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Abstract

The semigroup H is defined as
⋂∞
n=1 c`βN(2nN), where it has the

algebraic structure (and topology) inherited from the right topolog-
ical semigroup (βN,+). Topological and algebraic copies of H are
found in (βS, ·) for any discrete semigroup which has some sequence
with distinct finite products. And any compact Hausdorff right topo-
logical semigroup which has a countable dense set contained in its
topological center is an image of H under a continuous homomor-
phism. (Thus the term “ubiquitous” in the title.) Much is already
known about the structure of H. In this paper we present several
new results. Included are the following facts. (1) For any n ∈ N, H is
the union of n pairwise disjoint clopen copies of itself, each of which
is a right ideal of H and H is the union of n pairwise disjoint clopen
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copies of itself, each of which is a left ideal of H. (2) H contains c
pairwise disjoint clopen copies of itself, each of which is a right ideal
of H and H contains c pairwise disjoint clopen copies of itself, each
of which is a left ideal of H. (3) If S is a countable dense subgroup of
(R,+) and Sd is S with the discrete topology, then the set of ultrafil-
ters in βSd that converge to 0 (in the usual topology on S) is a copy
of H. (4) If S is the direct sum of countably many countable partial
semigroups each of which has an identity and at least two elements,
then the set of ultrafilters in βSd that converge to the identity in the
product topology on S is a copy of H.

1 Introduction

Given a discrete space S, we take the Stone-Čech compactification βS of S

to be the set of ultrafilters on S, the principal ultrafilters being identified

with the points of S. Given A ⊆ S, let A = {p ∈ βS : A ∈ p}. Then

{A : A ⊆ S} is a base for the open sets and a base for the closed sets of βS.

If (S, ·) is a discrete semigroup, the operation extends to βS so that (βS, ·)
becomes a right topological semigroup with S contained in its topological

center. That is, for any p ∈ βS, the function q 7→ q · p from βS to itself is

continuous and for any x ∈ S, the function q 7→ x · q from βS to itself is

continuous. It follows that, for any p, q ∈ βS, p · q = lim
s→p

lim
t→q

st, where s and

t denote elements of S.

Given p, q ∈ βS and A ⊆ S, A ∈ p·q if and only if {x ∈ S : x−1A ∈ q} ∈ p
where x−1A = {y ∈ S : x·y ∈ A}. If the operation on S is written additively,

we write that A ∈ p + q if and only if {x ∈ S : −x + A ∈ q} ∈ p where

−x + A = {y ∈ S : x + y ∈ A}. Any compact Hausdorff right topological

semigroup has an idempotent. See Part I of [4] for much more information

about the structure of βS.

We take N to be the set of positive integers and let ω = N ∪ {0}. Given

a set X, we let Pf (X) = {F ⊆ X : F is finite and nonempty}.
We define H =

⋂∞
n=1 2nN. Then by [4, Lemma 6.8], H is a compact

subsemigroup of (βN,+) which contains all of the idempotents of βN.

Let (S, ·) be a discrete semigroup and let 〈xn〉∞n=1 be a sequence in S

such that whenever F and H are distinct members of Pf (N),
∏

t∈F xt 6=∏
t∈H xt, where the products are computed in increasing order of indices.

For m ∈ N, let FP (〈xn〉∞n=m) = {
∏

t∈F xt : F ∈ Pf (N and minF ≥ m}.
It was shown in [2, Theorem 5.6] that

⋂∞
m=1 FP (〈xn〉∞n=m) is topologically

isomorphic to H. By “topologically isomorphic” we mean there is a func-

tion ϕ :
⋂∞
m=1 FP (〈xn〉∞n=m) → H which is both an isomorphism and a
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homeomorphism. In this case, that function is particularly simple. Define

f : FP (〈xn〉∞n=1) → N by f(
∏

t∈F xt) =
∑

t∈F 2t−1, let f̃ : βS → βN
be the continuous extension of f , and let ϕ be the restriction of f̃ to⋂∞
m=1 FP (〈xn〉∞n=m).

In [7, Theorem 1], John Pym showed that one does not need a full

semigroup structure to produce copies of H. In fact, the only algebraic

information needed to produce a copy of H, is the rule for multiplying by

an identity. (We shall have more to say about Pym’s construction in Sec-

tion 4.) In [6, Theorem 3.1], Talin Papazyan showed that if S is a discrete

right cancellative and weakly left cancellative semigroup, then every Gδ

subset of S∗ = βS \ S which contains an idempotent contains a copy of

H. (A semigroup S is weakly left cancellative provided that for all a, b ∈ S,

{x ∈ S : ax = b} is finite.)

The fact cited in the abstract that any compact Hausdorff right topolog-

ical semigroup which has a countable dense set contained in its topological

center is an image of H under a continuous homomorphism is established

in [4, Theorem 6.4].

It is also known that H has a substantial algebraic structure. For example

by [4, Corollary 7.36] H contains copies of the free group on 2c generators.

Recall that if X is a topological space, x ∈ X, and p is an ultrafilter

on X, that is p ∈ βXd where Xd is the set X with the discrete topology,

one says that p converges to x if and only if p contains the neighborhood

filter of x. If S is a semigroup (not necessarily commutative) with identity

which is also a topological space, we let O(S) be the set of ultrafilters on

S that converge to the identity. In the event that (S, ·) is a left topological

semigroup with identity e, one has that O(S) is a compact subsemigroup of

(βSd, ·). (To see this, let p, q ∈ O(S) and let A be an open neighborhood of

e. Given x ∈ A, one may pick a neighborhood Bx of e such that x ·Bx ⊆ A

so A ⊆ {x ∈ S : x−1A ∈ q} so A ∈ p · q.)

Let S be a dense subsemigroup of (R,+),
(
(−∞, 0].+

)
, or

(
[0,∞),+

)
.

In [3] several facts about O(S) were obtained. We let O+(S) = {p ∈ O(S) :

(0, 1)∩S ∈ p} and let O−(S) = {p ∈ O(S) : (−1, 0)∩S ∈ p}. If S ⊆ (0,∞),

then of course O−(S) = ∅, but in any event, O+(S) and O−(S) have no

isolated points. Note also that, given p ∈ βSd, p ∈ O+(S) if and only if for

every ε > 0, (0, ε) ∩ S ∈ p and p ∈ O−(S) if and only if for every ε > 0,

(−ε, 0) ∩ S ∈ p. If 0 /∈ S, then O(S) = O−(S) ∪ O+(S); if 0 ∈ S, then

O(S) = O−(S) ∪ {0} ∪O+(S).
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Let B(S) be the set of bounded ultrafilters on S. That is,

B(S) = {p ∈ βSd : (∃n ∈ N)([−n, n] ∩ S ∈ p)} .

In [3, Theorem 2.6(b)] it was shown that O(R) has all of the algebraic struc-

ture of B(R) not already revealed by the algebra of R. That is, R × O(R)

is isomorphic to B(R). At the conclusion of this introduction we will show

that a similar, though weaker, conclusion applies to any dense subgroup S

of (R,+) and O+(S) and O−(S) are isomorphic and homeomorphic. Con-

sequently, there is additional interest in the algebraic structure of O+(S).

There are also applications of the algebraic structure of O(S) to Ramsey

Theory. See for example [1] and [8].

Some of our results have elementary proofs in the sense that we can

explicitly describe the functions demonstrating that O+(S) or O(S) \ {0} is

topologically isomorphic to H. We present these results in Section 2.

Our remaining results are based on [4, Theorem 7.24] and a modification

thereof. In Section 3 we obtain statements (1), (2), and (3) stated in the

abstract. In Section 4 we obtain a very general result about direct sums of

sets with much less algebraic structure than a semigroup (the ids of [7]) and

derive consequences of that result.

In Section 5 we present the proof of our modification of [4, Theorem

7.24].

As promised above, we show now that if S is a dense subgroup of (R,+),

then the ultrafilters converging to 0 contain much of the algebraic structure

of βSd.

Definition 1.1. Let S be a dense subsemigroup of (R,+).

(a) Let ι : S → [−∞,∞] be the inclusion function and let α : βSd →
[−∞,∞] be its continuous extension.

(b) B′(S) = {p ∈ βSd : α(p) ∈ S}.

Notice that, if S 6= R, then B′(S) 6= B(S) because, given x ∈ R\S, A =

{S∩ (x− ε, x+ ε) : ε > 0} is a set of subsets of S with the finite intersection

property. If p ∈ βSd and A ⊆ p, then α(p) = x so p ∈ B(S) \B′(S).

Theorem 1.2. Let S be a dense subgroup of (R,+). Define ϕ : Sd×O(S)→
B′(S) by ϕ(x, p) = x+ p. Then ϕ is a continuous isomorphism onto B′(S).

