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Abstract. The set 0+ of ultrafilters on (0, 1) that converge to 0 is a semi-
group under the restriction of the usual operation + on βRd , the Stone-Čech
compactification of the discrete semigroup (Rd,+). It is also a sumbsemigroup
of β

(
(0, 1)d, ·

)
. The interaction of these operations has recently yielded some

strong results in Ramsey Theory. Since (0+, ·) is an ideal of β
(
(0, 1)d, ·

)
, much

is known about the structure of (0+, ·). On the other hand, (0+,+) is far from
being an ideal of (βRd,+) so little about its algebraic structure follows from
known results.

We characterize here the smallest ideal of (0+,+), its closure, and those
sets “central” in (0+,+), that is, those sets which are members of minimal
idempotents in (0+,+). We derive new combinatorial applications of those sets
that are central in (0+,+).

1. Introduction.

Given a discrete semigroup (S, ·), it is well known that one can extend
the operation · to βS , the Stone-Čech compactification of S so that (βS , ·) is a
right topological semigroup (i.e. for each p ∈ βS , the function ρp : βS −→ βS ,
defined by ρp(q) = q ·p , is continuous) with S contained in the topological center
(i.e. for each x ∈ S , the function λx : βS −→ βS , defined by λx(p) = x · p , is
continuous). Further, this operation has frequently proved to be useful in Ramsey
Theory. See [10] for an elementary introduction to the semigroup (βS , ·) and
its combinatorial applications.

It is also well known that if S is not discrete, such an extension may not
be possible. (See Section 2 of this paper where it is shown how bad the situation
is for any dense subsemigroup of ([0,∞],+).) Since known facts about compact
right topological semigroups were utilized in the combinatorial applications, it
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seemed that the Stone-Čech compactification was not likely to be a useful tool
in the study, say, of Ramsey Theory in the real interval (0, 1).

Surprisingly, however, it has turned out to be possible to use the algebraic
structure of βRd to obtain Ramsey Theoretic results that are stated in terms
of the usual topology on R. (Given a topological space X , the notation Xd

represents the set X with the discrete topology.) For example, it was shown in
[2], as a corollary to a much stronger result, that if F is a finite partition of (0, 1)
and if either every member of F is Lebesgue measurable or every member of F
is a Baire set (i.e. a member of the smallest σ -algebra containing the open sets
and the nowhere dense sets), then there exist some A ∈ F and some sequence
〈xn〉∞n=1 with Σn∈F xn ∈ A and Πn∈F xn ∈ A whenever F is a finite nonempty
subset of N.

Specifically, consider the semigroup
(
(0, 1), ·

)
and let

0+ =
⋂

ε>0 c`β(0,1)d
(0, ε) .

Then 0+ is a two sided ideal of (β(0, 1)d, ·), so contains the smallest ideal of
(β(0, 1)d, ·). (See [3] for basic information about the smallest ideal of a compact
right topological semigroup.) This simple algebraic fact then yielded the results
mentioned above.

Many things are known about the smallest ideal of (βS, ·) where (S, ·)
is any discrete semigroup, and these facts automatically apply to the smallest
ideal of (0+, ·), since that is the same as the smallest ideal of (β(0, 1)d, ·). For
example [8, Corollary 4.6] the closure of the smallest ideal of (0+, ·) is itself an
ideal of (0+, ·).

It turns out that 0+ is also a subsemigroup of (βRd,+). However, it
is far from being an ideal of (βRd,+), so a description of the smallest ideal of
(0+,+) does not follow from known results about arbitrary discrete semigroups.
In Section 3 we characterize the members of the smallest ideal of (0+,+) and its
closure. We also describe those subsets of R that have idempotents in (0+,+)
in their closure.

Especially important in the combinatorial applications have been the
“central” sets, i.e. those sets with idempotents in the intersection of their closure
with the smallest ideal. In Section 4 we describe sets that are “central near 0”,
and in Section 5 we derive new combinatorial results from their existence.

For most of our results, we don’t actually need to work with all of (R,+),
so we derive these results for an arbitrary subsemigroup of (R,+) which is dense
in (0,∞), such as the positive rationals.

We take the points of βS (where S is discrete) to be the ultrafilters
on S , the principal ultrafilters being identified with the points of S . If (S, +)
is a discrete semigroup, p, q ∈ βS and A ⊆ S , then A ∈ p + q if and only if
{x ∈ S : −x + A ∈ q} ∈ p , where −x + A = {y ∈ S : x + y ∈ A} . We again refer
the reader to [10] for an elementary introduction, with the caution that (βS,+)
is taken there to be left rather than right topological.

Given a set A , we write Pf (A) for the set of finite nonempty subsets of
A .

2. Stone-Čech Compactifications of Subsemigroups of (R,+) .

The plural “compactifications” in the section title reflects the fact that
we will deal here with both βS and βSd , where S is a dense subsemigroup of(
[0,∞),+

)
. We show first why one cannot do algebra nicely on βS . Then we

establish some elementary facts about the algebra of βSd .
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We have mentioned that we take the points of βSd to be the ultrafilters
on S . We will not be doing enough with βS to care what particular construction
one takes. We merely assume that S is a dense subspace of the compact
Hausdorff space βS and that given any continuous f : S −→ X , there is a
continuous extension fβ of f taking βS to X .

As we have remarked, in the case of βSd one gets an operation + such
that ρp is continuous for each p ∈ βSd and λx is continuous for each x ∈ S ,
where ρp(q) = q + p and λx(q) = x + q .

We see below that if S is any dense subsemigroup of
(
[0,∞),+

)
, one

cannot do this. The point of requiring that λx be continuous for each x ∈ S is
that it provides a connection between the operation of βS and that of S which
is needed for the combinatorial applications. We will return to further discussion
of this point after Theorem 2.1.

Note that in the following theorem we do not assume that the operation
on βS is associative.

Theorem 2.1. Let S be a dense subsemigroup of
(
[0,∞),+

)
and denote also

by + an extension to βS such that λx is continuous for each x ∈ S . There is
a point p of βS such that ρp is discontinuous at each point of S .

Proof. Choose sequences 〈xn〉∞n=1 and 〈yn〉∞n=1 in S such that x1 < 1 and
for each n ∈ N , xn+1 ≤ 1

2xn and yn+1 ≥ yn + 1. let

A =
⋃∞

m=1

⋃m
n=1

(
[ym + x4n+1, ym + x4n] ∩ S

)
and

B =
⋃∞

m=1

⋃m
n=1

(
[ym + x4n+3, ym + x4n+2] ∩ S

)
.

Note that, since the listed endpoints are all in S , one has z+A and z+B
are disjoint closed subsets of S for any z ∈ S , and consequently c`βS(z + A) ∩
c`βS(z + B) = Ø. (See [7] for this and other basic facts about the Stone-Čech
compactification.)

Now we claim that c`βS B ∩
⋂∞

n=1 c`βS(A − x4n+1) 6= Ø, for which it
suffices to note that given k ∈ N ,

[yk + x4k+3, yk + x4k+2] ∩ S ⊆ B ∩
⋂k

n=1(A− x4n+1).

Pick p ∈ c`βS B ∩
⋂∞

n=1 c`βS(A− x4n+1).
Now let z ∈ S . We show that ρp is not continuous at z . We claim

first that z + p ∈ c`βS(z + B). To see this let U be an arbitrary neighborhood
of z + p and (by the continuity of λz ) pick a neighborhood W of p such that
λz[W ] ⊆ U . Pick w ∈ W ∩ B . Then z + w ∈ U ∩ (z + B). Since, as already
observed, c`βS(z + A)∩ c`βS(z + B) = Ø, we have z + p = ρp(z) /∈ c`βS(z + A).

Suppose ρp is continuous at z ∈ S and pick a neighborhood V of z such
that ρp[V ]∩ c`βS(z +A) = Ø. Pick ε > 0 such that S ∩ (z, z + ε) ⊆ V , and pick
n ∈ N such that x4n+1 < ε . Then z+x4n+1 ∈ V so (z+x4n+1)+p /∈ c`βS(z+A)
so, by the continuity of λz+x4n+1 , pick a neighborhood U of p such that

(
(z +

x4n+1) + U
)
∩ (z + A) = Ø. (We include the parentheses on z + x4n+1 because

we are not assuming that + is associative on βS .) Now p ∈ c`βS(A−x4n+1) so
pick y ∈ U ∩ (A− x4n+1). Then z + x4n+1 + y ∈

(
(z + x4n+1) + U)∩ (z + A), a

contradiction.
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Let us suppose that we decide not to worry about the requirement that
λx be continuous. If one can show that one can extend the operation + to βS
so that (βS,+) is a compact right topological semigroup, then one still has the
structure theorems of compact right topological semigroups to work with. In
fact, if S = [0,∞), it follows from [1, Theorem 6] that this can be done.

The extension produced in [1, Theorem 6], however, has the property
that if p ∈ βS\S , then for all q ∈ βS , q + p = p , so the structure theorems
become trivial. Now if S = [0,∞), then all points of βS\S “live at infinity”. We
will be dealing in this paper mostly with points “living at zero” on semigroups
S dense in (0,∞).

We see in the following theorem that in this case any extension making
(βS,+) a right topological semigroup must have a trivial operation for all points
living at 0.

Theorem 2.2. Let S be a dense subsemigroup of
(
(0,∞),+

)
and assume that

one has an extension of + to βS so that βS is a right topological semigroup. If
p ∈

⋂∞
n=1 c`βS

(
(0, 1/n) ∩ S

)
and q ∈ βS , then q + p = q .

