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Abstract. Given a discrete semigroup S, its Stone-Čech compactification βS has a
rich algebraic structure. In particular, it has idempotents – usually many idempotents.
Each of these idempotents in turn determines a topology on S in at least two different
ways making S a left topological semigroup. (These are then topologies on S completely
determined by the algebraic structure of S.) We investigate these topologies and the
relationship between them, paying special attention to the existence of separate or joint
continuity.

1. Introduction.

Given a discrete semigroup (S, ·), the operation extends to the Stone-Čech compactifi-
cation βS making (βS, ·) a compact right topological semigroup (i.e., for each p ∈ βS,
the function ρp : βS → βS defined by ρp(q) = q · p, is continuous) with S contained
in its topological center (i.e., the set of points p such that the function λp : βS → βS

defined by λp(q) = p · q, is continuous). We take the points of βS to be the ultrafilters
on S and identify the principal ultrafilters with the points of S.

The topology of βS is defined by choosing the sets of the form A = {p ∈ βS : A ∈ p}
as a basis for the open sets, where A denotes a subset of S. With this topology, A is
clopen in βS and A = c`βS(A).

Given p, q ∈ βS and A ⊆ S, A ∈ p · q if and only if {x ∈ S : x−1A ∈ q} ∈ p,
where x−1A = {y ∈ S : x · y ∈ A}. We could also define p · q topologically, by
p · q = lim

s→p
lim
t→q

s · t, where s and t denote members of S. See [8] for an elementary

introduction to the semigroup (βS, ·).
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If S is commutative, we may use + for the semigroup operation of S and for that
of βS.

As with any compact Hausdorff right topological semigroup, βS has idempotents.
Modest cancellation assumptions guarantee that S∗ = βS\S is a subsemigroup of βS

and hence has idempotents. (See [8, Theorem 4.28].) Usually, in fact there are many
idempotents. For example, the semigroups (βN,+) and (βN, ·) both have 2c idempo-
tents.

There is a natural relation between topologies on S and filters on S, which can also
be expressed as a relation between topologies on S and compact subsets of βS. For
example, if S is a group, every left invariant topology on S is uniquely determined by
the filter of neighborhoods of the identity. It is also uniquely determined by the compact
subsemigroup of βS consisting of the ultrafilters on S which converge to the identity.

Topologies defined on S by using the algebra of βS are interesting because of
their topological properties and because they provide a tool for analyzing the algebra
of βS. On the one hand, they give rise to interesting examples in general topology.
For example, if S is a countably infinite group, strongly right maximal idempotents in
S∗ define invariant regular topologies on S which are maximal subject to having no
isolated points. (See [16] or [8, Section 9.2].) If S is a countably infinite Boolean group,
strongly summable idempotents in S∗ (whose existence follows from Martin’s Axiom)
define extremally disconnected non-discrete topologies on S which make S a topological
group. (See [7], for example.)

On the other hand, topologies arising in this way have been an important tool in
investigating the algebra of βS. For example, Zelenuk’s Theorem states that S∗ can
contain no non-trivial finite groups if S is a countable torsion-free group. (See [18] or
[8, Theorem 7.17].) The proof of Zelenuk’s Theorem depends in an essential way on a
topology defined by a finite subgroup of S∗.

In this paper, we study topologies on an arbitrary semigroup determined by idem-
potents in βS. Any idempotent in βS determines two natural topologies on S making
S a left topological semigroup. If S is an infinite abelian group, these topologies both
provide simple examples in which S is a semitopological semigroup where the opera-
tion is usually not jointly continuous. In fact, in one of these topologies, it cannot be
demonstrated in ZFC that the operation is ever jointly continuous. (See [13, Theorem
7.3].)

In Section 2 we introduce a topology defined by an arbitrary filter on S or, equiva-
lently, by an arbitrary compact subset of βS. These are topologies in which multiplica-
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tion on the left is continuous and open. We introduce an operation of multiplication on
filters which is useful in deciding when the filter of neighborhoods of each point of S is
given by a left translation of the filter defining the topology. In Section 3 we introduce
another topology determined by an ultrafilter, and investigate both topologies under the
additional assumption that the ultrafilter is an idempotent. In Section 4 we investigate
when the two topologies are in fact the same. In Section 5 we consider the questions of
separate and joint continuity of the operation with respect to these topologies.

Topologies on a semigroup S defined by ultrafilters were first considered by T.
Papazyan (see [12]). Relations between filters on a semigroup S and topologies on S

were studied in [13], and there is some overlap between our paper and results in this
paper. For example, Theorem 2.22 below occurs as Theorem 3.7 in [13]. We have
included a proof of this theorem, however, for the sake of completeness, and because
our terminology differs from that of [13]. We should mention that some of the results
in our paper are known and can be found in the literature in the special case in which
S is a group.

If S and T are topological spaces and f : S → T , then for any ultrafilter p on S

there is an ultrafilter f(p) on T defined by f(p) = {B ⊆ T : f−1[B] ∈ p}. We shall use
the following obvious criterion for continuity: f is continuous at the point s ∈ S if and
only if f(p) converges to f(s) whenever p is an ultrafilter on S which converges to s.

Another simple fact which we shall use without any further reference is that a left
cancelable element of S is also a left cancelable element of βS [8, Lemma 8.1].

We conclude the introduction with a word about our notation. We shall use the
overline notation, U , strictly for the closure of the set U in βS. Closures with respect
to other topologies will be indicated by c`U (or c`T U in case of ambiguity). We shall
have occasion to use βS when S is a semigroup, such as the unit circle, which would
usually be assumed to have a non-discrete topology. We shall always assume that βS

denotes the Stone-Čech compactification of the semigroup S, with S having the discrete
topology.

2. Topologies Determined by Filters on S.

We study in this section a topology defined in terms of an arbitrary filter on S and
investigate the relationship with topologies making S a left topological semigroup (i.e.,
for each x ∈ S, lx = λx|S : S → S is continuous) and satisfying the additional property
that each lx is an open map. (Notice that, if S is a group, since l−1

x = lx−1 , the “open”
conclusion follows from the fact that S is left topological.)
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2.1 Definition. Let S be a semigroup, let F be a filter on S, and let C be a subset of
βS.
(a) TF = {V ⊆ S : for all x ∈ V , x−1V ∈ F}.
(b) TC = {V ⊆ S : V C ⊆ V }.

We first observe that the definitions are essentially the same. In particular, if
p ∈ S∗ = βS\S, so that p is a filter on S and {p} is a subset of βS, then Tp = T{p}.
We also note that we may just as well presume that C is compact. We omit the routine
proof of the following lemma.

2.2 Lemma. Let ∅ 6= C ⊆ βS and let F =
⋂

C. Then TF = TC = TC .

As a consequence of Lemma 2.2, we are justified in stating results about TF for an
arbitrary filter F or about TC for an arbitrary compact subset of βS, whichever is more
appropriate in the context. The only difference is that topologies of the form TC always
include the discrete topology, because TC is the discrete topology on S if C = ∅. The
discrete topology on S is also a topology of the form TF in the case in which S has a
right identity e (with F = {A ⊆ S : e ∈ A}). However, it can happen that the discrete
topology is not defined by a filter. For example, there is no filter F on N for which TF
is the discrete topology on N.

2.3 Definition. Let S be a semigroup and let C be a compact subset of βS. For each
x ∈ S, we define a filter φx on S by

φx = {V ⊆ S : x ∈ V and xC ⊆ V } .

Notice that if C 6= ∅ and F =
⋂

C, then φx = {V ⊆ S : x ∈ V and x−1V ∈ F}.
We shall investigate whether, for each x ∈ S, φx is the filter of neighborhoods of x

for the topology TC . The answer to this question lies in a generalization of the product
of two ultrafilters and will be given in Theorem 2.16.

2.4 Theorem. Let S be a semigroup and let C be a compact subset of βS. Then TC is
a topology on S and for each x ∈ S, lx is both continuous and open with respect to TC .
Further, for each x ∈ S, each TC-neighborhood of x is in φx.

Proof. In the standard way, we can define a topology T on S by putting T = {V ⊆ S :
for all x ∈ V , V ∈ φx}. Now V ∈ φx for all x ∈ V if and only if V C ⊆ V and so
T = TC .

It is obvious that lx is open with respect to TC for each x ∈ S. To see that lx is
continuous, let V ∈ TC and let q ∈ C. If y ∈ l−1

x [V ], then xy ∈ V and so V ∈ xyq and
l−1
x [V ] ∈ yq. Thus l−1

x [V ] ∈ TC .
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2.5 Definition. Let S be a semigroup and let F and G be filters on S. Let x ∈ S.