Proof. Let T = [−∞,∞] with the usual topology and for x, y ∈ T , define

x ∗ y =


x+ y if x, y ∈ R ,
y if y =∞ or y = −∞ ,
x if y ∈ R and either x =∞ or x = −∞ .
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It is routine to establish that (T, ∗) is a compact right topological semigroup

and the topological center Λ(T ) = R. Note that O(S) = α−1[{0}].
To see that ϕ is a homomorphism, let (x, p), (y, q) ∈ Sd × O(S). By [4,

Theorem 4.23], p + y = y + p so ϕ
(
(x, p) + (y, q)

)
= ϕ(x + y, p + q) =

x+ y + p+ q = x+ p+ y + q = ϕ(x, p) + ϕ(y, q).

To see that ϕ is injective, assume that (x, p), (y, q) ∈ Sd × O(S) and

ϕ(x, p) = ϕ(y, q). Then x + p = y + q. By [4, Corollary 4.22] α is a ho-

momorphism so α(x + p) = α(x) + α(p) = x + 0 = x and α(y + q) =

α(y) + α(q) = y + 0 = y so x = y. Then by [4, Lemma 8.1] p = q.

Notice that we have also established that α[Sd ×O(S)] ⊆ B′(S).

To see that ϕ is continuous, let (x, p) ∈ Sd × O(S) and let U be a

neighborhood of ϕ(x, p) in B′(S). Pick A ∈ x+ p such that A∩B′(S) ⊆ U .

Since A ∈ x+ p, −x+ A ∈ p so {x} × (−x+ A ∩O(S)) is a neighborhood

of (x, p) in Sd×O(S). If q ∈ −x+ A∩O(S), then A ∈ x+ q and α(x+ q) =

α(x) +α(q) = x+ 0 ∈ S. Therefore ϕ[{x}× (−x+ A∩O(S))] ⊆ A∩B′(S).

To see that ϕ is surjective, let p ∈ B′(S). Let x = α(p). Then α(−x+p) =

α(−x) +α(p) = −x+x = 0, so (x,−x+p) ∈ Sd×O(S) and ϕ(x,−x+p) =

p.

Note that, even if S = R, in which case B′(S) = B(S), the function ϕ

is not a homeomorphism. To see this, we claim that ϕ[{0} ×O(S)] = O(S)

is not open in B′(S). To see this, pick p ∈ O(S) \ {0} and suppose we have

a neighborhood U of p = 0 + p in B′(S) such that U ⊆ O(S). Pick A ∈ p
such that A ∩ B′(S) ⊆ U . Since p ∈ βSd, A ⊆ S. Since p is not isolated,

pick x ∈ A \ {0}. Then x ∈ A ∩B′(S) ⊆ O(S), while α(x) = x 6= 0.

We remind the reader that any continuous injective function with a com-

pact domain onto a Hausdorff space is a homeomorphism.

Theorem 1.3. Let S be a dense subgroup of (R,+). Then O+(S) and O−(S)

are topologically isomorphic.

Proof. Let ψ : S → S be defined by ψ(x) = −x and let ψ̃ : βSd → βSd

be the continuous extension of ψ which is injective because ψ is injective.

By [4, Corollary 4.22], ψ̃ is a homomorphism, hence an isomorphism and a

homeomorphism. It is routine to verify that ψ̃[O+(S)] = O−(S).

We remark that, if S is any countable regular topological space without

isolated points, which is first countable, then the set of ultrafilters in βSd

which converge to any given point of S, is homeomorphic to H. We leave

the easy proof as an exercise for the reader.
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We close the introduction with the remark that it is well known, and

reasonably easy to see, that any compact non-empty Gδ subset of N∗ =

βN \ N is either homeomorphic to N∗ or to H. Depending on set theoretic

assumptions, H may or may not be homeomorphic to N∗. (Under CH, it is a

consequence of [5, Corollary 1.2.4] that H and N∗ are homeomorphic, while

it is shown in [9] that it is consistent that H and N∗ are not homeomorphic.)

It is a consequence of [4, Exercises 6.1.1 and 6.1.3] that N∗ and H are not

topologically isomorphic.

2 Elementary results

The results of this section utilize representations of numbers to various

bases. We summarize some basic facts about these expansions now, leaving

verification of the assertions to the reader.

First, of course, every x ∈ N has a unique expansion in the form x =∑
t∈F 2t for some F ∈ Pf (ω) and we define supp2(x) = F . Given n ∈ N,

x ∈ 2nN if and only if min supp2(x) ≥ n.

Every x ∈ N has a unique expression in the form
∑

t∈F cx(t)t! where

F ∈ Pf (N) and cx ∈×t∈F{1, 2, . . . , t} and we define suppf (x) = F . Given

x and n in N, x ∈ n!N if and only if min suppf (x) ≥ n.

Every x ∈ Z\{0} has a unique expansion in the form x =
∑

t∈F (−2)t for

some F ∈ Pf (ω) and we define supp−2(x) = F . We also define supp−2(0) =

∅. Given n ∈ N, x ∈ 2nZ \ {0} if and only if x 6= 0 and min supp−2(x) ≥ n.

Also, x ∈ N if and only if x 6= 0 and max supp−2(x) is even.

Let D = { n
2k

: n ∈ Z and k ∈ ω}, the set of dyadic rationals . Every

x ∈ D ∩ (0, 1) has a unique expansion in the form x =
∑

t∈F
1
2t

where

F ∈ Pf (N) and we define supp1/2(x) = F . Further every such expansion

is in D ∩ (0, 1). We note that for n ∈ N, x ∈ D ∩ (0, 1
2n

) if and only if

min supp1/2(x) > n.

Every x ∈ D ∩
(
(−2

3
, 0) ∪ (0, 1

3
)
)

has a unique expression of the form

x =
∑

t∈F
1

(−2)t where F ∈ Pf (N) and we define supp−1/2(x) = F . Further,

every such expression is in D ∩
(
(−2

3
, 0) ∪ (0, 1

3
)
)
.

Every x ∈ Q∩(0, 1) has a unique expression in the form
∑

t∈F
ax(t)
t!

where

F ∈ Pf (N) with minF > 1 and ax ∈ ×t∈F{1, 2, . . . , t − 1} and we define

suppf (x) = F . Further, every such expression is in Q ∩ (0, 1).

Let c =
∑∞

t=1
2t

(2t+1)!
and let d =

∑∞
t=1

2t−1
(2t)!

. Every x ∈ (Q \{0})∩ (−c, d)

has a unique expression in the form
∑

t∈F (−1)t bx(t)
t!

where F ∈ Pf (N) with

minF > 1 and bx ∈ ×t∈F{1, 2, . . . , t − 1} and we define supp−f (x) = F .
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Further, every such expression is in (Q \ {0}) ∩ (c, d).

One property that all of these expansions have in common is that if x

and y have disjoint supports, then the support of x + y is the union of the

supports of x and y.

The fact in the following theorem that
⋂∞
n=1 2nZ \ {0} is a copy of H

is [4, Exercise 7.2.1], except that we erroneously failed to exclude 0 in the

statement of the exercise. But the intent of the exercise was to use [4,

Theorem 7.24] which in turn cited [4, Lemma 7.4] whose proof is quite

complicated. Here we present a simple description of the function which is

simultaneously an isomorphism and a homeomorphism.

Theorem 2.1. Define ϕ : Z \ {0} → N by ϕ(x) =
∑

t∈supp−2(x)
2t and let

ϕ̃ : βZ→ βN be the continuous extension of ϕ. Then the restriction of ϕ̃ to⋂∞
n=1 2nZ \ {0} is an isomorphism and a homeomorphism onto H.

Proof. Since ϕ is injective, so is ϕ̃. Given n ∈ N, 2nZ \ {0} = {x ∈ Z \ {0} :

min supp−2(x) ≥ n} and 2nN = {x ∈ N : min supp2(x) ≥ n}. Therefore,

ϕ̃[
⋂∞
n=1 2nZ \ {0}] =

⋂∞
n=1 2nN = H.

Thus it suffices to show that the restriction of ϕ̃ to
⋂∞
n=1 2nZ \ {0} is a

homomorphism. To do this, we use [4, Theorem 4.21]. Let n ∈ N and let

x ∈ 2nZ \ {0}. Let m = max supp−2(x) + 1 and let y ∈ 2mZ \ {0}. Then

supp−2(x+ y) = supp−2(x) ∪ supp−2(y)

so ϕ(x+ y) = ϕ(x) + ϕ(y) as required.

In the following corollary we get quite explicit descriptions of disjoint

copies of H that are each left ideals of H. Corollary 3.6 has a much stronger

result (but with nonelementary proof).

Corollary 2.2. Let E = {x ∈ N : max supp2(x) is even}. Let H1 = H ∩ E
and let H2 = H∩N \ E. Then H1 and H2 partition H into clopen sets, each

of which is topologically isomorphic to H and each of which is a left ideal of

H.