Proof. Since ρp is continuous for any p ∈ βS , it suffices to show that for all
p ∈

⋂∞
n=1 c`βS

(
(0, 1/n) ∩ S

)
and all x ∈ S , x + p = x .

Consider the identity ι : S −→ S ⊆ [0,∞] , and let α : βS −→ [0,∞]
be the continuous extension of ι . Given p ∈ βS and x ∈ S with p 6= x , we
claim that α(p) 6= x . To see this, suppose instead that α(p) = x and consider
a continuous f : βS −→ [0, 1] such that f(p) = 1 and f(x) = 0. Pick an ε > 0
such that S ∩ (x− ε, x + ε) ⊆ f−1[0, 1/3). Then (x− ε, x + ε) is a neighborhood
of α(p) so pick a neighborhood V of p , such that α[V ] ⊆ (x− ε, x + ε). Picking
y ∈ V ∩ f−1(2/3, 1] ∩ S , one has y = α(y) ∈ (x− ε, x + ε), a contradiction.

Next observe that if x ∈ S and p ∈ βS , then α(p+x) = α(p)+x , where
the addition on the right hand side is the usual addition in the semigroup [0,∞] .
To see this, note that α ◦ρx and ρx ◦α are continuous functions agreeing on the
dense subset S of βS .

As a final preliminary, observe that if α(p) = 0 and x ∈ S , then
p + x = x . Indeed, we have α(p + x) = α(p) + x = x , so p + x = x .

To complete the proof, let p ∈
⋂∞

n=1 c`βS

(
(0, 1/n) ∩ S

)
, and note that

α(p) = 0. To show that q + p = q for all q ∈ βS , it suffices to show that ρp

is equal to the identity on S . So let x ∈ S be given and pick any y ∈ S . Now
p + y = y so (x + p) + y = x + (p + y) = x + y . Thus x + y = α(x + y) =
α
(
(x+p)+y

)
= α(x+p)+y . Now right cancellation holds at all points of [0,∞]

except ∞ , so x = α(x + p) so x = x + p as required.

We do not know in general whether one can make βS into a right
topological semigroup at all. As we remarked earlier, one can if S = [0,∞).
We pause now to observe that one also can if S = (0,∞).

Theorem 2.3. Let S = (0,∞) . There is an extension of + to βS such that
(βS,+) is a right topological semigroup.
Proof. Given x ∈ S define rx : S −→ S ⊆ βS by rx(y) = y + x and let
rx

β be its continuous extension to βS . As in the proof of Theorem 2.2, let
α : βS −→ [0,∞] be the continuous extension of the identity function. For
p, q ∈ βS define

p + q =

 q if α(q) = ∞
rq

β(p) if q ∈ S
p if α(q) = 0 .
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Then trivially + extends addition on S and ρp is continuous for each q ∈ βS .
To check associativity, let p, q, t ∈ βS . If α(t) = ∞ , then p + (q + t) =

p + t = t = (p + q) + t . If α(t) = 0, then p + (q + t) = p + q = (p + q) + t .
So assume t ∈ S . If α(q) = ∞ , we observe that α(q + t) = ∞ so that
(p + q) + t = q + t = p + (q + t). If α(q) = 0, we saw in the proof of Theorem
2.2 that q + t = t . Thus (p + q) + t = p + t = p + (q + t). Finally assume q ∈ S .
Then rt

β ◦ rq
β and rq+t

β are continuous functions agreeing on S , hence on βS
so rt

β ◦ rq
β(p) = rq+t

β(p). That is, (p + q) + t = p + (q + t).

Since we are interested in algebra near 0, Theorem 2.2 completely elim-
inates any hope of using βS . Also, we know that ultrafilters are naturals for
Ramsey Theory type combinatorial applications as was again demonstrated in
[2]. Consequently, we will concentrate on βSd , the Stone-Čech compactification
of the set S with the discrete topology.

One immediately sees a difference in where the elements of βSd\S live.
For example, we saw that if S = (0,∞), then all elements of βS\S either live
at 0 or at ∞ . On the other hand we see that there are many elements of βSd

residing at each point of [0,∞] .
In the following definition, we supress the dependence of α and the sets

x+ and x− on the choice of S .

Definition 2.4. Let S be a subsemigroup of (R,+).
(a) Let α : βSd −→ [−∞,∞] be the continuous extension of the identity

function.
(b) B(S) =

{
p ∈ βSd : α(s) /∈ {−∞,∞}

}
.

(c) Given x ∈ R ,
x+ = {p ∈ B(S) : α(p) = x and (x,∞) ∩ S ∈ p} and
x− = {p ∈ B(S) : α(p) = x and (−∞, x) ∩ S ∈ p} .

(d) U =
⋃

x∈R x+ and D =
⋃

x∈R x− .

The set B(S) is the set of “bounded” ultrafilters on S . That is, an
ultrafilter p ∈ βSd is in B(S) if and only if there is some n ∈ N with [−n, n]∩S ∈
p . We collect some routine information about the notions defined above.

Lemma 2.5. Let S be a semigroup of (R,+) .
(a) Let x ∈ R and let p ∈ βSd . Then p ∈ x+ if and only if for every

ε > 0 , (x, x + ε) ∩ S ∈ p . Also, p ∈ x− if and only if for every ε > 0 ,
(x− ε, x) ∩ S ∈ p .

(b) Let x ∈ R . Then x+ 6= Ø if and only if x ∈ c`R
(
(x,∞) ∩ S

)
and

x− 6= Ø if and only if x ∈ c`R
(
(−∞, x) ∩ S

)
.

(c) Let p, q ∈ B(S) , let x = α(p) , and let y = α(q) . If p ∈ x+ , then
p + q ∈ (x + y)+ . If p ∈ x− , then p + q ∈ (x + y)− .

(d) B(S)\S = U ∪D . If U and D are nonempty, they are disjoint right
ideals of (B(S),+) . In particular, B(S) is not commutative.

(e) If 0+ 6= Ø , then 0+ is a compact subsemigroup of (B(S),+) .
(f) If x ∈ S and p ∈ βSd , then x + p = p + x

Proof. The proofs of (a) and (b) are routine exercises and (d) and (e) follow
from (c). We establish (c) and (f).

To verify (c) assume first that p ∈ x+ . To see that p + q ∈ (x + y)+ ,
let ε > 0 be given and let A = (x + y, x + y + ε) ∩ S . To see that A ∈ p + q ,
we show that (x, x + ε) ∩ S ⊆ {z ∈ S : −z + A ∈ q} . So let z ∈ (x, x + ε) ∩ S .
Let δ = min{z − x, x + ε − z} . Since α(q) = y , we have (y − δ, y + δ) ∩ S ∈ q
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and (y − δ, y + δ) ∩ S ⊆ −z + A so −z + A ∈ q as required. The proof that
p + q ∈ (x + y)− if p ∈ x− is nearly identical.

To see that (f) holds, note that λx and ρx are continuous functions
agreeing on S , hence on βSd .

Why do we restrict our attention to 0+ ? On the one hand, it is a
subsemigroup of (βRd,+) and for any other x ∈ R , x+ and x− are not
semigroups. On the other hand we see in the following theorem that 0+ holds
all of the algebraic structure of B(R) not already revealed by R. (We restrict
our attention to R here because we do not know what happens with other
subsemigroups of R, not even in the case of Q.)

Theorem 2.6. Let S = R .
(a) 0+ and 0− are isomorphic.
(b) The function ϕ : Rd× ({0}∪0+∪0−) −→ B(R) defined by ϕ(x, p) =

x + p is a continuous isomorphism onto B(R) .

Proof. (a). Define τ : 0+ −→ 0− by τ(p) = −p , where −p = {−A : A ∈ p} .
It is routine to verify that τ takes 0+ one-to-one onto 0− . Let p, q ∈ 0+ . To
see that τ(p + q) = τ(p) + τ(q) it suffices, since τ(p + q) and τ(p) + τ(q) are
both ultrafilters, to show that τ(p+ q) ⊆ τ(p)+ τ(q). So let A ∈ τ(p+ q). Then
−A ∈ p + q so B = {x ∈ R : −x + −A ∈ q} ∈ p and hence −B ∈ τ(p). Then
−B ⊆ {x ∈ R : −x + A ∈ τ(q)} so A ∈ τ(p) + τ(q) as required.

(b) To see that ϕ is a homomorphism, let (x, p) and (y, q) be in Rd ×
({0}∪ 0+ ∪ 0−). Since p+ y = y + p , we have ϕ(x, p)+ϕ(y, q) = ϕ(x+ y, p+ q).

To see that ϕ is one-to-one, assume we have ϕ(x, p) = ϕ(y, q). By
Lemma 2.5(c) we have x = α(x + p) = α(y + q) = y . Then x + p = x + q so
p = −x + x + p = −x + x + q = q .

To see that ϕ is onto B(R), let q ∈ B(R) and let x = α(q). Let
p = −x + q . Then q = x + p = ϕ(x, p).

To see that ϕ is continuous, let (x, p) ∈ Rd × ({0} ∪ 0+ ∪ 0−) and let
A ∈ x + p . Then −x + A ∈ p so {x} ×

(
c`βSd

(−x + A)
)

is a neighborhood of
(x, p) contained in ϕ−1[c`βSdA] .

