∈F xn | ∅ 6= F ⊆ {1, 2, . . . , k}
}

for some k-term

sequence of natural numbers 〈xt〉
k
t=1 satisfying uniqueness of finite sums. We say A ⊆ N is finite FS-big

if A is k-summable for each positive integer k. We say is A ⊆ N is infinite FS-big if for each positive

integer k, A contains {
∑

n∈F xn | ∅ 6= F ⊆ N and #F ≤ k} for some infinite sequence of natural numbers

〈xt〉
∞
t=1 satisfying uniqueness of finite sums. We say A ⊆ N is an IP-set if A contains {

∑

n∈F xn | ∅ 6=
F ⊆ N and #F <∞} for some infinite sequence of natural numbers 〈xt〉

∞
t=1. By the Finite Sums Theorem

[5], the collection of all IP-sets is partition regular, i.e., if A is an IP-set then for any finite partition of

A, one cell of the partition is an IP-set. Here we prove that the collection of all finite FS-big sets is also

partition regular. Let T = 011010011001011010010110011010 . . . denote the Thue-Morse word fixed by

the morphism 0 7→ 01 and 1 7→ 10. For each factor u of T we consider the set T
∣

∣

u
⊆ N of all occurrences of

u in T. In this note we characterize the sets T
∣

∣

u
in terms of the additive properties defined above. Using the

Thue-Morse word we show that the collection of all infinite FS-big sets is not partition regular.
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1. Introduction

A fundamental result in Ramsey theory, originally due to Issai Schur [12], states that given a finite

partition of the natural numbers N, one cell of the partition contains two points x, y and their sum x+ y. An

extension of Schur’s Theorem, which we will call the finite Finite Sums Theorem states that whenever N is

finitely partitioned, there exist arbitrarily large sets of numbers all of whose sums belong to the same element

of the partition. The finite Finite Sums Theorem is an easy consequence of Rado’s Theorem [10]. Given a

finite sequence 〈xt〉
k
t=1 or an infinite sequence 〈xt〉

∞
t=1 in N we say that the sequence satisfies uniqueness of

finite sums provided that whenever F and H are finite nonempty subsets of the domain of the the sequence

and
∑

t∈F xt =
∑

t∈H xt, one must have F = H . For k a positive integer, we say that a subset A of N
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is k-summable, if A contains all finite sums of distinct terms of some k-term sequence 〈xn〉
k
n=1 of natural

numbers satisfying uniqueness of finite sums. We say that A ⊆ N is k∞-summable if there exists an infinite

sequence 〈xn〉
∞
n=1 of natural numbers satisfying uniqueness of finite sums such that A contains all sums of at

most k distinct terms of 〈xn〉
∞
n=1. As a consequence of the (infinite) Finite Sums Theorem, given any finite

partition of N, one element of the partition is k∞-summable.

In this paper we consider three different families of subsets of N each characterized by an additive

property which may be regarded as an extension of the finite Finite Sums Theorem: finite FS-big, infinite

FS-big, and IP-sets. A subset A of N is called finite FS-big if it is k-summable for every positive integer k.

A subset A of N is called infinite FS-big if it is k∞-summable for every positive integer k. A subset A of N

is called an IP-set if A contains all finite sums of distinct terms of some infinite sequence 〈xn〉
∞
n=1 of natural

numbers.

A collection of sets S is said to be partition regular if for each A ∈ S, whenever A is partitioned into

finitely many sets, at least one set of the partition is in S. By the Finite Sums Theorem, the collection of all

IP-sets is partition regular. Other examples of partition regular families are sets having positive upper density,

and sets having arbitrarily long arithmetic progressions. (This latter fact is an almost immediate consequence

of van der Waerden’s Theorem [15]. Assume A ⊆ N contains arbitrarily long arithmetic progressions. Let

k, r ∈ N, and let A =
⋃r

i=1 Ci. By van der Waerden’s Theorem pick n such that whenever {1, 2, . . . , n} is

partitioned into r classes, one class contains a length k arithmetic progression. Pick a and d in N such that

{a+ d, a+ 2d, . . . , a+ nd} ⊆ A. For i ∈ {1, . . . , r} let Bi = {t ∈ {1, 2, . . . , n} | a+ td ∈ Ci}. Pick i, b,
and c such that {b+ c, b+2c, . . . , b+kc} ⊆ Bi. Then {a+ bd+ cd, a+ bd+2cd, . . . , a+ bd+kcd} ⊆ Ci.)

We shall show in Section 2 that the collection of all finite FS-big subsets of N is partition regular (see

Theorem 2.3). In contrast, for any fixed value of k, the property of being k-summable or k∞-summable is

not partition regular. For example, the set A = {n ∈ N |n 6≡ 0 mod 3} is clearly 2∞-summable. On the

other hand A = A1 ∪ A2 where A1 = {n ∈ N |n ≡ 1 mod 3} and A2 = {n ∈ N |n ≡ 2 mod 3}, and

neither Ai is 2-summable. Nevertheless, for each fixed k we could consider the set

R∞(k) = {A ⊆ N |whenever r ∈ N and A =
r
⋃

i=0

Ai, ∃ 0 ≤ i ≤ r such thatAi is k∞-summable}

Then each R∞(k) is non-empty. In fact every IP-set belongs to R∞(k). It is a difficult open question of

Imre Leader’s [3, Question 8.1] whether there is any member of R∞(2) which is not an IP-set. In general,

the question of determining whether a given subset A ⊆ N is in R∞(k) or is an IP-set is typically quite

difficult, even if for every A, either A or its complement belongs to R∞(k) or is an IP-set.