(a) F · G = {A ⊆ S : {x ∈ S : x−1A ∈ G} ∈ F}.
(b) F = {p ∈ βS : F ⊆ p}.
(c) xF↑ = {V ⊆ S : x−1V ∈ F}.

Observe, as is well known, if F is a filter on S, then F is a closed subset of βS and
F =

⋂
F . Also, if C is a nonempty subset of βS and F =

⋂
C, then F = C.

It is not hard to prove that the operation · on filters is associative. We omit the
routine verification of the following lemma.

2.6 Lemma. Let S be a semigroup and let F and G be filters on S. Then F · G is a
filter on S and F · G ⊆ F · G.

By [1, Lemma 5.15] one need not have F · G = F · G.

Let S be a semigroup and let F be a filter on S. Let C = F . If F ⊆ F · F ,
then Lemma 2.6 implies that CC ⊆ C; i.e. that C is a subsemigroup of βS. Note that
CC = C implies that F · F ⊆ F .

2.7 Definition. Let S be a semigroup, let F be a filter on S, and let U ⊆ S. Then
U?(F) = {x ∈ U : x−1U ∈ F}.

Observe that, if F ⊆ F · F and U ∈ F , then U?(F) ∈ F .

2.8 Lemma. Let S be a semigroup, let F be a filter on S, and let U ⊆ S. Then
intTF U ⊆ U?(F). If F ⊆ F · F , then intTF U = U?(F).

Proof. Write U? for U?(F). If x ∈ int U , then x−1(int U) ∈ F and x−1(int U) ⊆ x−1U

and thus x ∈ U?.

Now assume that F ⊆ F · F . To see that U? ⊆ int U , we show that U? ∈ TF .
So let x ∈ U?. Then x−1U ∈ F and so, since F ⊆ F · F , (x−1U)? ∈ F . A routine
computation shows that (x−1U)? = x−1U?.

2.9 Lemma. Let S be a semigroup and let F and G be filters on S. Then F ·G = {U ⊆
S : V G ⊆ U for some V ∈ F}.

Proof. Let U ∈ F · G and let V = {x ∈ S : x−1U ∈ G}. Then V ∈ F and V G ⊆ U .

For the reverse inclusion, let U ⊆ S and let V ∈ F with V G ⊆ U . Then V ⊆ {x ∈
S : x−1U ∈ G} and so U ∈ F · G.

The following definition is in [13].
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2.10 Definition. Let S be a discrete semigroup and let C be a compact subset of βS.
We say that C is uniform if, for every subset U of S such that C ⊆ U , there exists a
subset V of S such that C ⊆ V and V C ⊆ U .

Notice that any uniform nonempty subset of βS is in fact a subsemigroup of βS.

2.11 Lemma. Let S be a discrete semigroup, let C be a nonempty compact subset of
βS and let F =

⋂
C. Then C is uniform if and only if F ⊆ F · F .

Proof. This follows easily from Lemma 2.9.

2.12 Lemma. Let S be a discrete semigroup. Then every finite subsemigroup of βS is
uniform.

Proof. Let U ⊆ S such that C ⊆ U and let V = {x ∈ S : xC ⊆ U}. It suffices to
show that C ⊆ V , so suppose instead that we have some p ∈ C\V . For each q ∈ C, let
Dq = {x ∈ S : xq /∈ U}. Then S\V =

⋃
q∈C Dq so, because C is finite, pick q ∈ C such

that Dq ∈ p. But then pq ∈ C\U , a contradiction.

2.13 Lemma. Let S be a semigroup and let p ∈ S∗. Let C = {q ∈ βS : qp = p}. Then
C is uniform. Furthermore, if W ∈ p and W � = {s ∈ S : s−1W ∈ p}, then W � ∈ TC .
If C 6= ∅, the sets of the form W �, with W ∈ p, are a base for the filter

⋂
C.

Proof. Let W ∈ p. We first observe that W �C ⊆ W �, i.e., W � ∈ T C . Indeed, let
s ∈ W � and let q ∈ C. Then sqp = sp ∈ W so that {t ∈ S : t−1(s−1W ) ∈ p} ∈ q. That
is, (s−1W )� = s−1W � ∈ q as required.

We next observe that C ⊆ W �. If q ∈ C, W ∈ qp and so {s ∈ S : s−1W ∈ p} ∈ q.
I.e. W � ∈ q.

To see that C is uniform, let U ⊆ S be such that C ⊆ U . It suffices to show that
there exists W ∈ p such that W � ⊆ U . Suppose instead that W �\U 6= ∅ for each W ∈ p.
Then {W �\U : W ∈ p} has the finite intersection property. So pick r ∈ βS such that
{W �\U : W ∈ p} ⊆ r. Then r ∈ C\U , a contradiction.

The statement of the following lemma describes a method frequently used to define
compact subsemigroups C of βS.

2.14 Lemma. Let S be a semigroup and let A ⊆ P(S) have the finite intersection
property. Suppose that, for each A ∈ A and each x ∈ A, there exists B ∈ A such that
xB ⊆ A. Then, if C =

⋂
A∈AA, C is uniform.

Proof. Since C\U = ∅, there is some finite H ⊆ A such that
⋂
H ⊆ U . Let V =

⋂
H.

We claim that V C ⊆ U , in fact that V C ⊆ V . To see this, let x ∈ V and q ∈ C. To see
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that xq ∈ V , let A ∈ H. Then x ∈ A so pick B ∈ A such that xB ⊆ A. Then q ∈ B so
xq ∈ A as required.

We now see that the converse of Lemma 2.14 also holds.

2.15 Lemma. Let S be a semigroup and let C be a nonempty compact subset of βS. If
C is uniform, there is a family A of subsets of S such that C =

⋂
A∈AA and, for every

A ∈ A and every x ∈ A, there exists B ∈ A satisfying xB ⊆ A.

Proof. Let F =
⋂

C and write U? for U?(F). Let A = {U? : U ∈ F}. Since F ⊆ F ·F
by Lemma 2.11, we have A ⊆ F and so, since also each U? ⊆ U , C =

⋂
A∈AA.

To complete the proof, we need to show that for each U ∈ F and each x ∈ U?,
there exists V ∈ F such that xV ? ⊆ U?. As we noted in the proof of Lemma 2.8, if
V = x−1U , then V ? = x−1U?.

2.16 Theorem. Let S be a semigroup and let F be a filter on S. If F ⊆ F · F , then,
for every x ∈ S, φx is the filter of neighborhoods of x with respect to TF .

Proof. This follows immediately from Theorem 2.4 and Lemma 2.8.

2.17 Corollary. Let S be a semigroup and let C be a uniform subset of S. Then for
each x ∈ S, φx is the filter of neighborhoods of x with respect to T C .

Proof. If C = ∅, this is trivial, and if C 6= ∅, it follows from Theorem 2.16 and Lemma
2.11.

To summarize, we have now established:

2.18 Corollary. Let S be a semigroup and let F be a filter on S. If F ⊆ F · F , then
TF is a topology on S making S a left topological semigroup such that for each x ∈ S,
lx is an open map and φx is the filter of neighborhoods of x.

Proof. Theorems 2.4 and 2.16.

2.19 Corollary. Let S be a semigroup and let C be a finite subsemigroup of βS. Then,
for each x ∈ S, φx is the filter of neighborhoods of x for the topology TC .

Proof. Corollary 2.18 and Lemma 2.12.

2.20 Corollary. Let S be a semigroup and let C ⊆ βS be defined as in Lemma 2.14.
Then, for each x ∈ S, φx is the filter of neighborhoods of x for the topology TC .

Proof. Corollary 2.18 and Lemma 2.14.

We have a partial converse to Corollary 2.18.
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2.21 Theorem. Let S be a semigroup and let F be a filter on S. Suppose that S∗ is a
left ideal in βS and that F ⊆ S∗. Let x ∈ S. If φx is the filter of TF -neighborhoods of
x, then xF↑ ⊆ (xF↑) · F . If, in addition, x is left cancelable, then F ⊆ F · F .

Proof. Let U ∈ xF . Then {x} ∪ U ∈ φx and so {x} ∪ U is a TF -neighborhood of x.
Pick V ∈ φx ∩ TF for which V ⊆ {x} ∪U . Thus V F ⊆ V ⊆ {x} ∪U . Now xW ⊆ V for
some W ∈ F . Since x /∈ xWF , we have xWF ⊆ U and so U ∈ (xF↑) · F (by Lemma
2.9). Thus xF↑ ⊆ (xF↑) · F . If x is left cancelable, this implies that F ⊆ F · F .