At first glance it might seem that if say S = Q one ought to have
ϕ(x, p) = x + p again as an isomorphism from Rd × ({0} ∪ 0+ ∪ 0−) to B(S).
However, if x /∈ S and p ∈ {0} ∪ 0+ ∪ 0− , x + p is not defined (in βSd ).
It is true that ϕ(x, p) = x + p does define a one-to-one homomorphism from
Sd × ({0} ∪ 0+ ∪ 0−) to B(S), but it is not onto because α[B(S)] = R .

3. Idempotents and the Smallest Ideal of 0+ .

For reasons discussed at the end of Section 2, as well as the fact that 0+

has yielded useful combinatorial results, we are interested in studying the algebra
of 0+ (defined in terms of some semigroup S of (R,+) ). Since {x ∈ R : x ≤ 0}
does not contribute to 0+ at all, we will assume that S ⊆ (0,∞). Since we want
0+ 6= Ø we need 0 ∈ c`RS . Once we have that, we know that S is dense in
(0,∞), so that will be our standing assumption about S .

As we remarked in the introduction, 0+ has an interesting and useful
multiplicative structure. But much is known of this structure because 0+ is a
two sided ideal of (β(0, 1)d, ·), so results about the algebraic structure of the
Stone-Čech compactification of an arbitrary discrete semigroup apply.

On the other hand, 0+ is far from being an ideal of B(S). In fact,
as the referee kindly pointed out, 0+ is a prime subsemigroup of βS , because
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it is the inverse image of zero under the homomorphism βS −→ ([0,∞],+).
Consequently, no general results apply to (0+,+) beyond those that apply to
any compact right topological semigroup.

Among the consequences of the fact that (0+,+) is a compact right
topological semigroup is the fact that it must contain idempotents [4, Corollary
2.10]. If S is an arbitrary discrete semigroup, it is a result of Galvin’s (see [9,
Theorem 2.5]) that a set A ⊆ S is a member of some idempotent in βS if and
only if there is some sequence 〈xn〉∞n=1 in S with FS(〈xn〉∞n=1 ) ⊆ A , where
FS(〈xn〉∞n=1 ) = {Σn∈F xn : F is a finite nonempty subset of N} . We have a
similar characterization of members of idempotents in 0+ .

Theorem 3.1. Let S be a dense subsemigroup of
(
(0,∞),+

)
and let A ⊆ S .

There exists p = p + p in 0+ with A ∈ p if and only if there is some sequence
〈xn〉∞n=1 in S such that Σ∞n=1 xn converges and FS(〈xn〉∞n=1 ) ⊆ A .
Proof. Necessity. Let A1 = A and let B1 = {x ∈ S : −x + A1 ∈ p} . Then
B1 ∈ p so pick x1 ∈ B1∩A1 and let A2 = A1∩(−x1+A1)∩(0, 1/2). Inductively,
given An ∈ p , let Bn = {x ∈ S : −x + An ∈ p} and pick xn ∈ An ∩ Bn . Let
An+1 = An ∩ (−xn + An) ∩ (0, 1

2n ). Then one easily sees that 〈xn〉∞n=1 is as
required. (To see for example that x2+x4+x5 ∈ A , one has x5 ∈ A5 ⊆ −x4+A4

so x4 + x5 ∈ A4 ⊆ A3 ⊆ −x2 + A2 so x2 + x4 + x5 ⊆ A2 ⊆ A1 = A .)
Sufficiency. Let T =

⋂∞
m=1 c`βSd

FS(〈xn〉∞n=m). It suffices to show that
T is a subsemigroup of 0+ , for then as a compact right topological semigroup,
T must contain an idempotent.

Observe that since Σ∞n=1 xn converges, for each ε > 0 there is some
m ∈ N with FS(〈xn〉∞n=m) ⊆ (0, ε) ∩ S . Consequently T ⊆ 0+ . To see
that T is a subsemigroup of 0+ , let p, q ∈ T and let m ∈ N be given. To
see that FS(〈xn〉∞n=m) ∈ p + q , we show that FS(〈xn〉∞n=m) ⊆ {x ∈ S :
−x + FS(〈xn〉∞n=m) ∈ q} . Given y ∈ FS(〈xn〉∞n=m), pick F with y = Σn∈F xn

and min F ≥ m . Let r = maxF + 1. Then FS(〈xn〉∞n=r) ⊆ −y + FS(〈xn〉∞n=m)
so −y + FS(〈xn〉∞n=m) ∈ q .

As a compact right topological semigroup, 0+ has a smallest two sided
ideal [3, Theorem 1.3.11]. We now turn our attention to characterizing the
smallest ideal of 0+ and its closure. Deducing the parallels with known theory
becomes progressively less straight forward as we proceed. If (S, +) is a discrete
semigroup we know from [8, Corollary 3.6] that any p ∈ βS is in the smallest
ideal of βS if and only if , for each A ∈ p , {x ∈ S : −x + A ∈ p} is “syndetic”.
(A subset B of S is syndetic if and only if there is a finite nonempty subset
F of S such that S ⊆

⋃
t∈F −t + B . The terminology comes from topological

dynamics.)

Definition 3.2. Let S be a dense subsemigroup of
(
(0,∞),+

)
.

(a) K is the smallest ideal of (0+,+).
(b) A subset B of S is syndetic near 0 if and only if for every ε > 0

there exist some F ∈ Pf

(
(0, ε) ∩ S

)
and some δ > 0 such that S ∩ (0, δ) ⊆⋃

t∈F (−t + B).

Theorem 3.3. Let S be a dense subsemigroup of
(
(0,∞),+

)
and let p ∈ 0+ .

The following statements are equivalent.
(a) p ∈ K .
(b) For all A ∈ p , {x ∈ S : −x + A ∈ p} is syndetic near 0.
(c) For all r ∈ 0+ , p ∈ 0+ + r + p .
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Proof. (a) implies (b). Let A ∈ p , let B = {x ∈ S : −x+A ∈ p} , and suppose
that B is not syndetic near 0. Pick ε > 0 such that for all F ∈ Pf

(
(0, ε) ∩ S

)
and all δ > 0,

(
S ∩ (0, δ)

)
\

⋃
t∈F (−t + B) 6= Ø.

Let G = {
(
S ∩ (0, δ)

)
\

⋃
t∈F (−t + B) : F ∈ Pf

(
(0, ε) ∩ S

)
and δ > 0} .

Then G has the finite intersection property so pick r ∈ βSd with G ⊆ r . Since
{S ∩ (0, δ) : δ > 0} ⊆ r we have r ∈ 0+ .

Pick a minimal left ideal L of 0+ with L ⊆ 0+ + r , by [3, Proposition
1.2.4]. Since K is the union of all of the minimal right ideals of 0+ [3, Theorem
1.3.11], pick a minimal right ideal R of 0+ with p ∈ R . Then L ∩R is a group
[3, Theorem 1.3.11] so let q be the identity of L ∩ R . Then R = q + 0+ , so
p ∈ q + 0+ so p = q + p so B ∈ q . Also q ∈ 0+ + r so pick w ∈ 0+ such that
q = w+r . Then (0, ε)∩S ∈ w and {t ∈ S : −t+B ∈ r} ∈ w so pick t ∈ (0, ε)∩S
such that −t + B ∈ r . But

(
S ∩ (0, 1)

)
\(−t + B) ∈ G ⊆ r , a contradiction.

(b) implies (c). Let r ∈ 0+ . For each A ∈ p , let B(A) = {x ∈ S :
−x + A ∈ p} and let C(A) = {t ∈ S : −t + B(A) ∈ r} . Observe that for
any A1, A2 ∈ p , one has B(A1 ∩ A2) = B(A1) ∩ B(A2) and C(A1 ∩ A2) =
C(A1) ∩ C(A2).

We claim that for every A ∈ p and every ε > 0, C(A) ∩ (0, ε) 6= Ø.
To see this, let A ∈ p and ε > 0 be given and pick F ∈ Pf

(
(0, ε) ∩ S

)
and

δ > 0 such that (0, δ) ∩ S ⊆
⋃

t∈F

(
−t + B(A)

)
. Since (0, δ) ∩ S ∈ r we have⋃

t∈F

(
−t+B(A)

)
∈ r and hence there is some t ∈ F with −t+B(A) ∈ r . Then

t ∈ C(A) ∩ (0, ε).
Thus {(0, ε) ∩ C(A) : ε > 0 and A ∈ p} has the finite intersection

property so pick q ∈ βSd with {(0, ε) ∩ C(A) : ε > 0 and A ∈ p} ⊆ q .
Then q ∈ 0+ . We claim that p = q + r + p for which it suffices (since both
are ultrafilters) to show that p ⊆ q + r + p . Let A ∈ p be given. Then
{t ∈ S : −t + B(A) ∈ r} = C(A) ∈ q so B(A) ∈ q + r , so A ∈ q + r + p
as required.

(c) implies (a). Pick r ∈ K .

If (S, +) is any discrete semigroup, we know from [8, Theorem 4.5] that
any p ∈ βS is in the closure of the smallest ideal of βS if and only if each A ∈ p
is “piecewise syndetic”. (A subset A of S is piecewise syndetic if and only if
there is some F ∈ Pf (S) such that for any G ∈ Pf (S) there is some x ∈ S
with G + x ⊆

⋃
t∈F (−t + A).)

Definition 3.4. Let S be a dense subsemigroup of
(
(0,∞),+

)
. A subsets

A of S is piecewise syndetic near 0 if and only if there exist sequences 〈Fn〉∞n=1
and 〈δn〉∞n=1 such that

(1) for each n ∈ N , Fn ∈ Pf

(
(0, 1/n) ∩ S

)
and δn ∈ (0, 1/n) and

(2) for all G ∈ Pf (S) and all µ > 0 there is some x ∈ (0, µ) ∩ S such
that for all n ∈ N ,

(
G ∩ (0, δn)

)
+ x ⊆

⋃
t∈Fn

(−t + A).