Proof. Let T =
⋂∞
n=1 2nZ \ {0} and let ϕ be the function of Theorem 2.1.

Now T ∩N∗ = H so ϕ̃[T ∩N∗] is topologically isomorphic to H. If ψ : Z→ Z
is defined by ψ(x) = −x, then ψ is a homomorphism so by [4, Corollary

4.22], its continuous extension ψ̃ : βZ → βZ is an isomorphism and a

homeomorphism. Since T ∩ (−N∗) = ψ̃[T ∩ N∗], we have that T ∩ (−N∗) is

also topologically isomorphic to H and so also ϕ̃[T ∩ (−N∗)] is topologically
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isomorphic to H. Using the fact that N = {x ∈ Z \ {0} : max supp−2(x) is

even}, we see that ϕ̃[T ∩ N∗] = H1 and ϕ̃[T ∩ (−N∗)] = H2.

There are at least two ways to show that H1 and H2 are left ideals of

H. One is to use the fact that N∗ and −N∗ are both left ideals of βZ. We

will use a more direct route by letting p ∈ H1 and q ∈ H and showing

that q + p ∈ H1. (The proof for H2 is essentially the same.) We have that

q + p ∈ H so we only need to show that E ∈ q + p. We will in fact show

that for all x ∈ N, −x+E ∈ p. So let x ∈ N and let m = max supp2(x) + 1.

Then 2mN ∩ E ⊆ −x+ E.

In the next two theorems we get a simple description of an isomorphism

and a homeomorphism from O+(D) to H and from O(D) \ {0} to H.

Theorem 2.3. O+(D) and O−(D) are topologically isomorphic to H.

Proof. By Theorem 1.3 it suffices to show that O+(D) is a copy of H. Define

ϕ : D ∩ (0, 1) → N by ϕ(x) =
∑

t∈supp1/2(x)
2t−1. Define ϕ at will for x ∈

D \ (0, 1). Let ϕ̃ : βDd → βN be the continuous extension of ϕ.

We claim that the restriction of ϕ̃ to O+(D) is an isomorphism. It is in-

jective because ϕ is injective on D∩(0, 1). To see that it is a homomorphism,

we use [4, Theorem 4.21]. Let x ∈ D ∩ (0, 1) and let m = max supp1/2(x).

Let y ∈ D ∩ (0, 1
2m

). Then min supp1/2(y) > m so ϕ(x+ y) = ϕ(x) + ϕ(y).

Also, given n ∈ N, ϕ[D ∩ (0, 1
2n

)] = 2nN so ϕ̃[O+(D)] =
⋂∞
n=1 2nN =

H.

Theorem 2.4. O(D) \ {0} is topologically isomorphic to H.

Proof. Define ϕ : N → D ∩ (−2
3
, 1
3
) by ϕ(x) =

∑
t∈supp2(x)

1
(−2)t+1 and let

ϕ̃ : βN→ βDd be its continuous extension.

Let c0 = 2
3
. For n ∈ ω let d2n = d2n+1 = 1

3·4n and if n > 0, let c2n−1 =

c2n = 2
3·4n . Then for each n ∈ ω, ϕ[2nN] = (D \ {0}) ∩ (−cn, dn). (With

apologies, we leave the tedious verification of this assertion to the reader.)

As a consequence, we have that ϕ̃[H] =
⋂∞
n=1 c`βDd

(
(−cn, 0)∪ (0, dn)

)
=⋂∞

n=1 c`βDd
(−cn, 0) ∪

⋂∞
n=1 c`βDd

(0, dn) = O−(D) ∪O+(D) = O(D) \ {0}.
As before one easily establishes that ϕ̃ is an isomorphism and a homeo-

morphism.

We will obtain in Corollary 3.6 a much stronger result than the following.

Corollary 2.5. There exist H1 and H2 that partition H into clopen sets,

each of which is topologically isomorphic to H and each of which is a right

ideal of H.
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Proof. By Theorems 2.3 and 2.4 O−(D), O+(D), and O(D) \ {0} are all

topologically isomorphic to H. By [3, Lemma 2.5(d)] O−(D) and O+(D) are

right ideals of O(D) \ {0}.

We conclude this section by showing that Theorems 2.3 and 2.4 hold

if D is replaced by Q. The proofs are not quite as constructive because

we produce explicit functions that are isomorphisms and homeomorphisms

onto
⋂∞
n=1 nN and then rely on the previously established fact that

⋂∞
n=1 nN

is a copy of H.

Theorem 2.6. O+(Q) and O−(Q) are topologically isomorphic to H.

Proof. It suffices to establish that O+(Q) is a copy of H. Define ϕ : Q ∩
(0, 1)→ N by ϕ(x) =

∑
t∈suppf (x)

ax(t)(t−1)! defining ϕ at will on Q\(0, 1).

Let ϕ̃ : βQd → βN be its continuous extension. As in previous proofs, one

shows that ϕ̃[O+(Q)] =
⋂∞
n=1 n!N =

⋂∞
n=1 nN and the restriction of ϕ̃ to

O+(Q) is an isomorphism. One then invokes [4, Corollary 7.26] which says

that
⋂∞
n=1 nN is topologically isomorphic to H.

Theorem 2.7. O(Q) \ {0} is topologically isomorphic to H.

Proof. Define ϕ : N → Q \ {0} by ϕ(x) =
∑

t∈suppf (x)
(−1)t+1 cx(t)

(t+1)!
and let

ϕ̃ : βN → βQd be its continuous extension. Using ϕ̃ one shows in a now

familiar fashion thatO(Q)\{0} is topologically isomorophic to
⋂∞
n=1 nN.

3 Copies of H in H
In this section we obtain results which are applications of theorems whose

main ideas are due to Yevhen Zelenyuk in his proof that βN does not contain

any non-trivial finite groups. A topology T on a group G is left invariant

provided that for every U ∈ T and every a ∈ G, aU ∈ T . A space is

zero-dimensional provided it has a base of clopen sets.

Theorem 3.1. Let G be a group with a left invariant zero-dimensional

Hausdorff topology, and let X be a countable subspace of G which contains

the identity e of G and has no isolated points. Suppose also that, for each

a ∈ X, aX∩X is a neighborhood of a in X and that there is a neighborhood

V (a) of e in X, with V (e) = X, for which aV (a) ⊆ X. If the filter of

neigborhoods of e in X has a countable base, then
⋂
{c`βXd

W : W is a

neighborhood of e in X} \ {e} is topologically isomorphic to H.

Proof. [4, Theorem 7.24].
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Corollary 3.2. Let G be a countable metrizable topological group, with

identity e, which has no isolated points. Then O(G) \ {e} is topologically

isomorphic to H.

Proof. To see that G is zero-dimensional, let d denote a metric for G. For

every a ∈ G and every r > 0, there exists r′ ∈ (0, r) for which {x ∈ G :

d(a, x) = r′} = ∅. This implies that {x ∈ G : d(a, x) < r′} is clopen. Let

X = G and for a ∈ G, let V (a) = G. Then apply Theorem 3.1.

In Section 5 we will derive a generalization of Theorem 3.1 which re-

places the assumption that G is a group with the assumption that G is a

cancellative semigroup with identity. The proof of the generalization is quite

complicated, but still significantly simpler than the proof of [4, Lemma 7.4]

on which the proof of [4, Theorem 7.24] (and thus of Theorem 3.1) relies.

The reader who is primarily interested in the results about copies of H
and has been through the proof of [4, Theorem 7.24], or is willing to take

Theorem 3.1 on faith, is advised to ignore Section 5. On the other hand,

if she has not been through the proof of [4, Theorem 7.24] and wants to

understand the proofs of Theorems 3.4 and 3.5, she is advised to read the

proof of Theorem 5.3.

Definition 3.3. Let E be an infinite subset of N. Then YE = H∩ c`βN{x ∈
N : max supp2(x) ∈ E} and ZE = H ∩ c`βN{x ∈ N : min supp2(x) ∈ E}.

It has been known for some time that for any infinite E ⊆ N, YE is a

left ideal of H and ZE is a right ideal of H. The new information in the

following two theorems is that they are copies of H.

Theorem 3.4. Let E be an infinite subset of N. Then YE is a clopen subset

of H which is a left ideal of H and topologically isomorphic to H.

Proof. Let X = {0} ∪ {x ∈ N : max supp2(x) ∈ E}. Then YE = H ∩ X.

Since E is infinite, YE 6= ∅, and YE is trivially clopen in H. To verify that

YE is a left ideal of H, let p ∈ YE and let q ∈ H. We claim that for all

x ∈ N, −x + X ∈ p so that X ∈ q + p. (Then, since q + p ∈ H we have

q+ p ∈ YE.) So let x ∈ N and let n = 1 + max supp2(x). Then X ∩ 2nN ∈ p
and X ∩ 2nN ⊆ −x+X.