If S has an identity, we have a strong converse to Corollary 2.18.

2.22 Theorem. Let S be a semigroup with identity e and let T be a topology on S

making S a left topological semigroup such that, for each x ∈ S, lx is an open map. Let
F be the neighborhood filter of e with respect to T . Then F ⊆ F · F and T = TF .

Proof. To see that F ⊆ F · F , let U ∈ F . Pick V ∈ T such that e ∈ V ⊆ U . To
see that U ∈ F · F , we show that V ⊆ {x ∈ S : x−1U ∈ F}. So let x ∈ V . Then
x = lx(e) ∈ V so pick W ∈ F such that lx[W ] ⊆ V . Then W ⊆ x−1V ⊆ x−1U and so
x−1U ∈ F .

To see that T ⊆ TF , let U ∈ T and let x ∈ U . Then x = lx(e) so pick V ∈ F such
that lx[V ] ⊆ U . Then V ⊆ x−1U and thus U ∈ TF .

Now let U ∈ TF . To see that U ∈ T , we let x ∈ U and show that there exists
W ∈ T such that x ∈ W ⊆ U . Now x ∈ U so x−1U ∈ F . Pick V ∈ T such that
e ∈ V ⊆ x−1U . Then x = lx(e) ∈ lx[V ] ⊆ lx[x−1U ] ⊆ U . Since lx is open, lx[V ] ∈ T .

Notice that if S is a semigroup with identity e, then Corollary 2.18 and Theorem
2.22 set up a nearly one to one correspondence between filters F on S such that F ⊆ F·F
and topologies on S with the property that for each x ∈ S, lx is continuous and open
and φx is the filter of TF -neighborhoods of x. The exception is, if F is a filter on S,
e /∈

⋂
F , and G =

{
{e} ∪ U : U ∈ F

}
, then F and G may generate the same topology.

Also, if F ⊆ F ·F , then G ⊆ G ·G. (This may be verified directly, or proved by invoking
Corollary 2.18 and Theorem 2.22.)

2.23 Corollary. Let S be a semigroup with identity e and let T be a topology on S

making S a left topological semigroup such that, for each x ∈ S, lx is an open map. Let
C = {p ∈ βS : p converges to e with respect to T }. Then C is a compact subsemigroup
of βS and T = TC .

Proof. Let F =
⋂

C. Then F is the neighborhood filter of e, so by Theorem 2.22,
F ⊆ F · F . By Lemma 2.2, TC = TF , and by Lemma 2.6, C · C = F · F ⊆ F = C.
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In view of Corollary 2.23, it is natural to ask whether the analogue of Corollary
2.18 holds for TC whenever C is a compact subsemigroup of βS. That is, one would
want to conclude that if C is a compact subsemigroup of βS, then TC is a topology on
S making S a left topological semigroup such that for each x ∈ S, lx is an open map
and φx is the filter of neighborhoods of x.

By applying Theorem 2.4, one sees that all conclusions follow immediately, except
for the assertion that φx is the filter of neighborhoods of x. In the following theorem
we show that this conclusion need not hold, even if S is an abelian group.

2.24 Theorem. There exist a compact subsemigroup C of (βZ,+) and a set W ⊆ Z
such that W ∈ φ0 but W is not a neighborhood of 0 with respect to TC .

Proof. Let 〈Em〉∞m=1 be a sequence of pairwise disjoint infinite subsets of 2N with
minEm > m for each m and let D = {2m + 2k : m ∈ N and k ∈ Em}. Let C = N∗\D.

To see that C is a subsemigroup of (βZ,+), it suffices to let p, q ∈ N∗ and show
that D /∈ p + q. Suppose instead that we have p, q ∈ N∗ with D ∈ p + q. Let B =
{x ∈ N : −x + D ∈ q}. For each x ∈ N, define F (x) ⊆ {0} ∪ N by x = Σt∈F (x) 2t.
Since p ∈ N∗, B is infinite so pick x 6= z ∈ B and let l = max

(
F (x) ∪ F (z)

)
. Pick

y ∈ (−x + D) ∩ (−z + D) such that y > 2l+1.
Let j = max F (y). Now F (x + y) = {m, k} for some m ∈ N and some k ∈ Em

and F (z + y) = {r, t} for some r ∈ N and some t ∈ Er. Since x < 2l+1, z < 2l+1, and
y > 2l+1, we have k = maxF (x + y) ∈ {j, j + 1} and t = maxF (z + y) ∈ {j, j + 1}.
Since k and t are both even, this says k = t and thus Er ∩ Em 6= ∅ and so r = m. But
then x + y = z + y while x 6= z, a contradiction. Thus C is a semigroup as claimed.

Notice that if V ∈ TC and 0 ∈ V , then there is some m ∈ N such that N\D ⊆
V ∪ {1, 2, . . . ,m}. (For otherwise we can pick some p ∈ C such that V /∈ p while
{0} ∪ C ⊆ V .)

Let W = Z\D. Then trivially W ∈ φ0. Suppose that W is a neighborhood of 0 and
pick V ∈ TC such that 0 ∈ V ⊆ W . Pick m ∈ N such that N\D ⊆ V ∪ {1, 2, . . . ,m}.
Then 2m ∈ V . Since V is open and l2m is continuous (by Theorem 2.4) pick U ∈ TC

such that 0 ∈ U and l2m [U ] ⊆ V . Pick k ∈ N such that N\D ⊆ U ∪ {1, 2, . . . , k}. Pick
y ∈ Em such that y > k. Then 2y ∈ U and so 2m + 2y ∈ V ⊆ W , a contradiction.

The semigroup C in Theorem 2.24 is not uniform by Lemma 2.11 and Theorem 2.16.
We now show that there is an interesting class of semigroups which are not uniform.

2.25 Definition. Let S be a discrete semigroup and let p ∈ βS. Then Cp denotes the
smallest compact subsemigroup of βS which contains p.
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The following is from [5].

2.26 Lemma. Let T be a compact right topological semigroup and let p ∈ T . The
smallest compact subsemigroup of T with p as a member is the smallest compact subset
C of T such that p ∈ C and pC ⊆ C.

Proof. Let x ∈ C and let D = {y ∈ C : yx ∈ C}. Then D is compact, p ∈ D, and
pD ⊆ D and thus D = C. So C is a semigroup.

Notice that by [8, Theorem 8.10], for any cancellative semigroup S, there is a large
set of right cancelable elements of βS.

2.27 Theorem. Let G be a discrete countable group and let p ∈ G∗ be a right cancelable
element of βG. Then the subsemigroup Cp of βG is not uniform.

Proof. We first consider the case in which G = Z. We shall show that if p ∈ Z∗ ∩
{2n : n ∈ N}, then Cp is not uniform.

For each n ∈ N, we define supp(n) ⊆ ω by n =
∑

i∈supp(n) 2i. We define mappings
f and c from N to ω by f(n) = min

(
supp(n)

)
and c(n) = |supp(n)|, and use f and c to

denote their continuous extensions mapping βN to βω. Denote also by σp(n) the sum
of p with itself n times. (We cannot use np for this sum because np is the product of n

with p in the semigroup (βN, ·), which is something else entirely.)
Let U = {n ∈ N : f(n) > c(n)} and let V = {n ∈ N : f(n) + 1 < c(n)}. We shall

show that Cp ⊆ U ∪ V .
It is easy to show by induction that c

(
σp(n)

)
= n for every n ∈ N, and hence

that σp(n) ∈ U . So {σp(n) : n ∈ N} ⊆ U . We claim that, for any q ∈ Cp such that
c(q) ∈ N∗, we have p + q ∈ V . To see this, it suffices to show that {2n : n ∈ N} ⊆
{x ∈ N : −x + V ∈ q}. So let n ∈ N be given. Now N2n+1 is a subsemigroup of βZ
and p ∈ N2n+1 so that Cp ⊆ N2n+1. Thus N2n+1 ∩ {x ∈ N : c(x) > n + 1} ∈ q and
N2n+1 ∩ {x ∈ N : c(x) > n + 1} ⊆ −2n + V .

Let D = {σp(n) : n ∈ N}∪{p + q : q ∈ Cp and c(q) ∈ N∗}. We claim that p+D ⊆ D

so that, by Lemma 2.26, D = Cp and consequently Cp ⊆ U ∪ V . To see this, let r ∈ D.
Then r ∈ Cp and c(r) ∈ N∗ so that p + r ∈ {p + q : q ∈ Cp and c(q) ∈ N∗}.

