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ALGEBRA IN THE STONE-�ECH

COMPACTIFICATION�AN UPDATE

NEIL HINDMAN AND DONA STRAUSS

Abstract. The �rst edition of the book Algebra in the Stone-�ech
compacti�cation was published in 1998 and the second edition in
2012. Since that time there have been many new results published
about the algebraic structure of the Stone-�ech compacti�cation
βS of the discrete semigroup S and the combinatorial applications
of that structure, mostly in the area of Ramsey Theory. We present
here, with proofs so far as possible, what we believe to be some of
the most signi�cant of these new results.

Part 1. Introduction

There has been a substantial amount of research on the algebraic struc-
ture of the Stone-�ech compacti�cation of a discrete semigroup or its
combinatorial applications since the publication of [72]. In this paper we
present a few of what we feel are the most signi�cant and striking of these
results.

We shall assume that the reader is familiar with the basic structure
of βS as presented in [72, Part I]. We will provide detailed proofs of the
results we present. The only result that we use and do not prove is the
density Hales-Jewett Theorem, Theorem 2.1.
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In Part 2 of this paper we present some new Ramsey theoretic appli-
cations.

Early in the applications of the algebraic structure of βS to Ramsey
Theory came some results about the combined additive and multiplicative
structure of N. Speci�cally, it was shown in [57] that if N is �nitely colored
there exist sequences 〈xn〉∞n=1 and 〈yn〉∞n=1 in N such that FS(〈xn〉∞n=1)∪
FP (〈yn〉∞n=1) is monochromatic, where FS(〈xn〉∞n=1) = {

∑
t∈F xt : F ∈

Pf (N)} and FP (〈yn〉∞n=1) = {
∏
t∈F yt : F ∈ Pf (N)} and Pf (X) is the

set of �nite nonempty subsets of X. Shortly thereafter it was shown that
there is a 2-coloring of N for which there is no sequence 〈xn〉∞n=1 with
FS(〈xn〉∞n=1) ∪ FP (〈xn〉∞n=1) monochromatic.

Since at least 1985 the �rst author of the current paper has maintained
that it is a fact that if m, r ∈ N and N is r-colored, there exists 〈xn〉mn=1

such that FS(〈xn〉mn=1) ∪ FP (〈xn〉mn=1) is monochromatic. Note that he
has not claimed that he could prove that fact. And the only instance that
has been proved is m = r = 2. That remains the situation today, but
dramatic progress has been made recently, beginning with the result [108]
of Joel Moriera that whenever r ∈ N and N is r-colored, there exist a
color class C and in�nitely many y such that {x ∈ N : {x, xy, x+y} ⊆ C}
is in�nite � in fact that set is piecewise syndetic. We present that result
in Section 1.

Noticeably missing from the above result is y itself. In Section 2 we
present the result [25] of Matt Bowen and Marcin Sabok that whenever
r ∈ N and Q is r-colored, there exist a color class C and in�nitely many
y such that {x ∈ N : {x, y, xy, x+ y} ⊆ C} is in�nite. That is, the claim
above is valid for m = 2 and all r, provided one replaces the requirement
that x and y come from N by the requirement that they come from Q.

In [117] Alessandro Sisto proved that whenever N \ {1} is 2-colored,
there exist in�nitely many monochromatic exponential triples, that is sets
of the form {a, b, ba}. In [114] Julian Sahasrabudhe extended this result
to any �nite coloring of N \ {1}. In Section 3 we present the very simple
proof [44] of Sahasrabudhe's result by Mauro Di Nasso and Mariaclara
Ragosta as well as a new in�nitary extension.

In Section 4 we present a new result of Vitaly Bergelson, John Johnson,
and Joel Moreira about con�gurations of polynomials from Zj to Z with
zero constant terms for j ∈ N.

In Part 3 we present some new results about the algebraic structure of
βS.

In a handwritten manuscript written in 1978, Eric K. van Douwen
asked whether there exist topological and algebraic copies of βN in N∗.
That question was answered in the negative in [122], where it was shown
that if ϕ : βN → N∗ is a continuous homorphism, then ϕ[βN] is �nite.
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The question then immediately arose as to whether the image could be
nontrivial. That question remained open for 29 years. We present the
strong a�rmative answer by Yevhen Zelenyuk [132] in Section 5.