In this note we focus on setsAwhich are defined in terms of the binary expansions of its elements. In this

respect it is natural to consider the Thue-Morse infinite word T = t0t1t2t3 . . . ∈ {0, 1}ω where tn is defined

as the sum modulo 2 of the digits in the binary expansion of n. The Thue-Morse word is 2-automatic [2]:

In fact tn is computed by feeding the binary expansion of n in the deterministic finite automata depicted in

Figure 1. Starting from the initial state labeled 0, we read the binary expansion of n starting from the most

significant digit. Then tn is the corresponding terminal state. For example, the binary representation of 13 is

1101 and the path 1101 starting at 0 terminates at vertex 1. Whence t13 = 1.

00 1 0

1

1

Figure 1: The Thue-Morse automaton

The origins of T go back to the beginning of the last century with the works of the Norwegian mathe-

matician Axel Thue [13, 14]. Thue noted that every binary word of length four contains a square, that is two
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consecutive equal blocks XX. He then asked whether it was possible to find an infinite word on 3 distinct

symbols which avoided squares. He also asked whether there exists an infinite binary word without cubes,

that is with no three consecutive equal blocks. Thue showed that in each case the answer is positive and

constructed this very special infinite word T to produce the desired words. In fact the word T contains no

fractional power greater than 2, i.e., contains no word of the form XXX ′ where X ′ is a prefix of X. Thue’s

work originally appeared in an obscure Norwegian journal and for many years remained largely unknown

and unappreciated.

A few years later in the 1920s, Marston Morse and Gustav Hedlund [8, 9] were pioneering a new branch

of mathematics known as Symbolic Dynamics, inspired by the study of various classical dynamical systems

dating back to Newton. The basic idea of symbolic dynamics consists in dividing up the set of possible states

into a finite number of pieces. By discretizing both space and time, one could model a dynamical system

(X,T ) by a space consisting of infinite words of abstract symbols, each symbol corresponding to a state of

the system, and a shift operator corresponding to the dynamics. Thus from this point of view, the orbits of

motion are described as symbolic trajectories or flows. A periodic orbit would give rise to a periodic infinite

word, while an aperiodic orbit would correspond to an aperiodic infinite word.

Curiously enough, these foundational works of Morse and Hedlund exhibited strong ties with the earlier

work of Thue. This connection stems through the use of infinite words to describe infinite geodesic curves

on a surface of negative curvature. And so, the word T originally defined by Thue to study combinatorial

properties of words was rediscovered in 1921 by Morse [7] in connection with differential geometry. He

proved that every surface of negative curvature having at least two normal segments, admits a continuum of

recurrent aperiodic geodesics.

An alternative definition of the Thue-Morse word which will be useful to us is in terms of the morphism

τ : {0, 1} → {0, 1}∗ given by 0 7→ 01 and 1 7→ 10. More precisely, iterating τ on the symbol 0 gives

0 7→ 01 7→ 0110 7→ 01101001 7→ 0110100110010110 7→ · · · .

In general, τn+1(0) = τn(0)τn(0) where τn(0) is obtained from τn(0) by exchanging 0’s and 1’s. In

particular, since τn(0) is a prefix of τn+1(0), the sequence (τn(0))n≥0 tends in the limit to the infinite word

T = 0110100110010110100101100110100110010110 . . .

For more background and information on the Thue-Morse word we refer the reader to [1] or [2].

Let T denote the word obtained from T by exchange of 0’s and 1’s, i.e., T is the fixed point of the Thue-

Morse morphism beginning in 1. We consider subsets of N defined by the Thue-Morse word via occurrences

of its factors. More precisely, writing T = t0t1t2 . . . with ti ∈ {0, 1}, for each factor u of T we set

T
∣

∣

u
= {n ∈ N | tntn+1 . . . tn+|u|−1 = u}.

In other words, T
∣

∣

u
denotes the set of all occurrences of u in T. The main result of this note is to obtain a full

characterization of each of the sets T
∣

∣

u
in terms of the three additive properties defined above. We show that

factors of the Thue-Morse word can be split into three classes: one corresponding to factors u for which T
∣

∣

u
is an IP-set; these factors are precisely all prefixes of T. The second class consists of all factors u such that

T
∣

∣

u
is infinite FS-big but not an IP-set; this corresponds to all prefixes of T. Finally, for all remaining factors

u of T, the set T
∣

∣

u
is not 3-summable, and in some cases not even 2-summable (see Theorem 3.1). We also

show that the set T
∣

∣

1
may be partitioned into two cells neither of which is 2∞-summable (see Lemma 3.3).

Thus, the collection of all infinite FS-big sets is not partition regular (see Corollary 3.5). As pointed out to us

by the referees of this paper, this latter point may be proved independently of the Thue-Morse word (either

directly using the binary representation of digits without reference to T, or via other digital representations

of the integers). Our use of T is merely one of convenience as it provides a uniform framework on which to

investigate the various additive properties defined above.
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We conclude this introduction with some notation that we will be using. We denote the set of all k-summable

subsets of N by Σk and the set of all finite FS-big subsets of N by Σ. Thus, Σ =
⋂

k≥1Σk. We denote the

set of all k∞-summable sets by Σ∞
k and the set of all infinite FS-big sets by Σ∞ so that Σ∞ =

⋂

k≥1Σ
∞
k . It

is immediate that Σ∞
k+1 ⊆ Σ∞

k and Σ∞
k ⊆ Σk.

We have seen that {n ∈ N |n 6≡ 0 mod 3} ∈ Σ∞
2 \ Σ3. More generally, for each k > 2 we have that

{n ∈ N |n 6≡ 0 mod k} ∈ Σ∞
k−1 \ Σk. This follows immediately from the following simple lemma which is

likely a well known fact but the authors were unable to find it in the literature. We thus include a proof here

for the sake of completeness.