Theorem 3.5. Let S be a dense subsemigroup of
(
(0,∞),+

)
and let A ⊆ S .

Then K ∩ c`βSd
A 6= Ø if and only if A is piecewise syndetic near 0.

Proof. Necessity. Pick p ∈ K ∩ c`βSd
A and let B = {x ∈ S : −x + A ∈ p} .

By Theorem 3.3, B is piecewise syndetic near 0. Inductively for n ∈ N pick
Fn ∈ Pf

(
(0, 1/n) ∩ S

)
and δn ∈ (0, 1/n) (with δn ≤ δn−1 if n > 1) such that

S ∩ (0, δn) ⊆
⋃

t∈Fn
(−t + B).

Let G ∈ Pf (S) be given. If G ∩ (0, δ1) = Ø, the conclusion is trivial,
so assume G ∩ (0, δ1) 6= Ø and let H = G ∩ (0, δ1). For each y ∈ H , let
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m(y) = max{n ∈ N : y < δn} . For each y ∈ H and each n ∈ {1, 2, . . . ,m(y)} ,
we have y ∈

⋃
t∈Fn

(−t + B) so pick t(y, n) ∈ Fn such that y ∈ −t(y, n) + B .
Then given y ∈ H and n ∈ {1, 2, . . . ,m(y)} , one has −(t(y, n) + y) + A ∈ p .

Now let µ > 0 be given. Then (0, µ) ∈ p so pick

x ∈ (0, µ) ∩
⋂

y∈H

⋂m(y)
n=1 (−(t(y, n) + y) + A) .

Then given n ∈ N and y ∈ G ∩ (0, δn), one has y ∈ H and n ≤ m(y) so
t(y, n) + y + x ∈ A so

y + x ∈ −t(y, n) + A ⊆
⋃

t∈Fn
(−t + A) .

Sufficiency. Pick 〈Fn〉∞n=1 and 〈δn〉∞n=1 satisfying (1) and (2) of Definition
3.4. Given G ∈ Pf (S) and µ > 0, let

C(G, µ) = {x ∈ (0, µ) ∩ S : for all n ∈ N,
(
G ∩ (0, δn)

)
+ x ⊆

⋃
t∈Fn

(−t + A)} .

By assumption each C(G, µ) 6= Ø. Further, given G1 and G2 in Pf (S)
and µ1, µ2 > 0, one has C(G1 ∪ G2,min{µ1, µ2}) ⊆ C(G1, µ1) ∩ C(G2, µ2) so
{C(G, µ) : G ∈ Pf (S) and µ > 0} has the finite intersection property so pick
p ∈ βSd with {C(G, µ) : G ∈ Pf (S) and µ > 0} ⊆ p . Note that since each
C(G, µ) ⊆ (0, µ), one has p ∈ 0+ .

Now we claim that for each n ∈ N , 0+ + p ⊆ c`βSd

(⋃
t∈Fn

(−t + A)
)
, so

let n ∈ N and let q ∈ 0+ . To show that
⋃

t∈Fn
(−t + A) ∈ q + p , we show that

(0, δn) ∩ S ⊆ {y ∈ S : −y +
⋃

t∈Fn
(−t + A) ∈ p} .

So let y ∈ (0, δn)∩S . Then C({y}, δn) ∈ p and C({y}, δn) ⊆ −y+
⋃

t∈Fn
(−t+A).

Now pick r ∈ (0+ + p) ∩ K (since 0+ + p is a left ideal of 0+ ). Given
n ∈ N ,

⋃
t∈Fn

(−t + A) ∈ r so pick tn ∈ Fn such that −tn + A ∈ r . Now each
tn ∈ Fn ⊆ (0, 1/n) so lim

n→∞
tn = 0 so pick q ∈ 0+ ∩ c`βSd

{tn : n ∈ N} . Then

q + r ∈ K and {tn : n ∈ N} ⊆ {t ∈ S : −t + A ∈ r} so A ∈ q + r .

Since (0+,+) is a compact right topological semigroup, the closure of any
right ideal is again a right ideal. (This is well known and a very easy exercise.)
Consequently c`0+ K = c`βSd

K is a right ideal of 0+ . On the other hand, if
S is any discrete semigroup, we know from [8, Corollary 4.6] that the closure of
the smallest ideal of βS is a two sided ideal of βS . We do not know whether
c`0+ K is a left ideal of 0+ , but would conjecture that it is not.

4. Sets Central Near 0.

In this section we characterize those sets that are members of minimal
idempotents in (0+,+). From [12, Theorem 2.1] we have a relatively complicated
characterization of those subsets A of P (S) which extend to a member of the
smallest ideal of βS . This characterization was called “collectionwise piecewise
syndetic” in [13] and used there to characterize central sets, that is members of
idempotents in the smallest ideal of βS .

Definition 4.1. Let S be a dense subsemigroup of
(
(0,∞),+

)
.

(a) A set A ⊆ S is central near 0 if and only if there is some idempotent
p ∈ K with A ∈ p .
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(b) A family A ⊆ P (S) is collectionwise piecewise syndetic near 0 if
and only if there exist functions

F : Pf (A) −→×∞
n=1Pf

(
(0, 1/n) ∩ S

)
and

δ : Pf (A) −→×∞
n=1(0, 1/n)

such that for every µ > 0, every G ∈ Pf (S), and every H ∈ Pf (A), there is
some t ∈ (0, µ) ∩ S such that for every n ∈ N and every F ∈ Pf (H),(

G ∩ (0, δ(F )n)
)

+ t ⊆
⋃

x∈F (F)n
(−x +

⋂
F ) .

Theorem 4.2. Let S be a dense subsemigroup of
(
(0,∞),+

)
and let A ⊆

P (S) . There exists p ∈ K such that A ⊆ p if and only if A is collectionwise
piecewise syndetic near 0.
Proof. Necessity. For each F ∈ Pf (A), let B(F ) = {x ∈ S : −x +

⋂
F ∈

p} . Then by Theorem 3.3, B(F ) is syndetic near 0, so for each n ∈ N , pick
F (F )n ∈ Pf

(
(0, 1/n) ∩ S

)
and δ(F )n ∈ (0, 1/n) such that

S ∩ (0, δ(F )n) ⊆
⋃

x∈F (F)n

(
−x + B(F )

)
.

We may presume that δ(F )n < 1/n .
We have thus defined

F : Pf (A) −→×∞
n=1Pf

(
(0, 1/n) ∩ S

)
and

δ : Pf (A) −→×∞
n=1(0, 1/n) .

To see that these functions are as required, let µ > 0, G ∈ Pf (S), and
H ∈ Pf (A) be given.

Pick m ∈ N such that 1/m < minG . For each (y, n, F ) such that n ∈
{1, 2, . . . ,m} , F ∈ Pf (H), and y ∈ (0, δ(F )n) ∩ G , pick x(y, n, F ) ∈ F (F )n

such that x(y, n, F ) + y ∈ B(F ), that is −(x(y, n, F ) + y) +
⋂
F ∈ p . Let

B = {−(x(y, n,F) + y) +
⋂
F : n ∈ {1, 2, . . . ,m},F ∈ Pf (H),

and y ∈ (0, δ(F)n) ∩G} .

If B = Ø, the conclusion is trivial, so we may assume B 6= Ø and hence
B ∈ Pf (p). Pick t ∈

⋂
B ∩ (0, µ). Let n ∈ N and F ∈ Pf (H) be given. If

G ∩ (0, δ(F )n) = Ø, the conclusion holds, so assume G ∩ (0, δ(F )n) 6= Ø and
let y ∈ G ∩ (0, δ(F )n). Then y < δ(F )n < 1/n and y ∈ G so n < m . Thus
t ∈ −(x(y, n, F ) + y) +

⋂
F so

y + t ∈ −x(y, n, F ) +
⋂

F ⊆
⋃

x∈F (F)n
(−x +

⋂
F ) .

Sufficiency. Pick functions F and δ as guaranteed by the assumption
that A is collectionwise piecewise syndetic near 0. Given µ > 0, G ∈ Pf (S),
and H ∈ Pf (A), pick t(H , G, µ) ∈ (0, µ) ∩ S such that for every n ∈ N and
every F ∈ Pf (H),(

G ∩ (0, δ(F )n)
)

+ t(H , G, µ) ⊆
⋃

x∈F (F)n
(−x +

⋂
F ) .
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For each F ∈ Pf (A) and every y ∈ S , let D(F , y) =

{t(H , G, µ) : H ∈ Pf (A), G ∈ Pf (S), y ∈ G, F ⊆ H , and µ > 0} .

Then {D(F , y) : F ∈ Pf (A) and y ∈ S} ∪ {(0, µ) : µ > 0} has the fi-
nite intersection property. Indeed, given F 1, F 2, . . . , F n, y1, y2, . . . , yn , and
µ1, µ2, . . . , µn , let

H =
⋃n

i=1 F i, G = {y1, y2, . . . , yn}, and µ = min{µ1, µ2, . . . , µn} .

Then t(H , G, µ) ∈
⋂n

i=1

(
D(F i, yi) ∩ (0, µi)

)
. So pick u ∈ 0+ such that

{D(F , y) : F ∈ Pf (A) and y ∈ S} ⊆ u .
Now we claim that for each F ∈ Pf (A) and each n ∈ N ,

0+ + u ⊆
⋃

x∈F (F)n
c`βSd

(−x +
⋂
F ) .