We show that YE is topologically isomorphic to H using Theorem 3.1

with G = Z. Let B = {x + 2nZ : x ∈ Z and n ∈ N}. It is routine to verify

that B is a base for a Hausdorff zero-dimensional left invariant topology on

Z.
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To see that X has no isolated points in the relative topology, let a ∈ X
and n ∈ N. Pick t ∈ E such that t > n and t > max supp2(a) if a 6= 0. Then

a+ 2t ∈ (a+ 2nZ) ∩X.

We now let a ∈ X and show that (a + X) ∩ X is a neighborhood of a

in X. If a = 0 this is trivial. So assume that a 6= 0 and pick n ∈ N such

that n > max supp2(a). We claim that (a + 2nZ) ∩ X ⊆ (a + X) ∩ X so

let y ∈ (a + 2nZ) ∩ X. Pick w ∈ Z such that y = a + 2nw. Since 2n > a,

w ≥ 0. If w = 0, then y = a + 0 ∈ (a + X), so assume w > 0. Then

max supp2(2
nw) = max supp2(y) ∈ E so 2nw ∈ X.

Let V (0) = X. For a ∈ X \ {0}, pick n ∈ N with n > max supp2(a) and

let V (a) = 2nZ ∩X. Then a+ V (a) ⊆ X.

For n ∈ N, let Wn = X ∩ 2nZ = (X ∩ 2nN) ∪ {0}. Then 〈Wn〉∞n=1 is a

neighborhood base for 0 in X.

We have established that the hypotheses of Theorem 3.1 hold. Therefore⋂∞
n=1Wn \ {0} =

⋂
{c`βXd

W : W is a neighborhood of 0 in X} \ {0} is

topologically isomorphic to H, and
⋂∞
n=1Wn \ {0} = YE.

One is tempted to modify slightly the proof of Theorem 3.4 to prove The-

orem 3.5. However, if N\E is infinite and X = {0}∪{x ∈ N : min supp2(x) ∈
E}, it is not true that for each a ∈ X, (a + X) ∩ X is a neighborhood of

a in X for the topology on Z generated by {x + 2nZ : x ∈ Z and n ∈ N}.
For example, let t ∈ E and let a = 2t. Suppose we have n ∈ N such that

(a + 2nZ) ∩ X ⊆ (a + X) ∩ X. Pick j ∈ N \ E such that j > max{t, n}.
Then a+ 2j ∈

(
(a+ 2nZ) ∩X

)
\ (a+X).

Theorem 3.5. Let E be an infinite subset of N. Then ZE is a clopen subset

of H which is a right ideal of H and is topologically isomorphic to H.

Proof. Let Y = {x ∈ N : min supp2(x) ∈ E}. Then ZE = H ∩ Y . Since

E is infinite, ZE 6= ∅, and ZE is trivially clopen in H. To verify that ZE

is a right ideal of H, let p ∈ ZE and let q ∈ H. We claim that Y \ {0} ⊆
{x ∈ N : −x + Y ∈ q} so that Y ∈ p + q. (Then, since p + q ∈ H we have

p+ q ∈ ZE.) So let x ∈ Y \{0} and let n = 1+max supp2(x). Then 2nN ∈ q
and 2nN ⊆ −x+ Y .

We show that ZE is is topologically isomorphic to H using Theorem 3.1

with G =
⊕∞

n=0 Z2. For ~x ∈ G, let supp(~x) = {n ∈ ω : xn 6= 0}. For each

n ∈ N, let

Tn = {~0} ∪ {~x ∈ G \ {~0} : min supp(~x) ∈ E and min supp(~x) ≥ n} .
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Let B = {~a+ Tn : ~a ∈ G , n ∈ N, and if ~a 6= ~0, then n > max supp(~a)}. It is

routine to verify that B is a base for a left invariant Hausdorff topology on

G.

We show now that this topology is zero-dimensional by verifying that

each member of B is closed. To this end let ~a + Tn ∈ B. Assume first

that ~a = ~0. Let ~x ∈ G \ Tn. Then ~x 6= ~0. Let m = min supp(~x) and let

k = 1+max supp(~x). Then m /∈ E or m < n. We claim that (~x+Tk)∩Tn = ∅.
Let ~z ∈ Tk \ {~0}. Then m = min supp(~x+ ~z) so ~x+ ~z /∈ Tn.

Now assume that ~a 6= ~0 and n > max supp(~a). Let ~x ∈ G \ (~a + Tn).

Then ~x 6= ~a. Assume first that max supp(~x) < n. Then there is some i ∈
{0, 1, . . . , n− 1} such that xi 6= ai so (~x+ Tn)∩ (~a+ Tn) = ∅. Thus we may

assume that k = 1+max supp(~x) ≥ n. We claim that (~x+Tk)∩(~a+Tn) = ∅,
so suppose instead that we have ~u ∈ Tk and ~v ∈ Tn such that ~x+~u = ~a+~v.

Then supp(~x+~u) = supp(~x)∪supp(~u) and supp(~a+~v) = supp(~a)∪supp(~v).

Since max supp(~x) ≥ n > max supp(~a) we have that supp(~a) is an intial

segment of supp(~x) and supp(~u) is a final segment of supp(~v), so supp(~v −
~u) = supp(~v) \ supp(~u) and thus min supp(~v − ~u) = min supp(~v) ∈ E and

min supp(~v) ≥ n so ~v − ~u ∈ Tn. Therefore ~x = ~a + (~v − ~u) ∈ ~a + Tn, a

contradiction.

Let X = {~0} ∪ {~x ∈ G \ {~0} : min supp(~x) ∈ E}. Trivially X has no

isolated points and (~0+X)∩X is a neighborhood of ~0 in X. Let V (~0) = X.

Let ~a ∈ X\{~0} and let n = 1+max supp(~a). Then (~a+Tn)∩X ⊆ (~a+X)∩X
so (~a+X)∩X is a neighborhood of ~a in X. Let V (~a) = Tn. Then ~a+V (~a) ⊆
X.

We have established that the hypotheses of Theorem 3.1 hold. Since

{Tn : n ∈ N} is a neighborhood base for ~0 in X,
⋂∞
n=1 c`βXd

Tn \ {~0} is a

topological and algebraic copy of H.

Define ψ : N → G by, for x ∈ N, ψ(x) = ~y where supp(~y) = supp2(x)

and let ψ̃ : βN→ βGd be its continuous extension. For each n ∈ N, ψ[2nN∩
Y ] = Tn \ {~0}, so the restriction of ψ̃ to ZE is an isomorphism and a

homeomorphism onto
⋂∞
n=1 c`βXd

Tn \ {~0}.

Corollary 3.6. Let n ∈ N.

(1) There is a partition of H into n clopen subsets, each of which is topo-

logically isomorphic to H and each of which is a left ideal of H.

(2) There is a partition of H into n clopen subsets, each of which is a

topological and algebraic copy of H and each of which is a right ideal

of H.
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Proof. Partition N into n infinite sets E(1), E(2), . . . , E(n). Then YE(1),

YE(2), . . . , YE(n) are as required for conclusion (1) and ZE(1), ZE(2), . . . , ZE(n)

are as required for conclusion (2).

Recall that a collection A of sets is almost disjoint if and only if the

intersection of any two members of A is finite. Recall also that there exist

a collection of c almost disjoint subsets of N where c = |R|. (An easy way

of seeing this is to pick a sequence of rationals converging to α for every

α ∈ R.) Then by Zorn’s Lemma, one may pick a maximal almost disjoint

family of cardinality c.

Corollary 3.7. Let 〈E(σ)〉σ<c enumerate a maximal almost disjoint family

of infinite subsets of N.

(1) For each σ < c, YE(σ) is a clopen topological and algebraic copy of H
which is a left ideal of H, if σ < τ < c, then YE(σ) ∩ YE(τ) = ∅, and⋃
σ<c YE(σ) is dense in H.

(2) For each σ < c, ZE(σ) is a clopen topological and algebraic copy of H
which is a right ideal of H, if σ < τ < c, then ZE(σ) ∩ ZE(τ) = ∅, and⋃
σ<c ZE(σ) is dense in H.

Proof. (1) If σ < τ < c, pick n ∈ N such that E(σ) ∩ E(τ) ⊆ {1, 2, . . . , n}.
Then 2n+1N ∩ {x ∈ N : max supp2(x) ∈ E(σ)} ∩ {x ∈ N : max supp2(x) ∈
E(τ)} = ∅ so YE(σ) ∩ YE(τ) = ∅.