Lemma 1.1. Given any set S of k nonnegative integers, some subset L of S sums up to 0 modulo k, i.e.,
∑

x∈L x ≡ 0 mod k for some L ⊆ S.

Proof. Equivalently, given a k-term sequence 〈xi〉
k
i=1 in the cyclic group Zk of order k, we will show that

some subsequence sums up to 0. To see this, for each 0 ≤ i ≤ k, define sets Ci ⊆ Zk recursively as follows:

C0 = {0} and for i ≥ 0, set Ci+1 = Ci

⋃

(Ci + xi+1), in other words

Ci+1 = {0}
⋃

{
∑

i∈F

xi |F ⊆ {1, 2 . . . , i+ 1}}.

We claim that 0 ∈ Ci + xi+1 for some 0 ≤ i ≤ k − 1, i.e., some subsequence of 〈xj〉
k
j=1 sums to 0. In fact,

for each 0 ≤ i ≤ k−1, if 0 /∈ Ci+xi+1 then #Ci+1 > #Ci (since 0 ∈ Ci). Thus if for every 0 ≤ i ≤ k−1
we had that 0 /∈ Ci + xi+1, then #Ck ≥ k +#C0 = k + 1, a contradiction (since Ck ⊆ Zk).

Acknowledgements: The authors would like to express their gratitude to the two referees of this paper. In

particular one of the referees suggested a simplification to the proof of item (1) of Theorem 3.1 which we

decided to use, as well as an alternative simple but clever proof that the collection of all infinite FS-big sets

is not partition regular which we included as one of two proofs of Corollary 3.5.

2. Finite FS-big sets

In this section we prove that the collection of all finite FS-big sets is partition regular (see Theorem 2.3

below). Surprisingly the authors were unable to find a proof of this fact in the existing literature. Thus we

take this opportunity to present two different derivations: Our first proof is a straightforward application of

the so-called finite Finite Unions Theorem (see Theorem 2.2 below) and is by now quite routine to experts in

Ramsey theory. Our second proof uses a clever argument suggested to us by Imre Leader which establishes

Theorem 2.2 using only the finite Finite Sums Theorem (Theorem 2.4 ) and Ramsey’s Theorem [11].

Throughout this section we will use the notation Fin(A) for the set of all non-empty finite subsets of A
and let FS(〈xt〉t∈A) = {

∑

t∈F xt |F ∈ Fin(A)}.

We first observe that we had some choices to make when we defined k-summable. That is, we could

have defined A to be k-summable1 if there is a sequence 〈xt〉
k
t=1 such that FS(〈xt〉

k
t=1) ⊆ A; we could have

defined A to be k-summable2 if there is an increasing sequence 〈xt〉
k
t=1 such that FS(〈xt〉

k
t=1) ⊆ A; and

we could have defined A to be k-summable3 if there is a sequence 〈xt〉
k
t=1 satisfying uniqueness of finite

sums such that FS(〈xt〉
k
t=1) ⊆ A. (We actually chose k-summable3 because it generalizes most naturally to

arbitrary semigroups as in Theorem 2.3.) These notions are progressively strictly stronger. For example if

k > 1, {1, 2, . . . , k} is k-summable1 but not k-summable2. And if k > 1, {1, 2, . . . , k
2+k
2 } is k-summable2

but not k-summable3. However, for the notion of finite FS-big subsets of N, it does not matter which choice

was made for k-summable. The reason is that for each k there is some m such that if A is an m-summable1
subset of N, then A is k-summable2. Similarly, for each k there is some m such that if A is an m-summable2
subset of N, then A is k-summable3.
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The main key for proving that finite FS-big sets are partition regular is the finite Finite Unions Theorem.

The first proof that we will present, and much the simpler of the two, uses a standard compactness argument

and the infinite Finite Unions Theorem.

Theorem 2.1 (Infinite Finite Unions Theorem). Let r ∈ N. If Fin(N) =
⋃r

i=1 Fi, then there exist i ∈
{1, 2, . . . , r} and a sequence 〈Ft〉

∞
t=1 in Fin(N) such that for each t ∈ N, maxFt < minFt+1 and for each

H ∈ Fin(N),
⋃

t∈H Ft ∈ Fi.

Proof. This is actually stated in [5]. A much easier proof is in [6, Corollary 5.17]. It is an immediate

corollary of the (infinite) Finite Sums Theorem, because, given any sequence 〈xt〉
∞
t=1 in N one may choose

a sequence 〈Fn〉
∞
n=1 in Fin(N) such that for each n ∈ N, maxFn < minFn+1 and for each n and l in N, if

2l ≤
∑

t∈Fn
xt, then 2l+1 divides

∑

t∈Fn+1
xt. (That is, the maximum of the binary support of

∑

t∈Fn
xt is

less than the minimum of the binary support of
∑

t∈Fn+1
xt.)

Theorem 2.2 (Finite Finite Unions Theorem). Let r, k ∈ N. There is some m ∈ N such that whenever

Fin({1, 2, . . . ,m}) =
⋃r

i=1 Fi, there exist i ∈ {1, 2, . . . , r} and a sequence 〈Ft〉
k
t=1 in Fin({1, 2, . . . ,m})

such that for each t ∈ {1, 2, . . . , k − 1}, if any, maxFt < minFt+1 and for each H ∈ Fin({1, 2, . . . , k}),
⋃

t∈H Ft ∈ Fi.

Proof. Suppose not. For each m ∈ N pick a function ψm : Fin({1, 2, . . . ,m}) → {1, 2, . . . , r} with

the property that there do not exist i ∈ {1, 2, . . . , r} and a sequence 〈Ft〉
k
t=1 in Fin({1, 2, . . . ,m}) such

that for each t ∈ {1, 2, . . . , k − 1}, if any, maxFt < minFt+1 and for each H ∈ Fin({1, 2, . . . , k}),
ψm(

⋃

t∈H Ft) = i. Define σm : Fin(N) → {1, 2, . . . , r} by σm(F ) = ψm(F ) if F ⊆ {1, 2, . . . ,m} and

σm(F ) = 1 otherwise.