So let q ∈ 0+ and let A =
⋃

x∈F (F)n
(−x+

⋂
F ). We claim that (0, δ(F )n)∩S ⊆

{y ∈ S : −y + A ∈ u} , so that, since (0, δ(F )n) ∩ S ∈ q , we have A ∈ q + u .
Let y ∈ (0, δ(F )n) ∩ S . It suffices to show that D(F , y) ⊆ −y + A . So let
H ∈ Pf (A) with F ⊆ H , let G ∈ Pf (S) with y ∈ G , and let µ > 0 be given.
Then y ∈ G ∩ (0, δ(F )n) so y + t(H , G, µ) ∈ A as required.

Pick a minimal left ideal L of 0+ with L ⊆ 0+ + u . Then

L ⊆
⋂
F∈Pf (A)

⋂∞
n=1

⋃
x∈F (F)n

c`βSd
(−x +

⋂
F ) .

Pick r ∈ L . For each F ∈ Pf (A) and each n ∈ N , pick x(F , n) ∈ F (F )n

such that −x(F , n) +
⋂
F ∈ r . For each F ∈ Pf (A), let

E (F ) = {x(H , n) : H ∈ Pf (A), F ⊆ H , and n ∈ N} .

We claim that {E (F ) : F ∈ Pf (A)} ∪ {(0, δ) : δ > 0} has the finite intersec-
tion property. Indeed, given F 1, F 2, . . . , Fm and δ1, δ2, . . . , δm , pick n ∈ N
such that 1/n < min{δ1, δ2, . . . , δm} and let H =

⋃m
i=1 F i . Then x(H , n) ∈⋂m

i=1 E (F i)∩
⋂m

i=1(0, δi). So pick w ∈ 0+ such that {E (F ) : F ∈ Pf (A)} ⊆ w .
Let p = w + r . Then p ∈ L ⊆ K . To see that A ⊆ p , let A ∈ A . We show
that E ({A}) ⊆ {x ∈ S : −x + A ∈ r} . Let F ∈ Pf (A) with A ∈ F and let
n ∈ N . Then −x(F , n) +

⋂
F ∈ r and −x(F , n) +

⋂
F ⊆ −x(F , n) + A .

We formalize the notion of “tree” below. We write ω = {0, 1, 2, 3, . . .} ,
the first infinite ordinal and recall that each ordinal is the set of its predecessors.
(So 3 = {0, 1, 2} and 0 = Ø and, if f is the function

{(0, 3), (1, 5), (2, 9), (3, 7), (4, 5)} ,

then f|3 = {(0, 3), (1, 5), (2, 9)} .)

Definition 4.3. T is a tree in A if and only if T is a set of functions and for
each f ∈ T , domain(f) ∈ ω and range(f) ⊆ A and if domain(f) = n > 0, then
f|n−1 ∈ T . T is a tree if and only if for some A , T is a tree in A .

Definition 4.4. (a) Let f be a function with domain(f) = n ∈ ω and let x
be given. Then f_x = f ∪ {(n, x)} .

(b) Given a tree T and f ∈ T , Bf = Bf (T ) = {x : f_x ∈ T} .
(c) Let (S, +) be a semigroup and let A ⊆ S . Then T is a ∗-tree in A if

and only if T is a tree in A and for all f ∈ T and all x ∈ Bf , Bf_x ⊆ −x+Bf .
(d) Let (S, +) be a semigroup and let A ⊆ S . Then T is a FS-tree in

A if and only if T is a tree in A and for all f ∈ T , Bf = {Σt∈F g(t) : g ∈ T ,
f ⊆6 g , and Ø 6= F ⊆ dom(g)\dom(f)} .
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Lemma 4.5. Let (S, +) be a semigroup and let p be an idempotent in βSd . If
A ∈ p , then there is a FS-tree T in A such that for each f ∈ T , Bf ∈ p .
Proof. This is [13, Lemma 3.6].

Lemma 4.6. Any FS-tree is a ∗-tree.
Proof. Let T be a FS-tree. Then given f ∈ T and x ∈ Bf , we claim that
Bf_x ⊆ −x + Bf . To this end let y ∈ Bf_x and pick g ∈ T with f_x ⊆6 g and
pick F ⊆ dom(g)\dom(f_x) such that y ∈ Σt∈F g(t). Let n = dom(f) and let
G = F ∪{n} . Then x + y = Σt∈G g(t) and G ⊆ dom(g)\dom(f), so x + y ∈ Bf

as required.

When we say that 〈CF 〉F∈I is a “downward directed family” we mean
that I is a directed set and whenever F,G ∈ I with F ≤ G , one has CG ⊆ CF .

Theorem 4.7. Let S be a dense subsemigroup of
(
(0,∞),+

)
and let A ⊆ S .

Statements (a), (b), (c), and (d) are equivalent and are implied by statement (e).
If S is countable, all five statements are equivalent.

(a) A is central near 0.
(b) There is a FS-tree T in A such that {Bf : f ∈ T} is collectionwise

piecewise syndetic near 0.
(c) There is a *-tree T in A such that {Bf : f ∈ T} is collectionwise

piecewise syndetic near 0.
(d) There is a downward directed family 〈CF 〉F∈I of subsets of A such

that
(i) for all F ∈ I and all x ∈ CF , there is some G ∈ I with

CG ⊆ −x + CF and
(ii) {CF : F ∈ I} is collectionwise piecewise syndetic near 0.

(e) There is a decreasing sequence 〈Cn〉∞n=1 of subsets of A such that
(i) for all n ∈ N and all x ∈ Cn , there is some m ∈ N with

Cm ⊆ −x + Cn and
(ii) {Cn : n ∈ N} is collectionwise piecewise syndetic near 0.

Proof. (a) implies (b). By Lemma 4.5 pick a FS-tree T in A such that for
each f ∈ T , Bf ∈ p . By Theorem 4.2, {Bf : f ∈ T} is collectionwise piecewise
syndetic near 0.

That (b) implies (c) follows from Lemma 4.6.
(c) implies (d). Let T be given as guaranteed by (c). Let I = Pf (T )

and for F ∈ I , let CF =
⋂

f∈F Bf . Since {Bf : f ∈ T} is collectionwise
piecewise syndetic near 0, so is {CF : F ∈ I} . Given F ∈ I and x ∈ CF , let
G = {f_x : f ∈ F} . For each f ∈ F we have Bf_x ⊆ −x+Bf by the definition
of ∗ -tree so

CG =
⋂

f∈F Bf_x ⊆
⋂

f∈F (−x + Bf ) = −x + CF .

(d) implies (a). Let M =
⋂

F∈I c`βSd
CF . We claim that M is a

subsemigroup of βSd . To this end, let p, q ∈ M and let F ∈ I . To see that
CF ∈ p + q , we show that CF ⊆ {x ∈ S : −x + CF ∈ q} . Let x ∈ CF and pick
G ∈ I such that CG ⊆ −x + CF . Then CG ∈ q so −x + CF ∈ q .

By Theorem 4.2 we have M∩K 6= Ø. Since K is the union of all minimal
left ideals of 0+ (see [3, Theorem 1.3.11], pick a minimal left ideal L of K with
M ∩L 6= Ø. Then M ∩L is a compact semigroup so by [4, Corollary 2.10] there
is some p = p + p in M ∩ L . Since each CF ⊆ A , we have p ∈ K ∩ c`βSd

A .
That (e) implies (d) is trivial.
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Now assume that S is countable. We show that (c) implies (e), so let
T be as guaranteed by (c). Since T is countable, enumerate T as 〈fn〉∞n=1 .
For each n ∈ N , let Cn =

⋂n
k=1 Bfk

. Then {Cn : n ∈ N} is collectionwise
piecewise syndetic near 0. Let n ∈ N be given and let x ∈ Cn . Then for each k ,
Bfk

_x ⊆ −x + Bfk
. Pick m ∈ N such that

{
fk

_x : k ∈ {1, 2, . . . , n}
}
⊆

{
fk :

k ∈ {1, 2, . . . ,m}
}

. Then Cm ⊆ −x + Cn .

The following consequence of Theorem 4.7 will be useful later when we
investigate combined additive and multiplicative structures. The requirement
that y < 1 is not essential, but makes the proof simpler since under that
assumption, if x < 1/n , then yx < 1/n .

Lemma 4.8. Let S be a dense subsemigroup of
(
(0,∞),+

)
and let y ∈ S ∩

(0, 1) such that for all x ∈ S , x/y ∈ S and yx ∈ S . If A ⊆ S and y−1A is
central near 0, then A is central near 0.
Proof. Note that, while we standardly define y−1A to be {x ∈ S : yx ∈ A} ,
under the current hypotheses we in fact have that y−1A = {x/y : x ∈ A} . Pick
by Theorem 4.7 a downward directed family 〈CF 〉F∈I of subsets of y−1A such
that

(i) for all F ∈ I and all x ∈ CF , there is some G ∈ I with
CG ⊆ −x + CF and

(ii) {CF : F ∈ I} is collectionwise piecewise syndetic near 0.
For each F ∈ I , let DF = yCF . Then 〈DF 〉F∈I is a downward directed

family of subsets of yA and trivially for all F ∈ I and all x ∈ DF , there is some
G ∈ I with DG ⊆ −x + DF . Thus it suffices to show that B = {DF : F ∈ I} is
collectionwise piecewise syndetic near 0.