To see that
⋃
σ<c YE(σ) is dense in H, suppose we have A ⊆ N such

that ∅ 6= A ∩ H and (A ∩ H) ∩
⋃
σ<c YE(σ) = ∅. Choose x1 ∈ A. Induc-

tively, having chosen 〈xt〉nt=1, choose xn+1 ∈ A such that min supp2(xn+1) >

max supp2(xn). For each n ∈ N let yn = max supp2(xn). By the maximality

of {E(σ) : σ < c} pick σ < c such that E(σ) ∩ {yn : n ∈ N} is infinite. Let

D = {n ∈ N : yn ∈ E(σ)}. Pick p ∈ N∗ such that {xn : n ∈ D} ∈ p.

Then p ∈ A ∩ H. Let X = {x ∈ N : max supp2(x) ∈ E(σ)}. Then

{xn : n ∈ D} ⊆ X so p ∈ X ∩H = YE(σ), a contradiction.

The proof of (2) is essentially the same, letting yn = min supp2(xn).

We saw in Theorems 2.3, 2.4, 2.6, and 2.7 by elementary arguments that

if S = D or S = Q, then O+(S), O−(S), and O(S)\{0} are copies of H. We

see now in the next two theorems, as a consequence of Theorem 3.1, that if

S is any countable dense subgroup of (R,+), the same conclusions hold.

Theorem 3.8. Let S be a countable dense subsemigroup of
(
[0,∞),+

)
with

the property that b − a ∈ S whenever a, b ∈ S and a ≤ b. Then O+(S) is

topologically isomorphic to H.
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Proof. We apply Theorem 3.1 with G = R and X = S. We give G the zero

dimensional first countable topology for which the sets of the form [a, b),

where a, b ∈ R and a < b, are a base. It is easy to check that the hypotheses

of Theorem 3.1 are satisfied.

One may also derive Theorem 3.8 using only Corollary 5.4 by letting

Tn = [0, 1
n
) ∩ S and B = {a+ Tn : a ∈ S and n ∈ N}.

When we add the assumption that S is dense in R, we need to add the

assumption that b− a ∈ S when b < a. But once we have done that, we in

fact have a subgroup.

Theorem 3.9. Let S be a countable dense subgroup of (R,+). Then O(S)\
{0} is topologically isomorphic to H.

Proof. This is immediate from Corollary 3.2.

4 Direct sums

Many of the results of this section depend on the notions of id and oid

introduced by John Pym in [7]. Before introducing these objects, we recall

the notions of partial semigroup and adequate partial semigroup.

Definition 4.1. (a) A partial multiplication on a set S is a function ∗
taking a nonempty subset D of S × S to S. If (x, y) ∈ D, we write

x ∗ y for ∗(x, y) and say that x ∗ y is defined .

(b) A partial semigroup is a pair (S, ∗) where ∗ is a partial multiplication

on S such that (x ∗ y) ∗ z = x ∗ (y ∗ z) for all x, y, and z ∈ S in the

sense that if either side is defined, so is the other and they are equal.

(c) Let (S, ∗) be a partial semigroup and let F ∈ Pf (S). Then σ(F ) =

{y ∈ S : x ∗ y is defined for all x ∈ F}.

(d) A partial semigroup (S, ∗) is adequate if and only if for every F ∈
Pf (S), σ(F ) 6= ∅.

Definition 4.2. (a) An id is a partial semigroup (S, ·) with an identity

1. That is, for each x ∈ S, 1 · x = x · 1 = x.

(b) If for each i in some index set I, Si is an id, then
⊕

i∈I Si = {~x ∈
×i∈ISi : {i ∈ I : xi 6= 1} is finite} is an oid .

(c) For ~x ∈
⊕

i∈I Si, supp(~x ) = {i ∈ I : xi 6= 1}.
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(d) If S =
⊕

i∈I Si is an oid and ~x, ~y ∈ S, then the oid operation ~x · ~y is

defined if and only if supp(~x ) ∩ supp(~y ) = ∅ in which case (~x · ~y)i =

xi · yi for each i ∈ I.

If each Si is a semigroup, Definition 4.2(d) conflicts with the usual defi-

nition of the operation on
⊕

i∈I Si which is defined for all ~x and ~y, but the

values agree wherever they are defined for both operations.

By [4, Lemma 6.14.1], if I is infinite and for each i ∈ I, Si is an id with at

least two elements, then the oid
⊕

i∈I Si is an adequate partial semigroup.

Lemma 4.3. Assume that I is infinite and for each i ∈ I, (Si, ·) is an id

with at least two elements. Let δS =
⋂
F∈Pf (S)

c`βSd
σ(F ). For p, q ∈ δS and

A ⊆ S, agree that A ∈ p · q if and only if {~x ∈ S : {~y ∈ S : supp(~x ) ∩
supp(~y ) = ∅ and ~x · ~y ∈ A} ∈ q} ∈ p. Then (δS, ·) is a semigroup.

Proof. This is an immediate consequence of [4, Theorem 4.22.2].

In the case that |Sn| = 2 for each n ∈ N, the following result was

established by Pym in [7].

Theorem 4.4. For each n ∈ N let Sn be a countable id with at least two

members and identity 1n, and let S =
⊕∞

n=1 Sn. Let ~1 = 〈1n〉n∈N ∈ S.

For n ∈ N, let Un = {~1 } ∪ {~x ∈ S \ {~1 } : min supp(~x ) > n}. Then

δS =
⋂∞
n=1 c`βSd

Un and δS \ {~1 } is topologically isomorphic to H.

Proof. To see that δS =
⋂∞
n=1 c`βSd

Un, assume first that p ∈ δS and let

n ∈ N. For i ∈ {1, 2, . . . , n} pick ai ∈ Si \{1i} and define ~x ∈ S by xi = ai if

i ≤ n and xi = 1i otherwise. Then σ({~x }) = Un so Un ∈ p. Now assume that

p ∈
⋂∞
n=1 c`βSd

Un and let F ∈ Pf (S). Let n = max
⋃
{supp(~x ) : ~x ∈ F}.

Then Un ⊆ σ(F ) so σ(F ) ∈ p.
For n ∈ N, if Sn is infinite, let Gn = Z; if |Sn| = k ∈ N \ {1}, let

Gn = Zk. Let G =
⊕∞

n=1Gn with the topology inherited from ×∞n=1Gn

with the product topology where each Gn is discrete. Given ~x ∈ G, let

supp(~x ) = {n ∈ N : xn 6= 0}. For n ∈ N, let Tn = {~0 } ∪ {~x ∈ G \
{~0 } : min supp(~x ) > n}. It is well known, and easy to see, that G is a

Hausdorff zero-dimensional topological group with no isolated points. And

{Tn : n ∈ N} is a neighborhood base for ~0 in G. Thus by Corollary 3.2,

O(G) \ {~0 } is topologically isomorphic to H.

For each n ∈ N, pick a bijection ϕn : Sn → Gn with ϕn(1) = 0, and

define ψ : S → G by, for n ∈ N and ~x ∈ S, ψ(~x )n = ϕn(xn), noting that

ψ is a bijection. Let ψ̃ : βSd → βGd be the continuous extension of ψ and

note that ψ̃ is also a bijection.
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If ~x, ~y ∈ S and supp(~x ) ∩ supp(~y ) = ∅, then ψ(~x · ~y ) = ψ(~x ) + ψ(~y ).

That is, ψ is a surjective partial semigroup homomorphism from S to G so

by [4, Theorem 4.22.3], the restriction of ψ̃ to δS is a homomorphism into

δG = βGd.

Given n ∈ N, ψ[Un] = Tn so ψ̃[δS \ {~1 }] = ψ̃[(
⋂∞
n=1 c`βSd

[Un]) \ {~1 }] =

(
⋂∞
n=1 c`βGd

Tn) \ {~0 }] = O(G) \ {~0 }.

Corollary 4.5. For n ∈ N, let Sn be a countable id with identity 1n and at

least two members and let S =
⊕∞

n=1 Sn. Let ~1 = 〈1n〉n∈N ∈ S. Give S the

topology it inherits from ×∞n=1Sn where each Sn is discrete. For n ∈ N, let

Un = {~1 } ∪ {~x ∈ S \ {~1 } : min supp(~x ) > n}. Then O(S) =
⋂∞
n=1 c`βSd

Un

and O(S) \ {~1 } is topologically isomorphic to H.

Proof. This follows immediately from Theorem 4.4 and the fact that the

sets Un are a base for the neighborhoods of ~1 in S.

Corollary 4.6. Enumerate the primes as 〈pn〉∞n=1. For n ∈ N, let Tn = {x ∈
N : for all i ∈ {1, 2, . . . , n} , pi does not divide x}. Then (

⋂∞
n=1(c`βNTn) \

{1}, ·) is topologically isomorphic to H.