Give {1, 2, . . . , r} the discrete topology and letX =×F∈Fin(N){1, 2, . . . , r} with the product topology.

ThenX is compact and 〈σm〉∞m=1 is a sequence inX so pick a cluster point ϕ of 〈σm〉∞m=1. Pick by Theorem

2.1, i ∈ {1, 2, . . . , r} and a sequence 〈Ft〉
∞
t=1 in Fin(N) such that for each t ∈ N, maxFt < minFt+1 and

for each H ∈ Fin(N), ϕ(
⋃

t∈H Ft) = i. Let

U =
{

µ ∈ X |µ(Fi) = ϕ(Fi) for all i ∈ {1, 2, . . . , k}
}

.

Then U is a neighborhood of ϕ in X so pick m > maxFk such that σm ∈ U . Then for each H ∈
Fin({1, 2, . . . , k}), ψm(

⋃

t∈H Ft) = σm(
⋃

t∈H Ft) = ϕ(
⋃

t∈H Ft) = i, a contradiction.

The definition of FS-big makes sense in an arbitrary semigroup (S,+). (Even though we are writing

the semigroup additively, we are not assuming commutativity, so we need to specify that the sums are taken

in increasing order of indices.) The reader should be cautioned that an arbitrary semigroup might have no

nontrivial sequences satisfying uniqueness of finite sums, in which case Σ = ∅. However, if S is cancellative,

then by [6, Lemma 6.31], any infinite subset of S contains a sequence satisfying uniqueness of finite products.

Theorem 2.3. Let (S,+) be a semigroup. The collection Σ of all finite FS-big subsets of S is partition

regular.

Proof. Suppose A ⊆ S is finite FS-big and A =
⋃r

i=1Bi for some r ∈ N. Let k ∈ N. We shall show

that there are some i ∈ {1, 2, . . . , r} and some 〈xt〉
k
t=1 satisfying uniqueness of finite sums such that

FS(〈xt〉
k
t=1) ⊆ Bi. By the pigeon hole principle, there is thus one i which contains such a set for arbi-

trarily large k, and thus for all k.

By Theorem 2.2 pick m ∈ N such that whenever Fin({1, 2, . . . ,m}) =
⋃r

i=1 Fi, then there exist i ∈
{1, 2, . . . , r} and a sequence 〈Ft〉

k
t=1 in Fin({1, 2, . . . ,m}) such that for each t ∈ {1, 2, . . . , k − 1}, if any,

maxFt < minFt+1 and for each H ∈ Fin({1, 2, . . . , k}),
⋃

t∈H Ft ∈ Fi. Since A is finite FS-big we

may pick 〈yt〉
m
t=1 satisfying uniqueness of finite sums with FS(〈yt〉

m
t=1) ⊆ A. For each i ∈ {1, 2, . . . , r}
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let Fi = {H ∈ Fin({1, 2, . . . ,m}) |
∑

t∈H yt ∈ Bi}. Pick i ∈ {1, 2, . . . , r} and a sequence 〈Ft〉
k
t=1

in Fin({1, 2, . . . ,m}) such that for each t ∈ {1, 2, . . . , k − 1}, if any, maxFt < minFt+1 and for each

H ∈ Fin({1, 2, . . . , k}),
⋃

t∈H Ft ∈ Fi. For n ∈ {1, 2, . . . , k} let xn =
∑

t∈Fn
yt. Then since maxFt <

minFt+1 when t < k, if H ∈ Fin({1, 2, . . . , k}) and K =
⋃

n∈H Fn, then
∑

n∈H xn =
∑

t∈K yt ∈
Bi. Further it is an easy exercise to show that, since 〈yt〉

m
t=1 satisfies uniqueness of finite sums, so does

〈xt〉
k
t=1.

Notice that, since we did the above proof for an arbitrary semigroup, it would not be good enough to

have Ft ∩ Fl = ∅ when t 6= l. For example, if F1 = {1, 3}, F2 = {2}, H = {1, 2}, and K =
⋃

n∈H Fn,

then K = {1, 2, 3}. Thus
∑

n∈H xn = y1 + y3 + y2 which need not equal y1 + y2 + y3 =
∑

t∈K yt.
As we remarked earlier, the finite Finite Sums Theorem, (sometimes called Folkman’s Theorem), has

been known, or at least easily knowable, since the proof of Rado’s Theorem [10] was published in 1933.

Theorem 2.4 (Finite Finite Sums Theorem). Let k, r ∈ N. There exists m ∈ N such that whenever

{1, 2, . . . ,m} =
⋃r

i=1Bi, there exist i ∈ {1, 2, . . . , r} and a sequence 〈xt〉
k
t=1 such that FS(〈xt〉

k
t=1) ⊆ Bi.

Proof. This is an easy consequence of Rado’s Theorem. See [6, Exercise 15.3.1].

While it is immediate that Theorem 2.2 implies Theorem 2.4 (by means of the binary support of integers),

it is by no means obvious that one can derive Theorem 2.2 from Theorem 2.4. We are grateful to Imre Leader

for providing an argument which establishes Theorem 2.2 using only Theorem 2.4 and Ramsey’s Theorem

[11].

Lemma 2.5. Let k, r, s ∈ N with k ≤ s. There exists m ∈ N such that whenever A is a set with #A = m,

and Fin(A) =
⋃r

i=1 Fi, there exist ϕ : {1, 2, . . . , k} → {1, 2, . . . , r} and B ⊆ A with #B = s such that

for all C ∈ Fin(B), if t = #C and t ≤ k, then C ∈ Fϕ(t).