Let A = {CF : F ∈ I} and pick
F : Pf (A) −→×∞

n=1Pf

(
(0, 1/n) ∩ S

)
and

δ : Pf (A) −→×∞
n=1(0, 1/n)

as guaranteed by Definition 4.1. Given F ∈ Pf (B ), choose τ(F ) ∈ Pf (I) such
that F = {DF : F ∈ τ(F )} . Define σ : Pf (B ) −→ Pf (A) by σ(F ) = {CF :
F ∈ τ(F )} and note that for any F ∈ Pf (B ), y · σ(F ) = F . Define

F ′ : Pf (B ) −→×∞
n=1Pf

(
(0, 1/n) ∩ S

)
and

δ′ : Pf (B ) −→×∞
n=1(0, 1/n)

by F ′ = y · (F ◦ σ) and δ′ = y · (δ ◦ σ).
To see that F ′ and δ′ are as required by Definition 4.1, let µ > 0, G ∈

Pf (S), and H ∈ Pf (B ) be given. Then y−1G ∈ Pf (S) and σ(H) ∈ Pf (A)
so pick t ∈ (0, µ) ∩ S such that for all n ∈ N and all F ∈ Pf

(
σ(H)

)
,

y−1G ∩ (0, δ(F )n) + t ⊆
⋃

x∈F (F)n
(−x +

⋂
F ) .

Then yt ∈ (0, µ) ∩ S . Let n ∈ N and F ∈ Pf (H) be given. Then σ(F ) ∈
Pf

(
σ(H)

)
so

y−1G ∩ (0, δ
(
σ(F )

)
n
) + t ⊆

⋃
x∈F (σ(F))n

(
−x +

⋂
σ(F )

)
.

Thus
G ∩ (0, y · δ

(
σ(F )

)
n
)
)

+ yt ⊆
⋃

x∈y·F (σ(F))n

(
−x +

⋂
y · σ(F )

)
.

That is
G ∩ (0, δ′(F )n) + yt ⊆

⋃
x∈F ′(F)n

(−x +
⋂
F ) ,

as required.
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The main reason central sets in a commutative semigroup (S, +) are of
combinatorial interest is that they satisfy the Central Sets Theorem, a gener-
alization of [5, Proposition 8.21], and as a consequence have rich combinatorial
structure. (See [14] for example.) We now show that sets that are central near 0
satisfy a version of the Central Sets Theorem (Theorem 4.11). As a consequence,
we obtain new Ramsey Theoretic conclusions about arbitrary finite partitions of
S , where S is any dense subsemigroup of

(
(0,∞),+

)
.

Definition 4.9. Let S be a dense subsemigroup of
(
(0,∞),+

)
.

(a) Φ = {f : f : N −→ N and for all n ∈ N , f(n) ≤ n} .
(b) Y = {〈〈yi,t〉∞t=1〉∞i=1 : for each i ∈ N , 〈yi,t〉∞t=1 is a sequence in

S ∪ −S ∪ {0} and Σ∞t=1|yi,t| converges} .
(c) Given Y = 〈〈yi,t〉∞t=1〉∞i=1 in Y and A ⊆ S , A is a JY -set near 0 if

and only if for all n ∈ N there exist a ∈ (0, 1/n) ∩ S and H ∈ Pf (N) such that
minH ≥ n and for each i ∈ {1, 2, . . . , n} , a + Σt∈H yi,t ∈ A .

(d) Given Y ∈ Y , JY = {p ∈ 0+ : for all A ∈ p , A is a JY -set near 0} .
(e) J =

⋂
Y ∈Y JY .

The following result is similar to [13, Lemma 2.5] and is based on an
argument from [6]. It tells us that J 6= Ø.

Lemma 4.10. Let S be a dense subsemigroup of
(
(0,∞),+

)
. Let Y ∈ Y .

Then K ⊆ JY .
Proof. Let Y = 〈〈yi,t〉∞t=1〉∞i=1 and let p ∈ K . To see that p ∈ JY , let A ∈ p .
To see that A is a JY -set near 0, let n ∈ N be given.

For k ∈ N let

Ik = {(a + Σt∈H y1,t, a + Σt∈H y2,t, . . . , a + Σt∈H yn,t) :
a ∈ (0, 1/n) ∩ S, H ∈ Pf (N),minH ≥ k, and
for all i ∈ {1, 2, . . . , n}, a + Σt∈H yi,t ∈ (0, 1/k) ∩ S}

and let
Ek = Ik ∪ {(a, a, . . . , a) : a ∈ (0, 1/k) ∩ S} .

Let W = ×n
i=1 0+ and let Z = ×n

i=1 βSd . Let E =
⋂∞

k=1 c`ZEk and let
I =

⋂∞
k=1 c`ZIk . We claim that Ø 6= I ⊆ E . To see this, it suffices to let

k ∈ N and show that Ik 6= Ø. We may assume that k ≥ n . Pick t ≥ k
such that for all i ∈ {1, 2, . . . , n} , |yi,t| < 1

2nk and let a =
∑n

i=1 |yi,t| . Then
a ∈ S ∩ (0, 1

2k ) ⊆ S ∩ (0, 1/n) and given j ∈ {1, 2, . . . , n} , a + yj,t ∈ S ∩ (0, 1/k).
We claim that E is a subsemigroup of W and I is an ideal of E .

First to see that E ⊆ W , note that for each k , Ek ⊆ ×n
i=1

(
(0, 1/k) ∩ S

)
so

c`βSd
Ek ⊆×n

i=1c`Z

(
(0, 1/k) ∩ S

)
so E ⊆ W

Now let ~q, ~r ∈ E . We show that ~q + ~r ∈ E and if either ~q ∈ I or ~r ∈ I ,
then ~q + ~r ∈ I . So let k ∈ N be given and let U be an open neighborhood of
~q +~r . We show that U ∩Ek 6= Ø and if either ~q ∈ I or ~r ∈ I , then U ∩ Ik 6= Ø.
Pick a neighborhood V of ~q such that V + r ⊆ U and pick ~x ∈ V ∩ E2k , with
~x ∈ I2k if ~q ∈ I . If ~x /∈ I2k , pick a ∈ (0, 1

2k ) ∩ S such that ~x = (a, a, . . . , a)
and let H = Ø. If ~x ∈ I2k , pick a ∈ (0, 1

2k ) ∩ S and H ∈ Pf (N) such that
minH > 2k , ~x = (a + Σt∈H y1,t, a + Σt∈H y2,t, . . . , a + Σt∈H yn,t), and each
a + Σt∈H yi,t ∈ (0, 1

2k ). If H = Ø, let m = 2k . If H 6= Ø, let m = maxH + 1.
Now ~x + ~r ∈ U so pick a neighborhood R of ~r with ~x + R ⊆ U . Pick

~w ∈ R ∩ Em with ~w ∈ Im if ~r ∈ I . If ~w /∈ Im , pick b ∈ (0, 1/m) ∩ S such that
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~w = (b, b, . . . , b) and let G = Ø. If ~w ∈ Im , pick b ∈ (0, 1/m)∩S and G ∈ Pf (N)
such that minG ≥ m , ~w = (b + Σt∈G y1,t, b + Σt∈G y2,t, . . . , b + Σt∈G yn,t), and
each b+Σt∈g yi,t ∈ (0, 1/m). If G∪H = Ø, we have ~x+ ~w = (a+b, a+b, . . . , a+
b) ∈ Ek . If G ∪H 6= Ø, then

~x+ ~w = (a+ b+Σt∈G∪H y1,t, a+ b+Σt∈G∪H y2,t, . . . , a+ b+Σt∈G∪H yn,t) ∈ Ik .

Now let ~p = (p, p, . . . , p). We claim that ~p ∈ E . Indeed, let B ∈ p , so
that ×n

i=1c`βSd
B is a basic neighborhood of ~p . Let k ∈ N be given. Then

(0, 1/k)∩S ∈ p so pick a ∈ B∩(0, 1/k). Then (a, a, . . . , a) ∈ Ek∩×n
i=1c`βSd

B .
Let M be the smallest ideal of W . By [13, Lemma 2.1], M =×n

i=1 K
so ~p ∈ M and hence M ∩ E 6= Ø. Thus by [3, Corollary 1.2.15] the smallest
ideal of E is E ∩ M so ~p is in the smallest ideal of E so ~p ∈ I . Thus
In ∩×n

i=1c`βSd
A 6= Ø.

The following is our promised version of the Central Sets Theorem.

Theorem 4.11. Let S be a dense subsemigroup of
(
(0,∞),+

)
and let A be

central near 0 in S . Let Y = 〈〈yi,t〉∞t=1〉∞i=1 ∈ Y . Then there exist sequences
〈an〉∞n=1 in S and 〈Hn〉∞n=1 in Pf (N) such that

(a) for each n ∈ N , an < 1/n and max Hn < minHn+1 and
(b) for each f ∈ Φ , FS(〈an + Σt∈Hn

yf(n),t〉∞n=1) ⊆ A .
Proof. Pick an idempotent p ∈ K with A ∈ p . By Lemma 4.10 we have
p ∈ JY . Let A1 = A and let

B1 = A1 ∩ {x ∈ S ∩ (0, 1) : −x + A1 ∈ p} .

Then B1 ∈ p so, since p ∈ JY , pick a1 ∈ S ∩ (0, 1) and H1 ∈ Pf (N) such that
a1 + Σt∈H1 y1,t ∈ B1 . Let

A2 = A1 ∩ (−(a1 + Σt∈H1 y1,t) + A1) .