Proof. (N, ·) is isomorphic to (
⊕∞

n=1 ω,+) so this follows from Corollary 4.5

with each Sn = ω.

We write Q+ = Q ∩ (0,∞). Given x ∈ Q+ and a prime p we say that p

does not occur in x provided that when x is written in lowest terms, p does

not divide either the numerator or denominator of x.

Corollary 4.7. Enumerate the primes as 〈pn〉∞n=1. For n ∈ N, let Mn =

{x ∈ Q+ : for all i ∈ {1, 2, . . . , n} , pi does not occur in x}. Then(
(
⋂∞
n=1 c`βQ+

d
Mn) \ {1}, ·)

)
is topologically isomorphic to H.

Proof. (Q+, ·) is isomorphic to (
⊕∞

n=1 Z,+) so this follows from Corollary

4.5 with each Sn = Z.

This last corollary raises the question of whether, letting

Rn = {x ∈ Q \ {0} : for all i ∈ {1, 2, . . . , n} , pi does not occur in x} ,

one has
(
(
⋂∞
n=1 c`βQd

Rn) \ {1}, ·
)

is topologically isomorphic to H. That is

easily seen to be false because −1 ∈ (
⋂∞
n=1 c`βQd

Rn) \ {1} and H has no

isolated points. Naturally, we ask whether
(
(
⋂∞
n=1 c`βQd

Rn) \ {1,−1}, ·
)

is

topologically isomorphic to H. We see in fact it is not even isomorphic to

any subset of βN.
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Theorem 4.8. Enumerate the primes as 〈pn〉∞n=1. For n ∈ N, let

Rn = {x ∈ Q \ {0} : for all i ∈ {1, 2, . . . , n} , pi does not occur in x} .

Then
(
(
⋂∞
n=1 c`βQd

Rn) \ {1,−1}, ·
)

is not isomorphic to any subset of βN.

Proof. Let X = (
⋂∞
n=1 c`βQd

Rn)\{1,−1}. For p ∈ βQd let −p = (−1) ·p. By

[4, Theorem 4.23], Q is contained in the center of (βQd, ·) so for p, q ∈ βQd,

(−p)·(−q) = p·q and (−p)·q = p·(−q) = −(p·q). For n ∈ N, (−1)·Rn = Rn

so if p ∈ X, then −p ∈ X. By [4, Theorem 4.20], (X, ·) is a compact right

topological semigroup, so pick an idempotent p ∈ X. Then {p,−p} is a two

element subgroup of X. By Zelenyuk’s Theorem [4, Theorem 7.17], (N∗,+)

has no notrivial finite groups, so neither does (βN,+).

We say that a commutative semigroup S with identity 0 has a base if

and only if there exist sequences 〈bn〉∞n=1 in S and 〈kn〉∞n=1 in N \ {1} such

that each x ∈ S \ {0} has a unique expression in the form
∑

n∈F mx(n)bn,

where F ∈ Pf (N) and mx ∈×n∈F{1, 2, . . . , kn − 1}. We let supp(x) = F .

We have seen many examples of semigroups that have a base.

Theorem 4.9. Let S be a semigroup with a base and let 〈bn〉∞n=1 and 〈kn〉∞n=1

be as in the definition. For n ∈ N, let Tn = {0}∪{x ∈ S\{0} : min supp(x) ≥
n}. Then (

⋂∞
n=1 c`βSd

Tn) \ {0} is topologically isomorphic to H.

Proof. Let G =
⊕∞

n=1 Zkn and let G have the topology inherited from

×∞n=1Zkn with the product topology. As in the proof of Theorem 4.4, we

have that O(G) \ {~0 } is topologically isomorphic to H.

For n ∈ N, define ~en ∈ G by ~en(n) = 1 and ~en(j) = 0 if j 6= n. Define

ϕ : S → G by ϕ(0) = ~0 and if x ∈ S \{0}, ϕ(x) =
∑

n∈supp(x)mx(n)~en. Let

ϕ̃ : βSd → βGd be the continuous extension of ϕ. Then ϕ̃[
⋂∞
n=1 c`βSd

Tn] =

O(G) and by [4, Theorem 4.21] the restriction of ϕ̃ to
⋂∞
n=1 c`βSd

Tn is a

homomorphism, and since ϕ is bijective, this restriction is an isomorphism

and a homeomorphism.

As a consequence of Theorem 4.9, for any k ∈ N\{1}, using base k+1, one

has that
⋂∞
n=1 c`βNk

nN is topologically isomorphic to H; using base −(k+1),

one has that (
⋂∞
n=1 c`βZk

n) \ {0} is topologically isomorphic to H. Using

the factorial base, one can also conclude that
⋂∞
n=1 c`βNn!N is topologically

isomorphic to H, a fact that we knew allready because
⋂∞
n=1 c`βNn!N =⋂∞

n=1 c`βNnN.

If for each n ∈ N, Sn is a countable dense subsemigroup of ([0,∞),+) or

of (R,+), then by Corollary 4.5, if each Sn is given the discrete topology and
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S =
⊕∞

n=1 Sn is given the product topology, then O(S)\{~0 } is topologically

isomorphic to H. We see now that with additional assumptions the same

conclusion follows when Sn has the relative topology inherited from R

Theorem 4.10. For each i ∈ N, let Si be a countable dense subsemigroup

of ([0,∞),+) such that whenever a ≤ b in Si, one has b− a ∈ Si and let Si

have the relative topology from R with its usual topology. Let S =
⊕∞

i=1 Si

with the topology inherited from ×∞i=1Si with the product topology. Then

O(S) \ {~0 } is topologically isomorphic to H.

Proof. As in the proof of Theorem 3.8, we give R the zero dimensional first

countable topology which has the sets of the form [a, b), where a, b ∈ R
and a ≤ b, as a base. For each n ∈ N, let Rn denote a copy of R with this

topology, and let Tn denote Sn with the relative topology that it has as a

subspace of Rn. It is easy to check that the hypotheses of Theorem 3.1 are

satisfied with G =
⊕∞

n=1Rn and X =
⊕∞

n=1 Tn. So O(T ) is a copy of H.

Our claim now follows from the fact that the neighborhoods of 0 in S and

in
⊕∞

n=1 Tn coincide.

Alternatively, one may prove Theorem 4.10 using Corollary 5.4 instead of

Theorem 3.1 by letting Tn = {~x ∈ S : (∀i ∈ {1, 2, . . . , n})(xi ∈ [0, 1
n
)∩ Si)}.

Theorem 4.11. For each i ∈ N, let Si be a countable dense subgroup of

(R,+) and let Si have the relative topology from R with its usual topology.

Let S =
⊕∞

i=1 Si with the topology inherited from ×∞i=1Si with the product

topology. Then O(S) \ {~0 } is topologically isomorphic to H.

Proof. This is an immediate consequence of Corollary 3.2.

5 Generalization of Theorem 3.1

In this section we derive Theorem 5.3 which is a generalization of Theorem

3.1. It replaces the assumption that G is a group by the assumption that G

is a cancellative semigroup with identity.

The proof of Theorem 5.3 is a consequence of Theorem 5.2 which is

adapted from the proof of [4, Lemma 7.4] whose main ideas are due to

Yevhen Zelenyuk. The proof of Theorem 5.2 is simpler than the proof of [4,

Lemma 7.4] because it proves less. (Here we only include the conclusions

needed to prove Theorem 5.3; in [4], additional conclusions were needed for

other applications of Lemma 7.4.)

We incorporate now some of the notation from [4, Section 7.1].
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Definition 5.1. (a) F will denote the free semigroup on the letters 0 and

1 with identity ∅.
(b) If m ∈ ω and i ∈ {0, 1, 2, . . . ,m}, smi will denote the element of F

consisting of i 0’s followed by m− i 1’s. We also write um = smm
(so u0 = ∅ ).

(c) If s ∈ F , l(s) will denote the length of s

and suppF (s) = {i ∈ {1, 2, . . . , l(s)} : si = 1} where si is the ith letter of s.

(d) If s, t ∈ F , we shall write s << t if max suppF (s)+1 < min suppF (t).

(e) If s, t ∈ F , we define s+ t to be the element of F for which l(s+ t) =

max{l(s), l(t)} and (s+ t)i = 1 if and only if si = 1 or ti = 1.

(f) Given any t ∈ F , t has a unique representation in the form t =

sm0
i0

+ sm1
i1

+ . . . + smk
ik

where 0 ≤ i0 < m0 < i1 < m1 < . . . < ik ≤ mk

(except that, if k = 0, the requirement is 0 ≤ i0 ≤ m0). We shall call this

the canonical representation of t. When we write t = sm0
i0

+ sm1
i1

+ . . .+ smk
ik

we shall assume that this is the canonical representation.

(g) Given t ∈ F , if t = smi for some i,m ∈ ω, then t′ = ∅ and t∗ = t.