Proof. We proceed by induction on k (for all r and all s ≥ k). For k = 1 the conclusion is an immediate

consequence of the pigeon hole principle.

Now assume that the lemma holds for k. Let r, s ∈ N be given with s ≥ k + 1. By Ramsey’s Theorem

pick n ∈ N such that if #D = n and {C ⊆ D |#C = k + 1} ⊆
⋃r

i=1 Fi, then there exist i ∈ {1, 2, . . . , r}
and B ⊆ D such that #B = s and {C ⊆ B |#C = k + 1} ⊆ Fi.

Pick m as guaranteed by the induction hypothesis for k, r, and n (with n replacing s) and let #A = m.

Assume that Fin(A) =
⋃r

i=1Fi. Pick ϕ : {1, 2, . . . , k} → {1, 2, . . . , r} and D ⊆ A with #D = n such that

for all C ∈ Fin(D), if t = #C and t ≤ k, then C ∈ Fϕ(t). Then {C ⊆ D |#C = k + 1} ⊆
⋃r

i=1Fi, so

pick ϕ(k+1) ∈ {1, 2, . . . , r} and B ⊆ D such that #B = s and {C ⊆ B |#C = k+1} ⊆ Fϕ(k+1).

Second proof of Theorem 2.2 Let k, r ∈ N and pick by Theorem 2.4 s ∈ N such that whenever

{1, 2, . . . , s} =
⋃r

i=1Ci, there exist x1, x2, . . . , xk and i ∈ {1, 2, . . . , r} such that FS(〈xt〉
k
t=1) ⊆ Ci.

Let k′ = s and pick m as guaranteed by Lemma 2.5 for r, k′, and s. Let Fin({1, 2, . . . ,m}) =
⋃r

i=1Fi.

Pick ϕ : {1, 2, . . . , s} → {1, 2, . . . , r} and B ⊆ {1, 2, . . . ,m} with #B = s such that for all C ∈ Fin(B), if

t = #C and t ≤ s, then C ∈ Fϕ(t). Pick x1, x2, . . . , xk and i ∈ {1, 2, . . . , r} such that ϕ[FS(〈xt〉
k
t=1)] =

{i}. Pick 〈Ft〉
k
t=1 with maxFt < minFt+1 for all t < k such that #Ft = xt, which one can do since

∑k
t=1 xt ≤ s.

3. Sets defined by the Thue-Morse word

In this section we define a class of subsets of N defined by the occurrences of factors in the Thue-Morse

word.

Theorem 3.1. Let u be a factor of the Thue-Morse word T = 011010011001011010 . . .. Then

6



1. If u is a prefix of T then T
∣

∣

u
is an IP-set.

2. If u is a prefix of T then T
∣

∣

u
is infinite FS-big but is not an IP-set.

3. If u is neither a prefix of T nor a prefix of T then T
∣

∣

u
is not 3-summable. Moreover T

∣

∣

u
is 2-summable

if and only u is a prefix of τn(010) or of τn(101) for some n ≥ 0.

Before we begin with the proof of Theorem 3.1 we introduce some useful notation: For each positive

integer n we will denote the binary expansion of n by [n]2, i.e., if n = rk2
k + rk−12

k−1 + . . . + r02
0 with

rk = 1 and ri ∈ {0, 1} we write [n]2 = rkrk−1 . . . r0. We define the support of n, denote supp(n) by

supp(n) = {i ∈ {0, 1, . . . , k} | ri = 1}. For instance, supp(19) = {0, 1, 4}. Thus

tn = 0 ⇔ #supp(n) is even.

Finally, for each length n we denote by prefnT the prefix of T of length n.

Proof of Theorem 3.1, part 1. It follows from the definition of the Thue-Morse word T that if u = u1u2 . . . uk ∈
{0, 1}k is a factor of T, then m ∈ T

∣

∣

u
if and only if

#supp(m+ j) ≡ uj+1 mod 2

for each 0 ≤ j ≤ |u|− 1. Thus, if 2n > m+ |u|− 1 then #supp(2n+1+2n+m+ j) = 2+#supp(m+ j)
for each 0 ≤ j ≤ |u| − 1 from which it follows that 2n+1 + 2n +m ∈ T

∣

∣

u
. Hence if 0 ∈ T

∣

∣

u
(equivalently

if u is a prefix of T), then there is a sequence of positive integers of the form 2n + 2n+1 whose finite sums

are all in T
∣

∣

u
. Thus, T

∣

∣

u
is an IP-set. This completes the proof of 1.

We will need the following lemma in the proof of 2.:

Lemma 3.2. Let i, j, k and r be positive integers with r odd and j ≤ k − 2. If [r]2 = rjrj−1 . . . r0 then

#supp
(

r2i(2k − 1)
)

= k.

Proof. Since #supp
(

r2i(2k − 1)
)

= #supp
(

r(2k − 1)
)

it suffices to show that #supp
(

r(2k − 1)
)

= k.

We have that [r2k]2 = rlrl−1 . . . r00
k . Thus [r2k − 1]2 = rlrl−1 . . . r01

k−1.

Since l ≤ k − 2 we have

#supp
(

r(2k − 1)
)

= #supp(r2k − 1− r + 1) = #supp(r) + k − 1−#supp(r) + 1 = k

where the last +1 term comes from the fact that r0 = 1 since r is odd.

Proof of Theorem 3.1, part 2. We first note that those n’s for which #supp(n) is odd and [n]2 ends in 0l

correspond to occurrences of pref2lT.