Let W ⊆ Z satisfy Cp ⊆ W . We claim that W + C 6⊆ U ∪ V . To see this,
we note that, for any n ∈ N, f

(
2n + σp(n)

)
= n and c

(
2n + σp(n)

)
= n + 1 and

so 2n + σp(n) /∈ U ∪ V . Since p ∈ {2n : n ∈ N}, 2n ∈ W for some n ∈ N and thus
WC 6⊆ U ∪ V . So Cp is not uniform.

We now turn to the general case. Let G be a countable group and let p ∈ G∗

be right cancelable in βG. By [8,Theorem 8.61], there is a set T ∈ p, a compact
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subsemigroup T∞ of βG satisfying p ∈ T∞ ⊆ T and an injective map φ : T → N for
which φ̃(p) ∈ {2n : n ∈ N} (where φ̃ : T → βN denotes the continuous extension of φ).
We observe that, since φ is injective, φ̃ is injective as well. It was also shown in the proof
of [8,Theorem 8.61] that, for each t ∈ T , there exists a set Ut satisfying T∞ ⊆ Ut ⊆ T ,
for which φ(tu) = φ(t) + φ(u) whenever u ∈ Ut. Thus, for every t ∈ T and x ∈ T∞,
we have φ̃(tx) = φ(t) + φ̃(x), as can be seen by letting u converge to x in the equation
φ(tu) = φ(t) + φ(u). This implies that φ̃|T∞ is a homomorphism.

Let q = φ̃(p) and let Cq denote the smallest compact subsemigroup of βN which
contains q. Since φ̃[Cp] is a compact subsemigroup of βN which contains q, φ̃[Cp] ⊇ Cq.
Similarly, φ̃−1[Cq] ⊇ Cp. So φ̃[Cp] = Cq. We have seen that Cq is not a uniform subset
of βZ, and it follows easily that Cp cannot be a uniform subset of βG.

We are naturally concerned with when the topology is Hausdorff.

2.28 Theorem. Let S be a semigroup, let C be a compact subset of βS.
(a) If TC is Hausdorff, then aC ∩ bC = ∅ whenever a 6= b in S.
(b) If C is uniform and if aC ∩ bC = ∅ whenever a 6= b in S, then TC is Hausdorff.

Proof. (a). This is immediate from the definition of TC .
(b). Let a 6= b and notice that a /∈ bC and b /∈ aC. (For suppose that a = bq where

q ∈ C. Then aq = bqq and qq ∈ C.) Thus {a} ∪ aC and {b} ∪ bC are disjoint compact
subsets of βS so pick disjoint subsets V and W of S such that {a} ∪ aC ⊆ V and
{b} ∪ bC ⊆ W . By Corollary 2.17, V and W are neighborhoods of a and b respectively.

We conclude this section with some technical results that will be useful later.

2.29 Theorem. Let S be a semigroup and let C be a compact subset of βS. Suppose
that, for every x ∈ S, φx is the filter of TC-neighborhoods of x. If TC is regular, then for
every a ∈ S and every x ∈ βS for which ax 6= a, axC ∩ aC 6= ∅ implies that ax ∈ aC.

Proof. Suppose that axy ∈ aC for some y ∈ C, but that ax /∈ aC. Then there is
a subset U of S such that aC ⊆ U and ax /∈ U . Since {a} ∪ U is a neighborhood
of a in the regular topology TC , we can pick a neighborhood V of a in TC for which
c`TC

V ⊆ {a} ∪ U .
Now axy ∈ aC ⊆ V and thus {b ∈ S : aby ∈ V } ∈ x. Also, ax /∈ {a} ∪ U and so

{b ∈ S : ab /∈ {a} ∪ U} ∈ x. Pick b ∈ S such that ab /∈ {a} ∪ U and aby ∈ V . Then
ab /∈ c`TC

V . So pick a neighborhood W of ab such that W ∩ V = ∅. Since W is a
neighborhood of ab in TC and y ∈ C, aby ∈ W , a contradiction.
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2.30 Corollary. Let S be a semigroup and let C be a compact subset of βS. Suppose
that, for every x ∈ S, φx is the filter of TC−neighborhoods of x. If TC is regular and S

has a left cancelable element, then for every x ∈ S∗, xC ∩ C 6= ∅ implies that x ∈ C.

Proof. Let a denote a left cancelable element of S. For every infinite subset B of S, aB

is infinite. So ax ∈ S∗ and hence ax 6= a. Now xC ∩C 6= ∅ implies that axC ∩ aC 6= ∅.
Since a is left cancelable in βS ([8, Lemma 8.1]), our conclusion follows from Theorem
2.29.

3. Two Topologies Determined by Idempotents in βS.

We have already defined Tp = T{p} for p ∈ βS, this topology being defined for arbitrary
filters on S or subsets of βS. We introduce now another topology Vp which is defined
only for p ∈ S∗ and compare this topology with Tp.

3.1 Definition. Let S be a semigroup and let p ∈ S∗. Define rp : S → βS by
rp(s) = s · p. (So rp = (ρp)|S.) Vp = {r−1

p [U ] : U is open in βS}.

Observe that trivially Vp is a topology on S.

In the following two lemmas, we describe convergence in the topologies Tp and Vp.

3.2 Lemma. Let S be a semigroup and let p be an idempotent in S∗. Let a ∈ S and
let 〈aι〉ι∈I be a net in S\{a}.
(i) 〈aι〉ι∈I converges to a in the topology Tp if and only if 〈aι〉ι∈I converges to ap in

βS.

(ii) 〈aι〉ι∈I converges to a in the topology Vp if and only if 〈aιp〉ι∈I converges to ap in
βS.

Proof. Statement (i) follows immediately from Theorem 2.16, and (ii) follows immedi-
ately from the definition of Vp.

3.3 Lemma. Let S be a semigroup and let p be an idempotent in S∗. Let q ∈ βS and
let a ∈ S.

(i) q converges to a with respect to the topology Tp if and only if q = a or q = ap.

(ii) q converges to a with respect to the topology Vp if and only if qp = ap.

Proof. Statement (i) follows from Corollary 2.19, and (ii) follows easily from the
definition of Vp.

3.4 Theorem. Let S be a semigroup and let p be an idempotent in S∗. Then Vp ⊆ Tp.
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Proof. This is immediate by Lemma 3.2 and the fact that, if 〈aι〉ι∈I converges to ap

in βS, then 〈aιp〉ι∈I converges to app = ap in βS.

3.5 Theorem. Let S be a semigroup and let p and q be idempotents in βS. Statement
(ii) implies statement (iii) which implies statement (iv). If S has a left cancelable
element, then (i) implies (ii) and (iii) and (iv) are equivalent.
(i) T p ⊆ T q.
(ii) p = q or q is a left identity for βS.
(iii) qp = p.
(iv) Vp ⊆ Vq.

Proof. That (ii) implies (iii) is trivial. To see that (iii) implies (iv), assume that qp = p.
To see that Vp ⊆ Vq, let a ∈ S, let r ∈ βS, and assume that r converges to a with
respect to Vq. Then by Lemma 3.3, rq = aq and so rp = rqp = aqp = ap. Thus r

converges to a with respect to Vp.
Now assume that S has a left cancelable element t.
To see that (i) implies (ii), assume that T p ⊆ T q. Now tq converges to t with

respect to T q by Lemma 3.3 and so tq converges to t with respect to T p. Thus by
Lemma 3.3, either tq = t or tq = tp. If tq = tp, then q = p, and if tq = t, then q is a
left identity for βS.

To see that (iv) implies (iii), assume that Vp ⊆ Vq. Then by Lemma 3.3, tq

converges to t with respect to Vq and thus with respect to Vp. Therefore by Lemma
3.3, tqp = tp and so qp = p.

Recall that a semigroup S is weakly left cancellative if and only if for any a, b ∈ S,
{x ∈ S : ax = b} is finite. Similarly, S is weakly right cancellative if and only if for any
a, b ∈ S, {x ∈ S : xa = b} is finite.

3.6 Theorem. Let S be an infinite discrete semigroup which is weakly left cancellative
and right cancellative. If |S| = κ, there are 22κ

non-comparable topologies of the form
Vp on S.