In Section 6 we present results from [80] showing that if S is a count-
ably in�nite cancellative semigroup, then several simply de�ned algebraic
subsets are not at all simple topologically. Speci�cally under assumptions
a bit weaker than cancellativity, the set of idempotents, K(βS), p + βS
for any p ∈ S∗, and S∗S∗ are not Borel.

Given idempotents p and q in (βS,+), p ≤R q if and only if p = q + p,
p ≤L q if and only if p = p+ q, and p ≤ q if and only if p = q+ p = p+ q.
We write p <R q provided p ≤R q and it is not true that q ≤R p.

In [95, Theorem 5.4] it was shown that there exists a sequence 〈pn〉∞n=1

of idempotents in βN such that pn <R pn+1 for each n ∈ N. (It was
also shown in [95] that for each countable ordinal λ, there is a sequence
〈pσ〉σ<λ of idempotents in βN such that pσ > pτ whenever σ < τ < λ.)
In Section 7 we will present the result from [79] that there are increasing
<R chains of idempotents in βN of length ω1.

One of the oldest questions about the algebra of the Stone-�ech com-
pacti�cation was whether every point of βZ\Z = Z∗ is a member of some
maximal orbit closure of the shift function. This question was asked to
Mary Ellen Rudin by some now anonymous analysts in the late 1970's or
early 1980's before it was widely known that βZ had an algebraic struc-
ture. The shift function σ : Z → Z is de�ned by σ(n) = n + 1. Letting
σ̃ : βZ → βZ be its continuous extension, one has for p ∈ Z∗ that the
orbit closure of p is c`{σ̃n(p) : n ∈ Z} = βZ + p. So the question was
whether every point of Z∗ is a member of a maximal principal left ideal
of βZ. This question was �nally answered in the a�rmative recently by
Yevhen Zelenyuk who showed [133] that there does not exist a strictly
increasing sequence of principal left ideals of βZ. We present this result
in Section 8. Notice that as an immediate consequence, there does not
exist a sequence of idempotents 〈pn〉∞n=1 such that pn <L pn+1 for each
n.

Part 2. Sums, Products, Exponents, and Polynomials

1. x, xy, x+ y in N

In this section we present Moreira's proof [108] that if r ∈ N and
N =

⋃r
i=1 Ci, then there exist i ∈ {1, 2, . . . , r} and in�nitely many y such

that {x ∈ N : {x, xy, x + y} ⊆ Ci} is piecewise syndetic in (N,+). We
also derive the result of Bergelson and Moreira [16, Theorem 4.1] that a
similar result holds in any in�nite �eld.
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Lemma 1.1. Let (S,+) be an in�nite semigroup, let L be a minimal left
ideal of (βS,+), and let A be a subset of S such that A ∩ L 6= ∅. There
exists E, a syndetic subset of S, such that for all F ∈ Pf (E) there exists

X ⊆ S such that X ∩ L 6= ∅ and F +X ⊆ A.

Proof. Pick q ∈ A∩L and let E = {x ∈ S : −x+A ∈ q}. By [72, Theorem
4.39], E is syndetic in S. Let F ∈ Pf (E) and let X =

⋂
f∈F (−f + A).

Then F +X ⊆ A and since X ∈ q, X ∩ L 6= ∅. �

De�nition 1.2. A semiring is a triple (S,+, ·) such that (S,+) is a
commutative semigroup, (S, ·) is a semigroup, and for all a, b, c ∈ S,
a(b+ c) = ab+ ac and (b+ c)a = ba+ ca.

The following result is due to John H. Johnson, Jr. in a personal com-
munication. In the case S = N, it provides a simpli�ed proof of a special
case of [58, Corollary 3.8] which was in turn a simpli�cation of a special
case of [11, Theorem C].

Theorem 1.3. Let (S,+, ·) be an in�nite semiring, let L be a minimal
left ideal of (βS,+), let A be a subset of S such that A ∩ L 6= ∅, let v be
an idempotent in (βS,+), and let M ∈ Pf (S). Then

{n ∈ S : A ∩ L ∩
⋂
m∈M (−mn+A) 6= ∅} ∈ v .

In particular, If A is piecewise syndetic in (S,+) and M ∈ Pf (S), then

{n ∈ S : A ∩
⋂
m∈M (−mn+A) is piecewise syndetic in (S,+)}

is an IP ∗-set in (S,+).