Let u be a prefix of T and k a positive integer. To prove that Tu ∈ Σ∞
2k−1 consider the sequence 〈xn〉

∞
n=0

of numbers whose binary representation is given by

[xn]2 = 1102n+j12k−10l where j = ⌈log2(2k − 1)⌉ and l = ⌈log2 |u|⌉ .

Consider any r ≤ 2k − 1 distinct numbers xni
and consider their sum

r
∑

i=1

xni
=

r
∑

i=1

(22ni+2k−1+l+j + 22ni+2k+l+j) + r(22k−1 − 1)2l.

By Lemma 3.2 it follows that #supp(r(22k−1 − 1)2l) = 2k − 1 and hence that #supp(
∑r

i=1 xni
) =

2k − 1 + 2r. As this is an odd number, and [
∑r

i=1 xni
]2 ends in at least l = ⌈log2 |u|⌉ many 0’s, it follows

that
∑r

i=1 xni
is an occurrence of u.

Next we will prove that if u is a prefix of T then T
∣

∣

u
is not an IP-set. We will make use of the following

lemma:
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Lemma 3.3. There exists a partition of the set T
∣

∣

1
into two sets neither of which is in Σ∞

2 .

Proof. Consider the partition T
∣

∣

1
= A0∪A1 defined as follows: LetA0 be the set of all n ∈ T

∣

∣

1
such that the

min
(

supp(n)
)

is even, and let A1 be the set of all n ∈ T
∣

∣

1
such that the min

(

supp(n)
)

is odd. For instance,

25 = 24 + 23 + 20, and hence the least nonzero digit is in position 0, so 25 ∈ A0. We will show that neither

Ai is in Σ∞
2 . Fix i ∈ {0, 1} and suppose to the contrary that Ai is in Σ∞

2 , i.e., there is an infinite sequence

〈xn〉
∞
n=1 in Ai satisfying uniqueness of finite sums such that for every n 6= m we have xn + xm ∈ Ai.

Note first that for each n > 1 we have supp(xn) ∩ supp(x1) 6= ∅. Otherwise #supp(x1 + xn) would be

even. Therefore, there exists a positive constant M such that min
(

supp(xn)
)

≤ M for each n ∈ N. By

the pigeon hole principle there exists a positive integer r and an infinite subsequence xn1
, xn2

, . . . of the

sequence 〈xn〉
∞
n=1 such that min

(

supp(xnj
)
)

= r for each j ∈ N. Again by the pigeon hole principle there

exists infinitely many of the xnj
whose binary expansions also agree in position r + 1. Thus there exists

n 6= m such that min
(

supp(xn)
)

= min
(

supp(xm)
)

= r and such that r + 1 ∈ supp(xn) if and only if

r + 1 ∈ supp(xm). It is readily verified that min
(

supp(xn + xm)
)

= r + 1. Hence xn + xm ∈ A1−i.

Remark. It is not difficult to see that the sets A0 and A1 from the proof of Lemma 3.3 are both finite

FS-big. So they provide examples of sets which are finite FS-big but not 2∞-summable.

It follows from the above lemma that T
∣

∣

1
is not an IP-set. In fact, the property of being an IP-set is

partition regular, so for any finite partition of T
∣

∣

1
one element of the partition must be an IP-set and in

particular must be in Σ∞
2 . But this contradicts Lemma 3.3. Let u be a prefix of T. Since T

∣

∣

u
⊆ T

∣

∣

1
it

follows that T
∣

∣

u
is not an IP-set.

Proof of Theorem 3.1, part 3. We will make use of the following lemma:

Lemma 3.4. Let u be a factor of T which is neither a prefix of T nor a prefix of T. Then there exists a

nonnegative integer k such that one of the two following properties holds:

1. For each x ∈ T
∣

∣

u
, [x]2 ends in 10k .

2. For each x ∈ T
∣

∣

u
either [x]2 ends in 110k or in 10k+1 and both cases happen. Furthermore, u is a

prefix of τn(aba) for some nonnegative integer n, with a, b distinct letters.

Proof. Let u be a factor of T which is neither a prefix of T nor a prefix of T and let {a, b} = {0, 1}. If x is

an occurrence of aa, then the #supp(x) and #supp(x + 1) have the same parity, and hence [x]2 ends in 1
and the statement is verified for all factors beginning with aa.

We can then assume that u begins with ab and we will proceed by induction on |u|. Clearly the shortest

such u is of the kind aba. Then for each x ∈ Tu, the number of 1’s in the binary expansion of x and of x+2
have the same parity. It follows that [x]2 must end in 10 or 11 (and in fact it is easily verified that both are

possible). Thus the result of the lemma is verified with k = 0.

Next suppose |u| = N ≥ 4 and that the claim is true for all factors u of length smaller than N . If u
begins in aba, then T

∣

∣

u
⊆ T

∣

∣

aba
and hence, as we have just seen if x ∈ T

∣

∣

u
we have that [x]2 must end in

either 11 or 10. Otherwise u must begin in either 0110 or 1001. In this case, let v denote the longest prefix

of u which is either a prefix of T or of T. Then we can write u = vaλ where v begins in either 0110 or

1001, a ∈ {0, 1} and v ∈ {0, 1}∗. Since both v0 and v1 are factors of T it follows that v = τ(v′) for some

v′ strictly shorter than v such that v′ begins in 01 or 10, and v′a is a factor of T which is neither a prefix of

T nor of T. By the induction hypothesis we deduce that there exists a k such that for all x′ ∈ T
∣

∣

v′a
we have

that [x′]2 ends in either 110k or in 10k+1. Moreover, since every occurrence of va in T (and hence of u) is

the image of τ of an occurrence in T of v′a it follows that if x ∈ T
∣

∣

u
then x = 2x′ for some x′ ∈ T

∣

∣

v′a
.