Otherwise, if t = sm0
i0

+ sm1
i1

+ . . . + s
mk+1

ik+1
, then t′ = sm0

i0
+ sm1

i1
+ . . . + smk

ik

and t∗ = s
mk+1

ik+1
.

For example 011001110001 = s31 + s85 + s1211 and 101110 = s10 + s52 + s66.

Theorem 5.2. Assume that G is a cancellative semigroup with identity e

and that X is a countably infinite subset of G with e ∈ X. Well order X

in order type ω. Assume that G has a Hausdorff topology and there is a

decreasing sequence 〈Tn〉∞n=1 of subsets of G such that {Tn : n ∈ N} is a

neighborhood base for e consisting of sets clopen in G and for each a ∈ X
there exists m ∈ N such that {aTn : n ≥ m} is a neighborhood base for a

consisting of sets clopen in G. Assume that X has no isolated points, for

each a ∈ X, aX ∩X is a neighborhood of a in X, and for each a ∈ X, we

have a neighborhood V (a) of e in X such that aV (a) ⊆ X and V (e) = X.

Assume that 〈Wn〉∞n=1 is a sequence of neighborhoods of e in X.

We can define x(t) ∈ X and X(t) ⊆ X for each t ∈ F such that x(∅) = e,

X(∅) = X and for each k ∈ ω we can define ak ∈ X and tk ∈ F such that

(i) ak = minX \ {x(t) : t ∈ F and l(t) ≤ k};

(ii) ak ∈ X(tk
_1);

(iii) ak = x(tk
_1); and

(iv) l(tk) = k.
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Further, for each t ∈ F ,

(1) X(t) is clopen in X;

(2) x(t) ∈ X(t);

(3) X(t) = X(t_0) ∪X(t_1) and X(t_0) ∩X(t_1) = ∅;

(4) x(t_0) = x(t);

(5) x(t) = x(t′)x(t∗);

(6) X(t) = x(t′)X(t∗); and

(7) X(t∗) ⊆ V
(
x(t′)

)
.

Further,

(8) for s, t ∈ F , x(s) = x(t) if and only if s = t, s = t_0 . . . 0 or t =

s_0 . . . 0;

(9) for each n ∈ N \ {1}, X(un) ⊆ Wn−1;

(10) if t, r ∈ F and t << r, then x(t+ r) = x(t)x(r); and

(11) for every n ∈ ω, x[unF ] = X(un) and in particular x[F ] = X.

Proof. Let U = {Tn : n ∈ N}. The proof proceeds by induction on l(t)

establishing hypotheses (i) through (iv) and (1) through (9).

When the induction is complete, conclusions (10) and (11) will be estab-

lished.

We let x(∅) = e and X(∅) = X. Let a0 = min(X \ {e}), let t0 = ∅, pick

U0 ∈ U such that a0 /∈ U0. Let X(0) = U0 ∩ X, X(1) = X \ U0, x(0) = e,

and x(1) = a0.

Now let n ∈ N, and assume we have chosen 〈ak〉n−1k=0 , 〈tk〉n−1k=0 , and x(t)

and X(t) for all t ∈ F with l(t) ≤ n satisfying (i), (ii), (iii), (iv), and (1)-(9),

where as an induction hypothesis (8) includes the assertion that l(s) ≤ n

and l(t) ≤ n and (3) and (4) include the assertion that l(t) < n.

We first verify the hypotheses for n = 1 and l(t) ≤ 1. One can simply

check hypotheses (i) through (iv) and (1) through (4). For (5), (6), and (7),

note that ∅′ = ∅∗ = ∅, 0′ = 1′ = ∅, 0∗ = 0, and 1∗ = 1. For hypothesis (8),

if l(s) ≤ 1, l(t) ≤ 1, t 6= s and x(t) = x(s), then {t, s} = {∅, 0}. Hypothesis

(9) is vacuous. Thus the hypotheses are satisfied for n = 1.
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By hypothesis (3), {X(t) : l(t) = n} is a partition of X. Let

an = min(X \ {x(t) : l(t) ≤ n})

and pick the unique tn with l(t) = n such that an ∈ X(tn). Then hypotheses

(i) and (iv) are satisfied. (We have to wait until X(tn
_1) and x(tn

_1) have

been defined to verify (ii) and (iii).)

By hypothesis (6), X(tn) = x(t′n)X(t∗n) so pick cn ∈ X(t∗n) such that

an = x(t′n)cn.

For s ∈
{
sni : i ∈ {0, 1, . . . , n}

}
, choose bs ∈ X(s) such that bs 6= x(s).

(Recall that X has no isolated points so X(s) is not finite.) If s = t∗n, let bs =

cn. (By hypothesis (5), x(tn) = x(t′n)x(t∗n) = x(t′n)x(s) and an = x(t′n)cn.

Since an 6= x(tn), cn 6= x(s).) Define x(s_0) = x(s) and x(s_1) = bs.

Now assume that t ∈ F , l(t) = n, and t /∈
{
sni : i ∈ {0, 1, . . . , n}

}
.

Then t∗ ∈
{
sni : i ∈ {0, 1, . . . , n}

}
so x(t∗_1) has been defined. We de-

fine x(t_0) = x(t) and x(t_1) = x(t′)x(t∗_1). Note that if s ∈
{
sni :

i ∈ {0, 1, . . . , n}
}

, then s′ = ∅ and s∗ = s so x(s_1) = ex(s∗_1) =

x(s′)x(s∗_1).

We choose Un ∈ U such that

(a) Un ∩X ⊆ Wn,

(b) Un ∩X ⊆ V
(
x(v)

)
for all v ∈ F with l(v) ≤ n,

(c) x(v)Un ∩ X ⊆ x(v)X and x(v)Un ∩ X is clopen in X for all v ∈ F

with l(v) ≤ n,

(d) an /∈ x(tn)Un,

(e) if t ∈ F and l(t) = n, then x(t)Un ∩X ⊆ X(t), and

(f) if t ∈ F and l(t) = n, then x(t_1) /∈ x(t)Un.

It is enough to show that for each of the items, a member of U can be

found satisfying that item. It is trivially possible to satisfy (a) and (b). For

(c), let v ∈ F with l(v) ≤ n. Pick m ∈ N such that {x(v)Tn : n ≥ m}
is a neighborhood base for x(v) in G consisting of sets clopen in G. Also

x(v)X ∩ X is a neighborhood of x(v) in X. So we may pick k ≥ m such

that x(v)Tk ∩ X ⊆ x(v)X ∩ X. For (d) we use the fact that the topology

is Hausdorff and an /∈ {x(t) : l(t) ≤ n}. For (e), given t ∈ F with l(t) = n

we have that x(t) ∈ X(t) which is clopen in X and for sufficiently large k,

x(t)Tk is clopen in G. To see that we can satisfy (f), assume t ∈ F with
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l(t) = n. By hypothesis (5) x(t) = x(t′)x(t∗), x(t∗_1) = bt∗ 6= x(t∗), and

x(t_1) = x(t′)x(t∗_1), so x(t_1) 6= x(t).

Let X(t_0) = x(t)Un∩X and X(t_1) = X(t)\X(t_0). This completes

the inductive definitions for n.

We claim that for any v ∈ F with l(v) ≤ n, x(v)Un∩X = x(v)(Un∩X),

so let such v be given. By (c), x(v)Un ∩X ⊆ x(v)X so

x(v)Un ∩X ⊆ x(v)Un ∩ x(v)X = x(v)(Un ∩X) .

Also by (b), Un ∩ X ⊆ V
(
x(v)

)
and by the hypotheses of the theorem,

x(v)V
(
x(v)

)
⊆ X, so x(v)(Un ∩X) ⊆ x(v)V

(
x(v)

)
⊆ X so x(v)(Un ∩X) ⊆

x(v)Un ∩X.

We need to verify that hypotheses (ii), (iii), and (1) through (9) are

satisfied. For (ii), using (d) we have that an /∈ x(tn)Un so an /∈ X(tn
_0).

Also, an ∈ X(tn), so an ∈ X(tn) \X(tn
_0) = X(tn

_1).

For (iii) we have an = x(t′n)cn = x(t′n)bt∗n = x(t′n)x(t∗n
_1). If tn /∈{

sni : i ∈ {0, 1, . . . , n}
}

, then we defined x(tn
_1) = x(t′n)x(t∗n

_1) so an =

x(tn
_1). If tn ∈

{
sni : i ∈ {0, 1, . . . , n}

}
, then t′n = ∅ and t∗n = tn so

x(tn
_1) = ex(t∗n

_1) = x(t′n)x(t∗n
_1) and thus an = x(tn

_1).