Inductively, given An ∈ p , let

Bn = An ∩ {x ∈ S ∩ (0, 1/n) : −x + An ∈ p} .

Let m = max(Hn−1 ∪ {n}) + 1. Pick an ∈ S ∩ (0, 1/m) and Hn ∈ Pf (N) with
minHn ≥ m such that for all i ∈ {1, 2, . . . ,m} , an + Σt∈Hn yi,t ∈ Bn . Let

An+1 = An ∩
⋂n

k=1(−(an + Σt∈Hn
yk,t) + An) .

Let f ∈ Φ be given. We show by induction on |F | that for F ∈ Pf (N),
Σn∈F (an + Σt∈Hn

yf(n),t) ∈ Ak where k = minF . If |F | = 1, we have
ak + Σt∈Hk

yf(k),t ∈ Bk ⊆ Ak . So assume |F | > 1, let G = F\{k} and let
` = minG . Then

Σn∈G(an + Σt∈Hn
yf(n),t) ∈ A` ⊆ Ak+1 ⊆ −(ak + Σt∈Hk

yf(k),t) + Ak

so Σn∈F (an + Σt∈Hn yf(n),t) ∈ Ak as required.

5. Combinatorial Applications.

There are some immediate simple applications of Theorem 4.11. As an
example we have the following.
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Corollary 5.1. Let S be a dense subsemigroup of
(
(0,∞),+

)
and let 〈xn〉∞n=1

be any sequence in S such that lim
n→∞

xn = 0 . Assume r ∈ N and S =
⋃r

i=1 Ai .

then there is some i ∈ {1, 2, . . . , r} such that for every δ > 0 and every ` ∈ N
there is an arithmetic progression {a, a+d, . . . , a+`d} ⊆ Ai∩(0, δ) with increment
d ∈ FS(〈xn〉∞n=1 ) .
Proof. Pick j ∈ {1, 2, . . . , r} such that Aj is central near 0. By thinning the
sequence 〈xn〉∞n=1 , we may presume that Σ∞n=1 xn converges. For each i, t ∈ N ,
let yi,t = i · xt and let Y = 〈〈yi,t〉∞t=1〉∞i=1 . Since Y ∈ Y , Theorem 4.11 applies,
so pick sequences 〈an〉∞n=1 in S and 〈Hn〉∞n=1 in Pf (N) as guaranteed.

Let δ > 0 and ` ∈ N be given and pick n ∈ N such that n ≥ ` and
1/n < δ . Let a = an and let d = Σt∈Hn

xt .

Many of the classical results of Ramsey Theory are naturally stated as
instances of the following problem: Let u, v ∈ N and let A be a u × v matrix
with rational entries. Is it true that whenever N =

⋃r
i=1 Bi there will exist

i ∈ {1, 2, . . . , r} and ~x ∈ Nv with all entries of A~x in Bi ?
For example van der Waerden’s Theorem gives an affirmative answer to

this question for all matrices of the form

A =


1 0
1 1
1 2
...

...
1 `

 .

See [11] for a more thorough discussion of this point.

Definition 5.2. Let u, v ∈ N and let A be a u×v matrix with integer entries.
Then

(a) A satisfies the first entries condition if and only if each row of A is
not ~0 and whenever i, j ∈ {1, 2, . . . , u} and t = min{k ∈ {1, 2, . . . , v} : ai,k 6=
0} = min{k ∈ {1, 2, . . . , v} : aj,k 6= 0} , one has ai,t = aj,t > 0.

(b) A number c is a first entry of A if and only if for some i ∈
{1, 2, . . . , u} and some t ∈ {1, 2, . . . , v} , t = min{k ∈ {1, 2, . . . , v} : ai,k 6= 0}
and c = ai,t .

It is proved in [11, Theorem 3.1] that an affirmative answer to the
question above can be given for A if and only if there exist m ∈ N and a u×m
matrix B which satisfies the first entries condition such that for each ~y ∈ Nm ,
there exists ~x ∈ Nv such that A~x = B~y . (In [11] the matrices are allowed to
have entries from Q. The two versions are easily seen to be equivalent.)

Theorem 5.3. Let G be a dense subgroup of (R,+) and let S =
G ∩ (0,∞) . Let u, v ∈ N , let A be a u × v matrix with entries from Z
which satisfies the first entries condition, and let B ⊆ S be central near 0.
Assume that for every first entry c of A , cS ∩ B is central near 0. Then
there exist sequences 〈x1,t〉∞t=1, 〈x2,t〉∞t=1, . . . , 〈xv,t〉∞t=1 in S such that for each
i ∈ {1, 2, . . . , v} ,

∑∞
t=1 xi,t converges and for each F ∈ Pf (N) , A ~xF ∈ Bu ,

where

xF =


Σt∈F x1,t

Σt∈F x2,t

...
Σt∈F xv,t

 .
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Proof. We proceed by induction on v . If v = 1, then by deleting repeated
rows we have that A = (c) for some c ∈ N . Now cS ∩ B is central near 0,
so in particular there is some idempotent p ∈ 0+ such that cS ∩ B ∈ p . By
Theorem 3.1, there is some sequence 〈yn〉∞n=1 in S such that lim

n→∞
yn = 0 and

FS(〈yn〉∞n=1 ) ⊆ cS∩B . By thinning the sequence, we may assume that
∑∞

n=1 yn

converges. For each n ∈ N , let x1,n = yn/c . Since each yn ∈ cS we have that
each x1,n ∈ S .

Now let v ∈ N be given and assume the result is true for v . Let A be
a u× (v + 1) matrix satisfying the first entries condition with the property that
for each first entry c of A , cS ∩B is central near 0. By adding additional rows
if necessary, we may assume that we have some ` ∈ {1, 2, . . . , u − 1} and some
c ∈ N such that for each j ∈ {1, 2, . . . , u} ,

aj,1 =
{

0 if j ≤ `
c if j > ` .

Let D be the ` × v matrix defined by dj,i = aj,i+1 and note that D
satisfies the first entries condition and all of the first entries of D are first entries
of A . Choose sequences 〈x1,t〉∞t=1, 〈x2,t〉∞t=1, . . . , 〈xv,t〉∞t=1 in S as guaranteed by
the induction hypothesis for D and B . For each j ∈ {` + 1, ` + 2, . . . , u} and
each t ∈ N , let yj,t = Σv+1

i=2 aj,i · xi−1,t . By simultaneously thinning the original
sequences we may assume that for each j ∈ {`+1, `+2, . . . , u} and each k ∈ N ,
Σ∞t=k|yj,t| < 1/k . For j ∈ N\{` + 1, ` + 2, . . . , u} and t ∈ N , let yi,t = yu,t . Let
Y = 〈〈yi,t〉∞t=1〉∞i=1 and note that Y ∈ Y .

By Theorem 4.11 choose sequences 〈bn〉∞n=1 in S and 〈Hn〉∞n=1 in Pf (N)
such that

(a) for each n ∈ N , bn < 1/n and maxHn < minHn+1 and
(b) for each f ∈ Φ, FS(〈bn + Σt∈Hn

yf(n),t〉∞n=1) ⊆ B ∩ cS .
By discarding the first u terms (so that f ∈ Φ takes on values up to u)

we may presume that for each j ∈ {` + 1, ` + 2, . . . , u} and each F ∈ Pf (N) one
has Σn∈F (bn + Σt∈Hn yj,t ∈ B ∩ cS . For each n ∈ N , let z1,n = bn/c and for
each n ∈ N and each i ∈ {2, 3, . . . , v + 1} , let zi,n = Σt∈Hn xi−1,t . We claim
that the sequences 〈z1,t〉∞t=1, 〈z2,t〉∞t=1, . . . , 〈zv+1,t〉∞t=1 are as required.

Certainly for each i ∈ {1, 2, . . . , v} ,
∑∞

t=1 zi,t converges. Let j ∈
{1, 2, . . . , u} and F ∈ Pf (N) be given. We show that

Σv+1
i=1 aj,i · Σn∈F zi,n ∈ B .

Let G =
⋃

n∈F Hn . First assume j ∈ {1, 2, . . . , `} . Then

Σv+1
i=1 aj,i · Σn∈F zi,n = Σv+1

i=2 aj,i · Σn∈F Σt∈Hn xi−1,t

= Σv
i=1 dj,i · Σt∈G xi,t ∈ B

by the induction hypothesis.
Now assume j ∈ {` + 1, ` + 2, . . . , u} . Then

Σv+1
i=1 aj,i · Σn∈F zi,n

= c · Σn∈F z1,n + Σv+1
i=2 aj,i · Σn∈F Σt∈Hn

xi−1,t

= Σn∈F (bn + Σt∈Hn
Σv+1

i=2 aj,i · xi−1,t)
= Σn∈F (bn + Σt∈Hn

yj,t) .