Whence [x]2 ends in either 110k+1 or in 10k+2. We have thus proved that if u is neither a prefix of T nor of

T and u begins in ab, then there exists a k such that for any x ∈ T
∣

∣

u
either [x]2 ends in 110k or in 10k+1. If
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only one of these cases occurs, then clearly property 1 holds and we are done. Assume then that both cases

occur, we need to prove that u is a prefix of τn(aba) for some nonnegative integer n (i. e. that we are in

case 2). It is not difficult to prove (given the definition of τ ) that every factor of T of length at least 4 either

appears only in odd positions or only in even positions. Since we are assuming that there exist x, y ∈ T
∣

∣

u

such that [x]2 ends in 110k and [y]2 ends in 10k+1, it must be k > 0 and u occurs only in even positions.

Again from the definition of τ , it is easy to see that if |u| is odd, then there exists a unique letter c such that

every occurrence of u is followed by c. Hence there exists a unique α ∈ {0, 1, ε} such that |uα| is even and

T
∣

∣

u
= T

∣

∣

uα
. From the uniformity of τ , since uα is a factor of T of even length which appears only in even

positions, there exists u′ shorter than u such that τ(u′) = uα and T
∣

∣

uα
= {2x, x ∈ T

∣

∣

u′
}. Hence, for each

x ∈ T
∣

∣

u′
either [x]2 ends in 110k−1 or in 10k and both cases actually happen, thus, by induction hypothesis,

u′ is a prefix of τn(aba) for some n and u is a thus a prefix of τn+1(aba).

We are now able to easily prove item 3. of our main theorem. First of all, let us observe that it is readily

verified that {3, 15, 18} ⊆ T
∣

∣

010
and {35, 47, 82} ⊆ T

∣

∣

101
and hence {2n ·3, 2n ·15, 2n ·18} ⊆ T

∣

∣

τn(010)
and

{2n · 35, 2n · 47, 2n · 82} ⊆ T
∣

∣

τn(101)
which proves that if aba ∈ {010, 101}, then T

∣

∣

τn(aba)
are 2-summable

for every nonnegative integer n. Clearly then, if u is a prefix of some τn(aba), T
∣

∣

u
is 2- summable as well.

Let u be a factor of T. In case point 1 of the preceding lemma holds, we have that there exists a

nonnegative integer k such that each x ∈ T
∣

∣

u
ends 10k . But then for any x, y ∈ T

∣

∣

u
, it follows that [x+ y]2

ends in 0k+1 and hence x+ y /∈ T
∣

∣

u
.

Thanks to point 2 of the preceding lemma we have thus proved that T
∣

∣

u
is 2-summable if and only if

u is a prefix of τn(aba) for some n and a, b distinct letters (considering that prefixes of T and of T are as

well prefixes of τn(aba)). We are left to prove that if u is neither a prefix T nor a prefix of T, then T
∣

∣

u
is

not 3-summable. Of course, the statement is trivial if T
∣

∣

u
is not 2-summable, so, as observed before, we can

assume that point 2 of Lemma 3.4 holds, that is there exists k such that [x]2 ends in 100k or 110k for each

x ∈ Tu and both cases happen. Consider three points x, y, z ∈ T
∣

∣

u
. If [x]2 ends in 100k , then [x+ y]2 ends

in 000k or 010k; in either way it follows that x + y /∈ T
∣

∣

u
. On the other hand if [x]2 and [y]2 both end in

110k , then [x+ y]2 ends in 100k and hence as above it follows that x+ y + z /∈ T
∣

∣

u
. It follows that T

∣

∣

u
is

not 3-summable, and the statement is complete.

Remark. We proved part 1 of Theorem 3.1 directly using the numeration system, though it actually follows

from parts 2, 3, and the Finite Sums Theorem [5].

As a corollary of Theorem 3.1 2. and Lemma 3.3 we obtain:

Corollary 3.5. Σ∞ is not partition regular, i.e., there exists a set A ⊆ N which is infinite FS-big and a

partition of A = A0 ∪A1 such that neither Ai is 2∞-summable.

One of the two referees suggested the following alternative proof of Corollary 3.5. For each positive

integer n, let supp3(n) denote the support of the ternary expansion of n. Let D = FS(〈3n〉n∈N). We note

that for any m,n ∈ D, if m+ n ∈ D then supp3(m) ∩ supp3(n) = ∅. Let (Ei)
∞
i=1 be a partition of N into

infinite disjoint sets. For each i ∈ N set

Di = {n ∈ D : supp3(n) ⊆ Ei and #supp3(n) ≤ i}

and put A =
⋃∞

i=1Di. Then clearly A ∈ Σ∞. However, let B0 and B1 be a partition of N so that no two

integers in N of the form x and 2x are both in B0 or both in B1. For i ∈ {0, 1}, put

Ai = {n ∈ A : #supp3(n) ∈ Bi}.
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It is clear we cannot have x, y ∈ Ai satisfying x + y ∈ Ai and #supp3(x) = #supp3(y). Thus Ai is not

2∞-summable.

We next derive two additional consequences of Theorem 3.1. For this purpose, we recall some termi-

nology which will be needed. Let A be a finite non-empty set, and let Aω denote the set of all right infinite

words (xn)n∈N with xn ∈ A. We endow A
ω with the topology generated by the metric

d(x, y) =
1

2n
where n = min{k : xk 6= yk}

whenever x = (xn)n∈N and y = (yn)n∈N are two elements of Aω. (This is also the product topology when

A has the discrete topology.) Let T : Aω → A
ω denote the shift transformation defined by T : (xn)n∈N 7→

(xn+1)n∈N. A point x ∈ X is said to be uniformly recurrent in X if for every neighborhood V of x the set

{n |T n(x) ∈ V } is syndetic, i.e., of bounded gap. Two points x, y ∈ A
ω are said to be proximal if for every

ǫ > 0 there exists n ∈ N such that d(T n(x), T n(y)) < ǫ.
Let X be a closed and T -invariant subset of Aω; the pair (X,T ) is called a subshift of Aω. A subshift

(X,T ) is said to be minimal whenever X and the empty set are the only T -invariant closed subsets of X.