To verify hypotheses (1) through (7), let t ∈ F with l(t) = n. Since

x(t)Un ∩ X is clopen in X, hypothesis (1) holds immediately for t_0 and

t_1. For hypothesis (2), x(t_0) = x(t) ∈ x(t)Un ∩ X = X(t_0). Also,

x(t∗_1) = bt∗ ∈ X(t∗) so x(t_1) = x(t′)x(t∗_1) ∈ x(t′)X(t∗) = X(t) by

hypothesis (6) and x(t_1) /∈ x(t)Un by (f) so x(t_1) ∈ X(t) \ x(t)Un ⊆
X(t) \X(t_0) = X(t_1).

Since x(t)Un ∩X ⊆ X(t), (3) holds immediately as does (4).

Now let v = t_1 and w = t_0. We show that hypotheses (5) through

(7) hold for v and w. There are four possibilities for t. That is t = snn, t = sni
for some i < n, t = sm0

i0
+ sm1

i1
+ . . .+ smk

mk
, or t = sm0

i0
+ sm1

i1
+ . . .+ smk

ik
for

some ik with mk−1 < ik < mk. By separately considering these four cases,

we determine that

� v′ = t′,

� v∗ = t∗_1,

� t = w′ or t = w′ followed by one or more 0’s (so x(t) = x(w′)),

� x(t) = x(w′), and

� w∗ = un+1 = sn+1
n+1.
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Now x(v) = x(t′)x(t∗_1) = x(v′)x(v∗) and x(w) = x(t) = x(t)e =

x(w′)x(w∗) so (5) holds.

X(un+1) = X(un
_0) = x(un)Un∩X = Un∩X so X(w) = x(t)Un∩X =

x(t)(Un ∩ X) = x(w′)X(un+1) = x(w′)X(w∗) so (6) holds for w. To verify

(6) for v, we use the fact that l(t∗) = n.

X(v) = X(t) \X(t_0)
= X(t) \ (x(t)Un ∩X)
= x(t′)X(t∗) \

(
x(t′)x(t∗)(Un ∩X)

)
= x(t′)

(
X(t∗) \ x(t∗)(Un ∩X)

)
= x(t′)

(
X(t∗) \ (x(t∗)Un ∩X)

)
= x(t′)X(t∗_1)
= x(v′)X(v∗).

To verify (7), X(v∗) = X(t∗_1) ⊆ X(t∗) ⊆ V
(
x(t′)

)
= V

(
x(v′)

)
and

X(w∗) = X(un+1) = x(un)Un ∩X = Un ∩X ⊆ V
(
x(t)

)
= V

(
x(w′)

)
.

Hypothesis (8) follows immediately from the fact that for any t, x(t_0) ∈
X(t_0), x(t_1) ∈ X(t_1), and X(t_0) ∩X(t_1) = ∅.

For hypothesis (9), we have X(un+1) = X(un
_0) = x(un)Un ∩ X =

Un ∩X ⊆ Wn.

This completes the inductive construction. We still need to verify that

conclusions (10) and (11) hold.

If t = sm0
i0

+ sm1
i1

+ . . .+ smk
ik

, one easily shows by induction on k using (5)

that x(t) = x(sm0
i0

)x(sm1
i1

) · · ·x(smk
ik

). If t << r, t = sm0
i0

+ sm1
i1

+ . . . + smk
ik

,

and r = sn0
j0

+ sn1
j1

+ . . . + snl
jl

, then the canonical representation of t + r is

sm0
i0

+ sm1
i1

+ . . .+ smk
ik

+ sn0
j0

+ sn1
j1

+ . . .+ snl
jl

unless ik = mk in which case it

is sm0
i0

+ sm1
i1

+ . . .+ s
mk−1

ik−1
+ sn0

j0
+ sn1

j1
+ . . .+ snl

jl
. Since x(smk

mk
) = e one has

in either case that x(t+ r) = x(t)x(r) so (10) holds.

To verify (11), we note first that each a ∈ X occurs eventually as a value

of x. For otherwise, let a = min(X \ x[F ]). There are only finitely many

precessors so a = an for some n and then by (iii), an = x(tn
_1).

Now for n ∈ ω and t ∈ F , x(unt) ∈ X(unt) ⊆ X(un) so x[unF ] ⊆ X(un).

Now suppose that a ∈ X(un)\x[unF ]. We have seen that a = x(v) for some

v so v ∈ F \ unF . Since e = x(un) ∈ x[unF ], a 6= e so v /∈ {um : m < ω} so

suppF (v) 6= ∅. Let k = min suppF (v). Then k ≤ n since otherwise v ∈ unF .

Then x(v) ∈ X(skk−1) and X(un) ⊆ X(uk). Since X(skk−1) ∩X(uk) = ∅, we

have a = x(v) /∈ X(un), a contradiction.

Theorem 5.3. Assume that G is a cancellative semigroup with identity e

and that X is a countably infinite subset of G with e ∈ X. Assume that G has

a Hausdorff topology and there is a decreasing sequence 〈Tn〉∞n=1 of subsets
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of G such that for each a ∈ X there exists m ∈ N such that {aTn : n ≥ m}
is a neighborhood base for a consisting of sets clopen in G. Assume that X

has no isolated points, for each a ∈ X, aX ∩ X is a neighborhood of a in

X, and for each a ∈ X, we have a neighborhood V (a) of e in X such that

aV (a) ⊆ X and V (e) = X. Assume that 〈Wn〉∞n=1 is a neighborhood base

for e in X and let Y = (
⋂∞
n=1 c`βXd

Wn) \ {e}. Then Y is is topologically

isomorphic to H.

Proof. Pick x(t) and X(t) for t ∈ F satisfying conclusions (1) through (11)

of Theorem 5.2. Given n ∈ N, X(un) is a neighborhood of x(un) = e in X

so there is m ∈ N such that Wm ⊆ X(un). By conclusion (9), for each n,

X(un+1) ⊆ Wn. Therefore V =
⋂∞
n=1X(un) \ {e}.

Define ψ : X → ω by ψ(e) = 0 and for t ∈ F \ {e},

ψ
(
x(t)

)
=
∑

i∈suppF (t) 2i−1 .

By conclusion (8) we have that ψ is well defined and injective. it is trivially

surjective. Let ψ̃ : βXd → βω be the continuous extension of ψ.

Given n ∈ N, X(un) \ {e} = x[unF ] \ {e} so X(un) \ {e} = {x(t) : t ∈
F , suppF (t) 6= ∅, and min suppF (t) > n}. Consequently, ψ[X(un) \ {e}] =

2nN so that ψ̃[Y ] = H.

We show that Y is a semigroup using [4, Theorem 4.20] and that ψ̃ is a

homomorphism using [4, Theorem 4.21]. Since ψ̃ is injective, this will suffice.

So let n ∈ N and let v ∈ X(un)\{e}. Pick t ∈ F such that suppF (t) 6= ∅,
min suppF (t) > n, and x(t) = v. Let m = max suppF (t) + 1 and let

w ∈ X(um)\{e}. To complete the proof we will show that vw ∈ X(un)\{e}
and that ψ(vw) = ψ(v) + ψ(w). Pick r ∈ F such that suppF (r) 6= ∅,
min suppF (r) > m, and x(r) = w. Then vw = x(t)x(r) = x(t + r) by con-

clusion (10) and suppF (t+r) = suppF (t)∪suppF (r). Thus x(t+r) ∈ X(un)\
{e} and ψ(vw) =

∑
i∈suppF (t+r) 2i−1 =

∑
i∈suppF (t) 2i−1 +

∑
i∈suppF (r) 2i−1 =

ψ(v) + ψ(w).

Most of our results involve semigroups written additively, and some fol-

low from the following corollary.

Corollary 5.4. Let (S,+) be a countable cancellative semigroup with iden-

tity 0. Assume that there exist a decreasing sequence 〈Tn〉∞n=1 of subsets of

S and m : S → N such that m(0) = 1, {a+ Tn : a ∈ S and n ≥ m(a)} is a

base for a Hausdorff topology on S consisting of clopen sets, and S has no

isolated points. Assume also that for each a ∈ S, {a + Tn : n ≥ m(a)} is

a neighborhood base for a. Then O(S) = (
⋂∞
n=1 c`βSd

Tn) and O(S) \ {0} is

topologically isomorphic to H.
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Proof. It is immediate that O(S) = (
⋂∞
n=1 c`βSd

Tn). We apply Theorem 5.3

with G = S = X. Given a ∈ X, a+ Tm(a) ⊆ (a+X)∩X so (a+X)∩X is

a neighborhood of a in X. For each a ∈ X, let V (a) = X.

The proof of Theorem 3.4 using Theorem 5.3 is verbatim the same as its

proof in Section 3. The proof of Theorem 3.5 using Theorem 5.3 is slightly

shorter than its proof in Section 3, since one may let G = ω and dispense

with the last paragraph of the proof.
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