We do not know whether the requirement that for every first entry c
of A , cS ∩ B is central near 0 in Theorem 5.3 is needed. In the most natural
examples of S , it holds. In case S = R ∩ (0,∞) or S = Q ∩ (0,∞), it is trivial
since for every c ∈ N , cS = S . We see now that it also holds in case that
S = D ∩ (0,∞), where D is the set of dyadic rationals.
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Theorem 5.4. Let S = D∩ (0,∞) , let c ∈ N , and let B be central near 0 in
S . Then B ∩ cS is central near 0.
Proof. Pick an idempotent p ∈ K such that B ∈ p . We claim that B∩cS ∈ p .
Suppose instead that B\cS ∈ p . Pick by Theorem 3.1 some sequence 〈xn〉∞n=1
with FS(〈xn〉∞n=1 ) ⊆ B\cS . Let m = (c − 1)2 + 1 and pick some k ∈ N such
that {2kx1, 2kx2, . . . , 2kxm} ⊆ N . If any n ∈ {1, 2, . . . ,m} has c|2kxn , then for
some a ∈ N , xn = c · a

2k ∈ cS , a contradiction. Thus for each n ∈ {1, 2, . . . ,m} ,
there is some i ∈ {1, 2, . . . , c − 1} such that xn ≡ i(modc). Pick by the pigeon
hole principle some F ⊆ {1, 2, . . . ,m} and some i ∈ {1, 2, . . . , c − 1} such that
|F | = c and for each n ∈ F , n ≡ i(modc). Then c|Σn∈F xn so, as above,
Σn∈F xn ∈ cS , a contradiction.

We are now ready to derive some combined additive and multiplicative
results for some (additive) semigroups S for which S is also a semigroup under
multiplication.

Note that the conclusion “A ~xF ∈ Bu ” in Theorem 5.3 can be rewritten
as “for each i ∈ {1, 2, . . . , u} , Σv

j=1 ai,j ·Σt∈F xj,t ∈ B ”. Because we don’t have
the convenient matrix notation available for the multiplicative result, we state
the conclusion of the following theorem in the above form.

Theorem 5.5. Let S be a subsemigroup of
(
(0, 1), ·

)
. Let u, v ∈ N , let

A be a u × v matrix with entries from Z which satisfies the first entries con-
dition, and let B ⊆ S be central in (S, ·) . Assume that for every first entry
c of A , B ∩ {xc : x ∈ S} is central in (S, ·) . Then there exist sequences
〈x1,t〉∞t=1, 〈x2,t〉∞t=1, . . . , 〈xv,t〉∞t=1 in S such that for each F ∈ Pf (N) and for
each i ∈ {1, 2, . . . , u} , Πv

j=1(Πt∈F xj,t)ai,j ∈ B .
Proof. This is the translation to multiplicative notation of what was proved
in [14, Lemma 2.4].

We now show that in many circumstances we will be able to utilize
Theorems 5.3 and 5.5 simultaneously.

In the following theorem, we ignore the fact that an ultrafilter on S∩(0, 1)
is not quite the same thing as an ultrafilter on S with (0, 1) as a member and
so pretend that 0+ ⊆ β

(
S ∩ (0, 1)

)
d
.

Theorem 5.6. Let S be a dense subsemigroup of
(
(0,∞),+

)
such that

S ∩ (0, 1) is a subsemigroup of
(
(0, 1), ·

)
and assume that for each y ∈ S ∩ (0, 1)

and each x ∈ S , x/y ∈ S and yx ∈ S . Let r ∈ N and let S ∩ (0, 1) =
⋃r

i=1 Bi .
Then there is some i ∈ {1, 2, . . . , r} such that Bi is central near 0 and Bi is
central in (S ∩ (0, 1), ·) .
Proof. Let M = {p ∈ 0+ : for all A ∈ p , A is central near 0} . Note that
if p + p = p ∈ K , then p ∈ M so M 6= Ø. We claim that M is a left ideal of
β
(
S ∩ (0, 1)

)
d
. To see this, let p ∈ M , let q ∈ β

(
S ∩ (0, 1)

)
d
, and let A ∈ q · p .

Then {y ∈ S ∩ (0, 1) : y−1A ∈ p} ∈ q , so pick y ∈ S ∩ (0, 1) such that y−1A ∈ p .
Then y−1A is central near 0, so by Lemma 4.8, A is central near 0.

Since M is a left ideal of β
(
S ∩ (0, 1)

)
d
, pick a minimal left ideal L

of β
(
S ∩ (0, 1)

)
d

with L ⊆ M and pick p = p · p ∈ L and note that p is
in the smallest ideal of

(
β
(
S ∩ (0, 1)

)
d
, ·

)
so all of its members are central in

(S ∩ (0, 1), ·). Pick i ∈ {1, 2, . . . , r} such that Bi ∈ p . Then Bi is central in
(S ∩ (0, 1), ·) and, since p ∈ M , Bi is central near 0.

We see now that as a consequence of Theorems 5.3, 5.5, and 5.6, we obtain
combined additive and multiplicative results of varying strength, depending on
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the choice of S . We illustrate the results with the semigroups R+ = R∩ (0,∞),
Q+ = Q ∩ (0,∞), and D+ = D ∩ (0,∞). (Recall that D is the set of dyadic
rationals.)

Note that there is no loss of power in the next result by applying the same
matrix both additively and multiplicatively. Indeed, if A and B are matrices
satisfying the first entries condition, the matrix(

A O
O B

)
also satisfies the first entries condition (where O is a matrix of the appropriate
size with all zero entries).

Theorem 5.7. Let u, v ∈ N , let A be a u×v matrix with entries from Z which
satisfies the first entries condition, let r ∈ N , and let R ∩ (0, 1) =

⋃r
k=1 Bk .

There exists k ∈ {1, 2, . . . , r} and there exist sequences

〈x1,t〉∞t=1, 〈x2,t〉∞t=1, . . . , 〈xv,t〉∞t=1 and 〈y1,t〉∞t=1, 〈y2,t〉∞t=1, . . . , 〈yv,t〉∞t=1

in R ∩ (0, 1) such that for each j ∈ {1, 2, . . . , v} , lim
t→∞

xj,t = 0 and for each

F ∈ Pf (N) and each i ∈ {1, 2, . . . , u} , Σv
j=1 ai,j · Σt∈F xj,t ∈ Bk and

Πv
j=1(Πt∈F yj,t)ai,j ∈ Bk .

Proof. For each y ∈ R ∩ (0, 1) and each x ∈ R , x/y ∈ R and yx ∈ R so,
by Theorem 5.6, pick k ∈ {1, 2, . . . , r} such that Bk is central near 0 and is also
central in (R ∩ (0, 1), ·).

Pick sequences 〈x1,t〉∞t=1, 〈x2,t〉∞t=1, . . . , 〈xv,t〉∞t=1 as guaranteed by Theo-
rem 5.3.

Given c ∈ N , {xc : x ∈ R ∩ (0, 1)} = R ∩ (0, 1), so pick sequences
〈y1,t〉∞t=1, 〈y2,t〉∞t=1, . . . , 〈yv,t〉∞t=1 in R ∩ (0, 1) as guaranteed by Theorem 5.5.

We see now that Theorem 5.7 fails badly in Q.

Theorem 5.8. Let

A =


1 0 0
1 1 0
0 1 0
0 0 3

 ,

let B1 = {x3 : x ∈ Q ∩ (0, 1)} and let B2 =
(
Q ∩ (0, 1)

)
\B1 . There do not exist

k ∈ {1, 2} and x1, x2, x3, y1, y2, y3 in Q ∩ (0, 1) such that for each i ∈ {1, 2, 3} ,
Σ3

j=1 ai,j · xj ∈ Bk and Π3
j=1 yj

ai,j ∈ Bk .

Proof. Suppose one has such k ∈ {1, 2} and x1, x2, x3, y1, y2, y3 in Q∩ (0, 1).
Since y3

3 ∈ Bk , we have k = 1. But then we have {x1, x2, x1 + x2} ⊆ B1 .
Multiplying by the product of the denominators, one obtains a solution in positive
integers to the equation a3 + b3 = c3 , contradicting an instance of Fermat’s Last
Theorem which has long been known to be valid.

We do get a weaker version of Theorem 5.7 to hold in Q. In this
weaker version, restricting A and C to be the same size is merely a notational
convenience; either can be expanded by adding rows and columns to fit without
disturbing the first entries condition.
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Theorem 5.9. Let u, v ∈ N , let A and C be u × v matrices with en-
tries from Z which satisfy the first entries condition, let r ∈ N , and let Q ∩
(0, 1) =

⋃r
k=1 Bk . Assume that 1 is the only first entry of C . There exists

k ∈ {1, 2, . . . , r} and there exist sequences 〈x1,t〉∞t=1, 〈x2,t〉∞t=1, . . . , 〈xv,t〉∞t=1 and
〈y1,t〉∞t=1, 〈y2,t〉∞t=1, . . . , 〈yv,t〉∞t=1 in Q∩ (0, 1) such that for each j ∈ {1, 2, . . . , v} ,
lim

t→∞
xj,t = 0 and for each F ∈ Pf (N) and each i ∈ {1, 2, . . . , u} , Σv

j=1 ai,j ·
Σt∈F xj,t ∈ Bk and Πv

j=1(Πt∈F yj,t)ci,j ∈ Bk .

Proof. For each y ∈ Q ∩ (0, 1) and each x ∈ Q , x/y ∈ Q and yx ∈ Q so,
by Theorem 5.6, pick k ∈ {1, 2, . . . , r} such that Bk is central near 0 and is also
central in (Q ∩ (0, 1), ·).

Pick sequences 〈x1,t〉∞t=1, 〈x2,t〉∞t=1, . . . , 〈xv,t〉∞t=1 as guaranteed by Theo-
rem 5.3.

Since 1 is the only first entry of C , we may pick sequences

〈y1,t〉∞t=1, 〈y2,t〉∞t=1, . . . , 〈yv,t〉∞t=1

in Q ∩ (0, 1) as guaranteed by Theorem 5.5.
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