Proof. By [8, Lemma 6.31], there is a κ-sequence 〈tι〉ι<κ in S which has distinct finite
products. This means that expressions of the form tι1tι2 · · · tιn

, where ι1 < ι2 < . . . < ιn,
are unique. Let T denote the set of all elements of this form. We define f : T → T

by f(tι1tι2 . . . tιn
) = tι1 if ι1 < ι2 < . . . < ιn, and we use f : T → T to denote the

continuous extension of f .
For each ι < κ, let Aι = {t ∈ T : f(t) > ι} and let T∞ =

⋂
ι<κ Aι . Let t ∈ Aι. If

t = tι1tι2 . . . tιn , then tAιn ⊆ Aι. It follows that T∞ is a semigroup [8, Theorem 4.20].
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We claim that f(xy) = f(x) for every x, y ∈ T∞, and that f(xy) = x if x ∈
{tι : ι < κ} and y ∈ T∞. To see this, let t = tι1tι2 . . . tιn , where ι1 < ι2 < . . . < ιn. For
every u ∈ Aιn , we have f(tu) = f(t) = tι1 . Our claim now follows by letting u converge
to y and then letting t converge to x.

Now |f [T∞]| = 22κ

, because f [T∞] is the set of uniform ultrafilters on {tι : ι < κ}
[8, Theorem 3.58]. For each x ∈ f [T∞], we can choose an idempotent px in the right
ideal xT∞ of T∞ [8, Theorem 2.7]. If x and y are distinct elements of f [T∞], then
pxpy 6= py, because f(pxpy) = x and f(py) = y. We shall show that, as a consequence,
Vpy

6⊆ Vpx
.

If Vpy
⊆ Vpx

, then t0px converges to t0 with respect to Vpy
, because t0px converges

to t0 with respect to Vpx
. So t0pxpy = t0py, by Lemma 3.3. Now there are disjoint

subsets P and Q of A0 such that P ∈ pxpy and Q ∈ py. Since t0P ∩ t0Q = ∅, we have
contradicted the equation t0pxpy = t0py.

Notice that the number of topologies of the form Vp can be very small, even in a
left cancellative or a right cancellative semigroup. A semigroup S is said to be a right
(left) zero semigroup if ab = b (ab = a) for every a, b ∈ S. If S is a right zero semigroup,
then there is exactly one topology on S of the form Vp – the trivial topology {∅, S}. If
S is a left zero semigroup, there is again exactly one topology on S of the form Vp –
the discrete topology. In this case, the discrete topology is also the only topology on S

of the form Tp.

We are naturally interested in determining when the topologies Tp and Vp are
Hausdorff. The answer turns out to be the same in both cases.

3.7 Theorem. Let S be a semigroup and let p be an idempotent in S∗. The following
statements are equivalent.

(a) Vp is Hausdorff.

(b) Tp is Hausdorff.

(c) For all x 6= y in S, x · p 6= y · p.

Proof. That (a) implies (b) follows from Theorem 3.4.

That (b) implies (c) follows from Theorem 2.28.

To see that (c) implies (a), pick disjoint open subsets U and V of βS such that
x · p ∈ U and y · p ∈ V . Then r−1

p [U ] and r−1
p [V ] are disjoint neighborhoods of x and y

respectively with respect to Vp.

If S is weakly left cancellative, then Tp is a T1 topology on S. However, Vp is not
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T0 unless it is Hausdorff. To see this, note that, for any a, b ∈ S, if a · p = b · p, then
b ∈ c`Vp({a}) and a ∈ c`Vp({b}).

3.8 Theorem. Let S be a semigroup and let p be an idempotent in S∗. If Vp is Haus-
dorff, then rp defines a homeomorphism from (S,Vp) to the subspace Sp of βS.

Proof. This is immediate from the definition of Vp and Theorem 3.7.

In light of Theorem 3.7, one might believe that often Vp = Tp. We shall see in the
next section that that is not true.

Two natural questions are raised by Theorem 3.7.

3.9 Question. For which semigroups S will there exist an idempotent p ∈ S∗ and points
x 6= y in S such that x · p = y · p?

3.10 Question. For which semigroups S will there exist an idempotent p ∈ S∗ such
that whenever x 6= y in S one has x · p 6= y · p?

We would argue that the second question is the more interesting because it guar-
antees the existence of Hausdorff topologies with the special properties of Tp and Vp.

3.11 Theorem. Let S be a semigroup such that S∗ is a subsemigroup of βS and let
x, y ∈ S. If {z ∈ S : x · z = y · z} is infinite, then there is an idempotent p ∈ S∗ such
that x · p = y · p.

Proof. Since {z ∈ S : x · z = y · z} is infinite, there exists q ∈ S∗ such that x · q = y · q.
We claim that {q ∈ S∗ : x · q = y · q} is a right ideal of S∗. To see this, let q ∈ S∗ such
that x · q = y · q and let r ∈ S∗. Then by assumption q · r ∈ S∗ and x · q · r = y · q · r.
Thus, by [8, Theorem 2.7], there is an idempotent in {q ∈ S∗ : x · q = y · q}.

3.12 Theorem. Let S be a left cancellative semigroup and let x 6= y in S. Then there
is an idempotent p ∈ S∗ such that x · p = y · p if and only if {z ∈ S : x · z = y · z} is
infinite.

Proof. The necessity is a consequence of [8, Lemma 8.5].

By [8, Corollary 4.29], S∗ is a subsemigroup of βS and so the sufficiency is a
consequence of Theorem 3.11.

3.13 Corollary. If S is a cancellative semigroup, then for every idempotent p ∈ S∗,
Tp and Vp are Hausdorff.
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Proof. This is an immediate consequence of Theorems 3.7 and 3.12.

In the following Theorem, we see that (S,Vp) is extremally disconnected, and that
(S, Tp) satisfies a condition stronger than being extremally disconnected. (We are not
assuming that extremally disconnected spaces have to be Hausdorff.)

3.14 Theorem. Let S be a semigroup and let p be an idempotent in S∗. (S,Vp) is
extremally disconnected. For any two disjoint subsets A and B of S, c`Tp

A ∩ c`Tp
B ⊆

A ∪B.

Proof. First suppose that A and B are disjoint Vp-open subsets of S. Then A = r−1
p [U ]

and B = r−1
p [V ], where U and V are disjoint open subsets of βS. Since βS is extremally

disconnected ([8, Theorem 3.18]), c`βSU∩c`βSV = ∅. It follows that c`VpA∩c`VpB = ∅,
because this set is contained in r−1

p [c`βSU ] ∩ r−1
p [c`βSV ].

Now suppose that A and B are arbitrary disjoint subsets of S. Suppose that
a ∈ c`TpA ∩ c`TpB. If a /∈ A ∪ B, it follows from Lemma 3.2, that ap ∈ A ∩ B. This is
a contradiction, because A ∩B = ∅.

We show now that the topology Tp has an interesting maximal property. (Observe
that a point a ∈ S is isolated with respect to the topology Tp if and only if ap = a.)

3.15 Theorem. Let S be a semigroup and let p be an idempotent in S∗. If T is a
topology without isolated points and Tp ⊆ T , then Tp = T .

Proof. Since T has no isolated points neither does Tp. Let a ∈ S. We show that every
T -neighborhood of a is a Tp-neighborhood of a.

Let W = {V ⊆ S : {a}∪V is a Tp-neighborhood of a} and let U = {V ⊆ S : {a}∪V

is a T -neighborhood of a}. Since a is not an isolated point, ∅ /∈ W and thus W is a
filter. Consequently W = ap. Then U is a filter containing the ultrafilter W and so
U = W.

We now observe that there is a compact subsemigroup C of βS for which T C

coincides with Vp if p is an idempotent and if S = N or S is a group. (In that event,
the hypotheses in (ii) below are satisfied.)

3.16 Theorem. Let S be a semigroup and let p be an idempotent in S∗. Let C = {q ∈
βS : qp = p}.
(i) Vp ⊆ TC ;

(ii) If S is cancellative and if aS∗ = S∗ for every a ∈ S, then Vp = TC .
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Proof. (i). Suppose that the ultrafilter q ∈ βS converges to a ∈ S with respect to TC .
By Lemma 2.13 and Theorem 2.16, {a} ∪ aU ∈ q whenever U ⊆ S satisfies C ⊆ U .
Thus q = a or q ∈ aC. So qp = ap and therefore q converges to a in Vp (by Lemma 3.3).

(ii). Suppose that the ultrafilter q ∈ βS converges to a ∈ S with respect to Vp.
Then qp = ap. If q ∈ S, then by [8, Lemma 6.28] q = a (and thus q converges to a with
respect to the topology T C). So assume that q ∈ S∗. Then q = ax for some x ∈ S∗.
So axp = ap and therefore xp = p and thus x ∈ C. It follows that q ∈ aC and that q

converges to a with respect to TC .