To each x ∈ A
ω is associated the subshift (Ω(x), T ) where Ω(x) is the shift orbit closure of x. A point

x ∈ A
ω is called distal if the only point in Ω(x) proximal to x is x itself. If x ∈ A

ω is uniformly recurrent,

then the associated subshift (Ω(x), T ) is minimal. And, if (Ω(x), T ) is minimal, then every point of Ω(x) is

uniformly recurrent. (For the proofs of the last two assertions see for example [4, Theorems 1.17 and 1.15].)

It is well known that the Thue-Morse word is uniformly recurrent. (See for example [8, p. 832].)

As an application of Theorem 3.1 we have the following corollary. In the proof of this corollary we

use some facts from [6] about the algebraic structure of the Stone-Čech compactification βN of N, the

points of which are the ultrafilters on N. Given an ultrafilter p ∈ βN and a sequence 〈xn〉
∞
n=1 in a compact

Hausdorff space X, p-lim
n∈N

xn is the unique point y ∈ X with the property that for every neighborhood U of

y, {n ∈ N|xn ∈ U} ∈ p.

Corollary 3.6. The Thue-Morse word T is distal. In particular, for each n ≥ 0, exactly one of the sets

{T n(T)
∣

∣

0
, T n(T)

∣

∣

1
} is an IP-set.

Proof. Suppose x ∈ Ω(T) is proximal to T. Then, since T is uniformly recurrent, we have by [6, Theorem

19.26] that there exists a (minimal) idempotent ultrafilter p ∈ βN with p-lim
n∈N

T n(T) = x. Given a prefix u

of x, U = {y ∈ A
ω|u is a prefix of y} is a neighborhood of x so {n ∈ N|T n(T) ∈ U} ∈ p; that is T

∣

∣

u
∈ p.

Therefore by [6, Theorem 5.12] T
∣

∣

u
is an IP-set. By Theorem 3.1 it follows that u is a prefix of T and hence

x = T as required. Having established that T is distal, it follows that T n(T) is distal for each n ≥ 0. Finally,

let us fix n ≥ 0, and let a ∈ {0, 1} denote the initial symbol of T n(T). We claim that T n(T)
∣

∣

a
is an IP-set

while T n(T)
∣

∣

a
is not, where a := 1 − a. Since T n(T) is uniformly recurrent, it follows from [6, Theorem

19.23] that there exists a idempotent ultrafilter p ∈ βN with p- lim
m∈N

Tm(T n(T)) = T n(T). Then as above,

T n(T)
∣

∣

a
∈ p so by [6, Theorem 5.12] we have that T n(T)

∣

∣

a
is an IP-set. Now suppose on the other hand

that T n(T)
∣

∣

a
is also an IP-set. Then by [6, Theorem 5.12] there exists an idempotent q ∈ βN such that

T n(T)
∣

∣

a
∈ q. We claim that q- lim

m∈N
Tm

(

T n(T)
)

is proximal to T n(T) for which it suffices by [6, Lemma

19.22] to show that q-lim
r∈N

T r
(

q- lim
m∈N

Tm
(

T n(T)
))

= q-lim
k∈N

T k
(

T n(T)
)

. To this end
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q- lim
r∈N

T r
(

q- lim
m∈N

Tm
(

T n(T)
))

= q- lim
r∈N

q- lim
m∈N

T r+m
(

T n(T)
)

by [6, Theorem 3.49]

= (q + q)- lim
k∈N

T k
(

T n(T)
)

by [6, Theorem 4.5]

= q- lim
k∈N

T k
(

T n(T)
)

.

Since q- lim
m∈N

Tm
(

T n(T)
)

is proximal to T n(T) and T n(T) is distal, we have that q- lim
m∈N

Tm(T n(T)) =

T n(T). Thus, T n(T)
∣

∣

a
∈ q from which it follows that ∅ = T n(T)

∣

∣

a
∩ T n(T)

∣

∣

a
∈ q, a contradiction.

Corollary 3.7. Let N be a positive integer and set x = tN tN−1 . . . t0T ∈ Ω(T) where T = t0t1t2 . . . .
Consider the partition N = A0 ∪ A1 where A0 = x

∣

∣

0
and A1 = x

∣

∣

1
. Then Ai − n is an IP-set for each

i ∈ {0, 1} and 0 ≤ n ≤ N. On the other hand, for each n > N, exactly one of the sets {A0 − n,A1 − n} is

an IP-set.

Proof. For a ∈ {0, 1} we put a = 1 − a. We first note that since aT ∈ Ω(T) for some a ∈ {0, 1},
by iteratively applying the morphism 0 7→ 01, 1 7→ 10 we have that both tntn−1 . . . t0T ∈ Ω(T) and

tntn−1 . . . t0T ∈ Ω(T) for each n ≥ 0. Fix a positive integer N and put x = tN tN−1 . . . t0T and y =
tN tN−1 . . . t0T. Then for each 0 ≤ n ≤ N , we have that T n(x) and T n(y) are proximal and begin in

distinct symbols. Whence applying [6, Theorem 19.26 & Theorem 5.12 ] we deduce that A0−n = T n(x)
∣

∣

0

and A1 − n = T n(x)
∣

∣

1
are both IP-sets for 0 ≤ n ≤ N. On the other hand, applying Corollary 3.6 we see

that for each n > N, exactly one of the sets {A0 − n,A1 − n} is an IP-set.
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