In our next theorem, we relate a property of a topological group to an algebraic
property of the semigroup of ultrafilters converging to the identity.

3.17 Theorem. Let (G, τ) be a Hausdorff topological group with identity e, and let C

denote the set of ultrafilters on G which converge to e. If G can be embedded topologically
and algebraically in a compact Hausdorff topological group, then C contains all the
idempotents of βG.

Proof. Suppose that G can be embedded topologically and algebraically in a compact
Hausdorff topological group H and assume that in fact G ⊆ H. Let p ∈ βG be idempo-
tent. There is a unique element x in H with the property that, if V is a neighborhood
of x in H, V ∩ G ∈ p. Since every member of p contains three elements of the form
a, b, ab, it follows that x2 = x and hence that x = e. So p converges to e and p ∈ C.

3.18 Definition. Let S be a semigroup. A subset U of S is said to be syndetic if there
is a finite subset F of S for which S ⊆

⋃
s∈F s−1U .

Recall that any compact right topological semigroup T has a smallest two sided
ideal K(T ). (See, for example, [8, Theorem 2.8].)

3.19 Theorem. Let (G, τ) be a Hausdorff topological group with identity e, and let C

denote the set of ultrafilters on G which converge to e. Then (G, τ) is totally bounded
if and only if C ∩ K(βG) 6= ∅. In this case (G, τ) can be embedded topologically and
algebraically in a compact Hausdorff topological group. So C contains all the idempotents
of βG.

Proof. Necessity. Suppose that C ∩K(βG) = ∅. Since C is compact, pick U ⊆ G such
that C ⊆ U and U ∩K(βG) = ∅. Then U is a neighborhood of the identity, so pick a
finite subset F of G such that G =

⋃
t∈F t−1U . Pick p ∈ K(βG) and t ∈ F such that

p ∈ t−1U . Then tp ∈ U ∩K(βG), a contradiction.
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Sufficiency. Let U be a τ -neighborhood of e. We can choose a τ -neighborhood
V of e such that V V −1 ⊆ U . Since C ⊆ V , there exists p ∈ V ∩ K(βG). Now
r−1
p [V ] ⊆ V V −1 ⊆ U . Since r−1

p [V ] is syndetic [8, Theorem 4.39], so is U . Thus (G, τ)
is totally bounded. It follows that G has a completion which is a compact Hausdorff
topological group (see, for example, [9], Theorem 32 and Exercise Q in chapter 6). By
Theorem 3.17, C contains all the idempotents of βG.

In the case in which S is a group, the following theorem is Theorem 4.5 in [16].

3.20 Theorem. Let S be a discrete semigoup with a left identity e and let p ∈ S∗ be an
idempotent. Then every Vp-neighborhood of e in S is syndetic if and only if p ∈ K(βS).

Proof. The sets of the form r−1
p [A], where A ∈ p, are a base for the Vp-neighborhoods

of e. These are all syndetic if and only if p ∈ K(βS) [8, Theorem 4.39].

4. When the Topologies Coincide.

Notice that the topology Vp is trivially regular (where we are not assuming that regular
spaces are Hausdorff). Consequently, if Vp = Tp one necessarily has that Tp is regular,
and this in fact characterizes when Vp = Tp in the event that S is a group [8, Theorem
9.15]. Another characterization in that theorem is that p must be strongly right maximal
in S∗. (An idempotent p is strongly right maximal in S∗ if and only if the equation p =
q ·p has the unique solution q = p in S∗. Similarly p is strongly left maximal in S∗ if and
only if the equation p = p ·q has the unique solution q = p in S∗. See [8] for information
about strongly right maximal idempotents, including the fact that their existence in N∗

can be established in ZFC.) We investigate here when these characterizations apply in
an arbitrary semigroup.

4.1 Theorem. Let S be a semigroup which has a left cancelable element. If p is an
idempotent in S∗ and Tp is regular, then p is strongly right maximal in S∗.

Proof. This is immediate from Corollary 2.30.

Notice that the following theorem in particular says that if p is strongly right
maximal and S is a group, then Tp = Vp.

4.2 Theorem. Let S be a semigroup with an identity and let p be a strongly right
maximal idempotent in S∗. Suppose that the set of right cancelable elements of S is
a member of p. If x is an invertible element of S, then every neighborhood of x with
respect to Tp is also a neighborhood of x with respect to Vp.
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Proof. Let q ∈ βS converge to x with respect to Vp. Then qp = xp (by Lemma 3.3)
and so x−1qp = p.

We claim that q = x or else x−1q ∈ S∗. To see this, suppose that x−1q = a ∈ S\{e}.
Then ap = p and hence (by [8, Theorem 3.35]) {b ∈ S : ab = b = eb} ∈ p. We obtain a
contradiction by choosing a right cancelable element b in this set.

If q = x, then q converges to x with respect to Tp. Otherwise x−1q ∈ S∗. Since p is
strongly right maximal, this implies that x−1q = p and q = xp. Thus q again converges
to x with respect to Tp by Lemma 3.3.

5. Separate and Joint Continuity.

We are interested in determining in our more general setting when the operation in S

is separately or jointly continuous with respect to Vp or Tp.

Ellis’ Theorem [4] says that a locally compact Hausdorff semitopological semigroup
which is algebraically a group, is in fact a topological group. There is a standard
example, namely (R,+) with the half open interval topology, showing that a group
which is a topological semigroup, need not satisfy continuity of the inverse. Probably the
simplest example of a group which has a Hausdorff topology making it a semitopological
semigroup but not a topological semigroup is provided by (Z,+) with the topology Tp

where p is any idempotent in Z∗. (See [8, Exercise 9.2.7].) As a consequence of the
Theorems 5.1 and 5.8, one sees that almost as simple an example is provided by (Z,+)
with the topology Vp.

5.1 Theorem. Let S be any semigroup and let p be an idempotent in S∗. Then S is a
left topological semigroup with respect to both of the topologies Tp and Vp.

Proof. Let x ∈ S and let lx : S → S be defined by lx(y) = xy. (That is, lx = (λx)|S.)
That lx is continuous with respect to Tp follows immediately from Theorem 2.4. To see
that lx is continuous with respect to Vp, let U ∈ Vp and pick W open in βS such that
U = r−1

p [W ]. Then l−1
x [U ] = r−1

p

[
λ−1

x [W ]
]

and so l−1
x [U ] ∈ Vp.

As a consequence of Theorem 5.1, if S is commutative, then it is a semitopological
semigroup with respect to both Tp and Vp. We now see that there is a close relation
between S being commutative and being semitopological for either Tp or Vp.

5.2 Theorem. Let S be a discrete semigroup and let p be an idempotent in S∗.

(i) S is right topological with respect to Tp if and only if spt ∈ {st, stp} for every
s, t ∈ S;
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(ii) S is right topological with respect to Vp if and only if, for every s, t ∈ S and every
q ∈ βS, qp = sp implies that qtp = stp.

Proof. We observe that S is right topological with respect to a given topology on S if
and only if, for every s, t ∈ S, qt converges to st whenever q is an ultrafilter on S which
converges to s. Thus our theorem follows easily from Lemma 3.3.

5.3 Corollary. Let S be a discrete semigroup which contains a left cancelable element
and let p be an idempotent in S∗.
(i) S is right topological with respect to Tp if and only if pt ∈ {t, pt} for every t ∈ S;
(ii) S is right topological with respect to Vp if and only if ptp = tp for every t ∈ S.

Proof. (i). The sufficiency follows immediately from Theorem 5.2 (i) and the necessity
follows from Theorem 5.2 (i) by taking s to be left cancelable.

(ii). The necessity follows from Theorem 5.2 (ii) by taking s to be left cancelable
and q = sp. For the sufficiency, let s, t ∈ S, let q ∈ βS, and assume that qp = sp. Then
qtp = qptp = sptp = stp.

5.4 Corollary. Let S be a discrete semigroup and let p be an idempotent in S∗. If S

is right topological with respect to Tp, then S is also right topological with respect to Vp.

Proof. It follows from Theorem 5.2 that, for every t ∈ S, S = {b ∈ S : bpt = bt} ∪ {b ∈
S : bpt = btp}. If q ∈ βS, we have (i) {b ∈ S : bpt = bt} ∈ q and hence qpt = qt; or (ii)
{b ∈ S : bpt = btp} ∈ q and hence qpt = qtp. Suppose that qp = sp for some s ∈ S. In
case (i), qtp = qptp = sptp. Since spt ∈ {st, stp}, qtp = stp. In case (ii), we again have
qtp = qtpp = qptp = sptp so that, again because spt ∈ {st, stp}, qtp = stp.

Notice that the following corollary tells us that, at least in a cancellative semigroup,
a great deal of commutativity is needed for S to be right topological with respect to
T p.

5.5 Corollary. Let S be a semigroup and assume that either
(a) S is left cancellative and weakly right cancellative, or
(b) S is right cancellative and has a left cancelable element.
Then there is an idempotent p ∈ S∗ such that S is right topological with respect to T p

if and only if for every finite subset F of S, {x ∈ S : sx = xs for all s ∈ F} is infinite.

Proof. Necessity. Pick an idempotent p ∈ S∗ such that S is right topological with
respect to T p. It suffices to show that for each s ∈ S, {x ∈ S : sx = xs} ∈ p. (For then,
given a finite subset F of S, {x ∈ S : sx = xs for all s ∈ F} ∈ p.) To this end, let s ∈ S
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be given. By Corollary 5.3, either ps = s or ps = sp. Since S is (at least) weakly right
cancellative, ps 6= s and so ps = sp.

We claim that, if f, g : S → S and if g is injective, then f(p) = g(p) implies that
{x ∈ S : f(x) = g(x)} ∈ p. To see this, we observe that we can define h : S → S

such that h ◦ g(t) = t for every t ∈ S and g ◦ h(t) = t for every t ∈ g[S]. Since
h ◦ f(p) = h◦f(p) = h◦ g(p) = h ◦ g(p) = p, it follows from the deBruijn-Erdős Lemma
(see [8, Theorem 3.35]) that {x ∈ S : hf(x) = x} ∈ p. Now {x ∈ S : f(x) ∈ g[S]} ∈ p.
If h ◦ f(x) = x and if f(x) ∈ g[S], then f(x) = g(x).

If S is left cancellative, ls : S → S is injective; if S is right cancellative, rs : S → S

is injective. In either case, the equation ps = sp implies that {x ∈ S : xs = sx} ∈ p.
Sufficiency. For s ∈ S, let Cs = {x ∈ S : sx = xs} and let T = S∗ ∩

⋂
s∈S Cs.

Since for every finite subset F of S, {x ∈ S : sx = xs for all s ∈ F} is infinite, T 6= ∅.
Since S is either right or left cancellative, we have by [8, Corollary 4.29] that S∗ is a
subsemigroup of βS. For each s ∈ S, Cs is a subsemigroup of βS and so by [8, Corollary
4.18] Cs is a subsemigroup of βS. Thus T is a compact semigroup and so contains an
idempotent p. Since for each s ∈ S, sp = ps we have by Theorem 5.2 (i) that S is right
topological with respect to T p.

5.6 Theorem. Let S be the free semigroup on the letters a and b and let p be an
idempotent in S∗. Then S is not a right topological semigroup with respect to Vp.

Proof. Since S is cancellative, it suffices to show that ptp 6= tp for some t ∈ S (by
Corollary 5.3).

Since p ∈ S∗, {a, b} /∈ p and so either aS ∈ p or bS ∈ p. Assume without loss of
generality that aS ∈ p. We note that aS is a right ideal of S and therefore that aS

is a right ideal of βS by [8, Corollary 4.18]. So pbp ∈ aS. However, bp ∈ bS. Since
aS ∩ bS = ∅, pbp 6= bp.

Notice that if S is the free semigroup on {a, b} and p is an idempotent in S∗, then
one can conclude that S is not right topological with respect to T p either by invoking
Theorem 5.5 or by invoking Corollary 5.4 and Theorem 5.6.

In view of the fact that one does not expect right continuity to hold for noncom-
mutative semigroups, we now restrict our attention to commutative semigroups.

5.7 Definition. Let (S, +) be a commutative semigroup and let n ∈ N. The map
s 7→ ns from S to itself has a continuous extension to a map from βS to itself. If
q ∈ βS, nq will denote the image of q under this map.

It is easy to see that n(p + q) = np + nq for every p, q ∈ βS.
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We shall use T to denote the circle group R/Z. We shall use the number x ∈ [0, 1)
to stand for the element x + Z of T.

5.8 Theorem. Let (S, +) be a discrete semigroup which can be algebraically embedded
in T and let p be an idempotent in S∗. Then with respect to the topology Vp on S the
map s 7→ 2s is not continuous at any point of S.

Proof. Suppose that this map is continuous at a ∈ S. Since a + p converges to a with
respect to Vp, 2a + 2p converges to 2a and so 2a + 2p + p = 2a + p (by Lemma 3.3).
This implies that 2p + p = p, because S is necessarily cancellative.

We shall show that this equation cannot hold for any idempotent p ∈ T∗. (We
are assuming that βT denotes the Stone-Čech compactification of T, with T having the
discrete topology.)

We may suppose that (0, 1
2 ) ∈ p, as we could replace p by −p otherwise. For

i ∈ {0, 1}, we define Xi ⊆ T by Xi =
⋃∞

n=1[
1

22n−i+1 , 1
22n−i ). We choose i ∈ {0, 1} such

that Xi ∈ p. We note that p and 2p, being idempotent, converge to 0 in the ordinary
topology on T. If x ∈ Xi and x < 1

4 , then 2x ∈ Xj where j ≡ i + 1 (mod 2). Since p

converges to 0 in the ordinary topology, {y ∈ T : 2x + y ∈ Xj} ∈ p. Allowing first y

and then x to converge to p, shows that 2p+ p ∈ clβT(Xj). Since p ∈ clβT(Xi), we have
contradicted the assumption that 2p + p = p.

We now show that, in any abelian group, + cannot be jointly continuous in Vp,
except in the case in which p has a Boolean subgroup as a member. The analogous
result for an arbitrary group with the topology Tp was proved in [13]. It was shown in
[13] that, for any group G and any idempotent p ∈ G∗, joint continuity of the group
operation in Tp implies that p has a countable Boolean group as a member and that
there is a P -point in ω∗. So joint continuity of the group operation in Tp cannot be
established in ZFC.

It follows from Martin’s axiom that, for any countable abelian group G, there are
strongly summable idempotents in G∗ (see [7]). If G is Boolean and if p ∈ G∗ is strongly
summable, then the topologies Tp and Vp coincide and are topologies for which G is a
topological group.

5.9 Theorem. Let (G, +) be an abelian group and let B = {x ∈ G : 2x = 0}. Let
p ∈ G∗ be an idempotent such that B /∈ p. Then the maps x 7→ 2x and x 7→ 3x cannot
both be continuous in Vp.

Proof. Suppose that both these maps are continuous in Vp. Since p converges to 0 in
Vp, so do 2p and 3p. Thus 2p + p = 3p + p = p (by Lemma 3.3).
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Now G can be embedded in the direct sum of a family of copies of T. We shall show
that there is no non-principal ultrafilter p on a direct sum of this kind which satisfies
the equation p + p = 2p + p = 3p + p = p.

Let H =
⊕

ι<κ Tι, where each Tι is a copy of T and κ is a cardinal. We make
the inductive assumption that κ is the smallest cardinal for which there exists a non-
principal ultrafilter p on the direct sum of κ copies of T satisfying 2p + p = 3p + p = p.
(We saw in the proof of Theorem 5.8 that this implies that κ > 1.)

For each ι < κ, we use πι : H → Tι to denote the projection map. We also use
σι : H →

⊕
λ≤ι Tλ to denote the natural projection map and σι : βH → β(

⊕
λ≤ι Tλ)

to denote its continuous extension. Since σι is a homomorphism [8, Theorem 4.8], σι(p)
is idempotent and 2σι(p) + σι(p) = 3σι(p) + σι(p) = σι(p) for each ι. Our inductive
assumption implies that σι(p) is a principal ultrafilter, which is therefore the identity
of

⊕
λ≤ι Tλ.

For each x ∈ H\{0}, let f(x) denote the first element of κ for which πf(x)(x) 6= 0
and let g(x) = πf(x)(x). We shall show that the equation 2p + p = p implies that
{x ∈ H\{0} : g(x) = 1

2} ∈ p.

To see this, for i ∈ {0, 1}, let Xi be defined as in the proof of Theorem 5.8. If
{x ∈ H : g(x) = 1

2} /∈ p, we may suppose that {x ∈ H\{0} : g(x) ∈ (0, 1
2 )} ∈ p and

choose i ∈ {0, 1} such that C = {x ∈ H\{0} : g(x) ∈ Xi} ∈ p. Choose any x ∈ C. Then
g(2x) ∈ Xj ∪ [ 12 , 1), where j ≡ i + 1 (mod 2). Now, if Dx = {y ∈ H : πλ(y) = 0 for all
λ ≤ f(x)}, our inductive assumption implies that Dx ∈ p. If x ∈ C and y ∈ Dx, then
g(2x+y) = g(2x). Allowing first y and then x to converge to p, shows that {2x+y : x ∈ C

and y ∈ Dx} ∈ 2p + p. Thus {z ∈ H\{0} : g(z) ∈ Xj ∪ [ 12 , 1)} ∈ p. This contradicts the
assumption that 2p + p = p and establishes that {x ∈ H\{0} : g(x) = 1

2} ∈ p.

Now the equation 2p + p = p holds if 2p is substituted for p. It follows that
{x ∈ H\B : g(2x) = 1

2} ∈ p. For each x ∈ H\B, let h(x) denote the first element of
κ for which πh(x)(x) /∈ {0, 1

2}. Then {x ∈ H\B : πh(x)(x) = 1
4} ∈ p or {x ∈ H\B :

πh(x)(x) = 3
4} ∈ p. However, each of these possibilities is easily seen to contradict the

equation 3p + p = p.

5.10 Remark. Suppose that (G, +) is an abelian group and that p ∈ G∗ is idempotent.
Let B = {x ∈ G : 2x = 0}. Then B is clopen with respect to both of the topologies Tp

and Vp.

Proof. If B ∈ p, then, for any q ∈ βG, q+p ∈ B if and only if q ∈ B. Thus B = r−1
p [B]

and G\B = r−1
p [G\B] so B is clopen with respect to Vp and thus with respect to T p.
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5.11 Theorem. Let S be a cancellative semigroup and let a, b ∈ S. If the semigroup
operation of S is jointly continuous at (a, b) with respect to Tp, then {x ∈ S : xb = b} ∈ p

or {x ∈ S : xbx = b} ∈ p.

Proof. Define f : S → S by f(x) = axbx. Let 〈xι〉ι∈I be a net in S which converges
to p in βS. By Lemma 3.2, 〈axι〉ι∈I and 〈bxι〉ι∈I converge to a and b respectively with
respect to Tp. So 〈axιbxι〉ι∈I converges to ab with respect to Tp. This implies that
〈axιbxι〉ι∈I converges to ab or to abp in βS. So f(p) = ab or f(p) = abp. We note that
the map s 7→ abs from S to itself is injective. It follows from the argument used in the
proof of Corollary 5.5 that {x ∈ S : axbx = ab} ∈ p or {x ∈ S : axbx = abx} ∈ p. Our
claim then follows from the assumption that S is cancellative.

5.12 Corollary. Let S be a commutative and cancellative semigroup and let p be an
idempotent in S∗. If {x ∈ S : x2 is the identity of S} /∈ p, then the map x 7→ x2 is not
continuous at any point of S with respect to the topology Tp.

Proof. Suppose that this map is continuous at the point a ∈ S. Then, exactly as in
the proof of Theorem 5.11 with a = b, we can deduce that {x ∈ S : x2a = a} ∈ p or
{x ∈ S : xa = a} ∈ p. Our claim then follows from the observation that, for any x ∈ S,
the equation xa = a can only hold if x is the unique identity of S.

Statement (f) of the following theorem deals with strongly summable ultrafilters.
An ultrafilter p on a commutative semigroup (S, +) is strongly summable if and only
if for every A ∈ p, there exists B ⊆ S such that FS(B) ⊆ A and FS(B) ∈ p, where
FS(B) = {ΣF : F is a finite nonempty subset of B}. Their existence follows from the
continuum hypothesis (or Martin’s Axiom) and is independent of ZFC. See [7] and [8,
Chapter 12] for information about strongly summable ultrafilters.

5.13 Theorem. Let (S, +) be a commutative and cancellative semigroup with identity
0 and let p be an idempotent in S∗. Statements (a), (b), (c), and (d) are equivalent.
If {x ∈ S : 2x = 0} ∈ p, then these statements imply statements (e) and (f) and are
implied by statement (g).

(a) For all x, y ∈ S, + is continuous at (x, y) with respect to the topology Tp.

(b) The operation + is continuous at (0, 0) with respect to the topology Tp.

(c) There exist x, y ∈ S such that + is continuous at (x, y) with respect to the topology
Tp.

(d) For all A ∈ p, there exists B ∈ p such that B + B ⊆ A ∪ {0}.
(e) The operation + is continuous at (0, 0) with respect to the topology Vp.
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(f) The ultrafilter p is both strongly right maximal and strongly left maximal in S∗.
(g) The ultrafilter p is strongly summable.

Proof. That (a) implies (b) and (b) implies (c) is trivial. To see that (c) implies (d),
pick x, y ∈ S such that + is continuous at (x, y) with respect to the topology Tp. Let
A ∈ p. By Theorem 2.16, {x + y} ∪ (x + y + A) is a neighborhood of x + y so pick
neighborhoods U and V of x and y respectively such that U +V ⊆ {x+y}∪(x+y+C).
Pick C and D in p such that {x}∪ (x+C) ⊆ U and {y}∪ (y +D) ⊆ V . Let B = C ∩D

and let u, v ∈ B. Then x + y + u + v ∈ {x + y} ∪ (x + y + A) so by cancellation
u + v ∈ {0} ∪A.

To see that (d) implies (a), let x, y ∈ S and let W be a neighborhood of x + y with
respect to Tp. Pick A ∈ p such that {x+y}∪ (x+y +A) ⊆ W and pick B ∈ p such that
B + B ⊆ A. Let C = B ∩A. Then {x} ∪ (x + C) is a neighborhood of x, {y} ∪ (y + C)
is a neighborhood of y, and

(
{x} ∪ (x + C)

)
+

(
{y} ∪ (y + C)

)
⊆ {x + y} ∪ (x + y + A).

Now let D = {x ∈ S : 2x = 0} and assume that D ∈ p.

To see that (d) implies (e), let U be an open neighborhood of 0 with respect to Vp

and pick V open in βS such that U = r−1
p [V ]. Then p = 0 + p ∈ V so pick C ∈ p such

that C ⊆ V . Let A = {x ∈ S : −x + C ∈ p}. Then A ∈ p and 0 ∈ A so pick B ∈ p such
that B + B ⊆ A∪ {0} = A. Let W = r−1

p [B]. Since 0 + p ∈ B, W is a neighborhood of
0 with respect to Vp. We claim that W + W ⊆ U .

To this end, let y, z ∈ W . If y + z = 0, then y + z ∈ U , so assume that y + z 6= 0.
Now −y +B ∈ p and −z +B ∈ p so pick a ∈ (−y +B)∩ (−z +B)∩D. Then y + a ∈ B

and z + a ∈ B and so y + z = y + a+ z + a ∈ B +B ⊆ A. Then −(y + z)+C ∈ p. That
is, y + z ∈ r−1

p [C] ⊆ U .
To see that (d) implies (f), let q ∈ S∗ such that q 6= p and suppose that either

p = p + q or p = q + p. Pick C ∈ q\p. We may presume that 0 /∈ C. Let A = D\C and
pick B ∈ p such that B + B ⊆ A ∪ {0}. We may presume that B ⊆ A.

We show that in either case there exists x ∈ B and y ∈ C such that x + y ∈ B.
Then x + x + y ∈ B + B and x ∈ B ⊆ A ⊆ D so that x + x = 0 and thus y ∈ A ∪ {0},
a contradiction.

Case 1. p = p + q. Then {x ∈ S : −x + B ∈ q} ∈ p so pick x ∈ B such that
−x + B ∈ q and pick y ∈ C ∩ (−x + B).

Case 2. p = q + p. Then {y ∈ S : −y + B ∈ p} ∈ q so pick y ∈ C such that
−y + B ∈ q and pick x ∈ B ∩ (−y + B).

To see that (g) implies (d), let A ∈ p. Pick X ⊆ S such that FS(X) ⊆ A ∩D and
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FS(X) ∈ p. Let B = FS(X). To see that B + B ⊆ A ∪ {0}, let a, b ∈ B and pick
finite nonempty subsets F and G of S such that a = ΣF and b = ΣG. If F = G, then
a + b = 0. Otherwise a + b = Σ(F∆G) ∈ B ⊆ A.

Of course, if S is an abelian group, one has by standard arguments that statement
(e) in Theorem 5.13 is equivalent to statements (a), (b), and (c) with Tp replaced by
Vp.
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