Proof. Let C = {n ∈ S : A ∩ L ∩
⋂
m∈M (−mn+A) 6= ∅}. To show

that C ∈ v it su�ces to show that for every B ∈ v, C ∩ B 6= ∅, so let
B ∈ v. Since v is an idempotent, pick a sequence 〈xn〉∞n=1 in S such that
FS(〈xn〉∞n=1) ⊆ B.

We claim that
(∗) if n ∈ S and there exists X ⊆ A such that X ∩ L 6= ∅

and {mn : m ∈M}+X ⊆ A, then n ∈ C.
To establish (∗), let n ∈ S and assume we have X ⊆ A such that

X ∩ L 6= ∅ and {mn : m ∈ M}+X ⊆ A. Pick r ∈ X ∩ L. Since X ⊆ A,
we have that r ∈ A ∩ L. To see that n ∈ C we show that for m ∈ M ,
(−mn+A) ∈ r. Given m ∈M , we have mn+X ⊆ A so X ⊆ (−mn+A)
so (mn+A) ∈ r.

Pick by Lemma 1.1 a syndetic set E ⊆ S such that for all F ∈ Pf (E)

there exists X ⊆ S such that X ∩ L 6= ∅ and F +X ⊆ A.
For m ∈M , de�ne fm ∈ NS by fm(t) = mxt. By [72, Theorem 14.8.3]

E is a J-set so pick by [61, Theorem 4.1] some a ∈ E and H ∈ Pf (N) such
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that for m ∈M , a+
∑
t∈H fm(t) ∈ E. Let F = {a} ∪

{
a+

∑
t∈H fm(t) :

m ∈M
}
. Pick X ⊆ N such that X ∩ L 6= ∅ and F +X ⊆ A.

We claim that
∑
t∈H xt ∈ C, so that B ∩ C 6= ∅ as required. We have

that a + X ⊆ A and {m
∑
t∈H xt : m ∈ M} + (a + X) ⊆ A so by (∗) it

su�ces to show that a+X ∩ L 6= ∅. By the continuity of λa, a+X =
a+X. Pick r ∈ X ∩ L. Then a+ r ∈ L and a+ r ∈ a+X = a+X. �

Lemma 1.4. Let (S,+, ·) be an in�nite semiring. For all x ∈ S and all
p, q ∈ βS, x(p+ q) = xp+ xq and (p+ q)x = px+ qx.

Proof. For p ∈ βS, let lp, rp, λp, and ρp be functions from βS to βS
de�ned by, for q ∈ βS, lp(q) = pq, rp(q) = qp, λp(q) = p + q, and
ρp(q) = q + p. Recall that for each p ∈ βS, rp and ρp are continuous and
for each x ∈ S, lx and λx are continuous.

Let x ∈ S and let p, q ∈ βS. To see that x(p+ q) = xp+ xq, it su�ces
that lx ◦ ρq and ρxq ◦ lx agree on S, so let y ∈ S. We need to show that
x(y + q) = xy + xq which is true because lx ◦ λy and λxy ◦ lx agree on S.

To see that (p+ q)x = px+ qx it su�ces that rx ◦ ρq and ρqx ◦ rx agree
on S, so let y ∈ S. We need to show that (y + q)x = yx + qx which is
true because rx ◦ λy and λyx ◦ rx agree on S. �

In the proofs of Lemmas 1.5, 1.6, and 1.7 we use the fact that, by [72,
Theorem 1.67], a point x ∈ βS is in K(βS) if and only if for each q ∈ βS
there exists u ∈ βS such that x = u+ q + x.

Lemma 1.5. Let A ⊆ N be piecewise syndetic in (N,+) and let y ∈ N.
Then Ay is piecewise syndetic in (N,+).

Proof. Pick x ∈ A ∩ K(βN). Pick an idempotent q ∈ K(βN). By [72,
Lemma 5.19.2], 1

y · q ∈ βN, where
1
y · q is the product in (βQd, ·). Pick

u ∈ βN such that x = u+ 1
y ·q+x. By Lemma 1.4, y distributes over βN and

it is easy to verify that y · 1
y ·q = q so xy = uy+q+xy ∈ K(βN)∩Ay. �

Lemma 1.6. Let (S,+, ·) be a �eld, let y ∈ S \ {0}, and let A ⊆ S be
piecewise syndetic in (S,+). Then Ay is piecewise syndetic in (S,+).

Proof. Pick x ∈ A ∩ K(βS,+) and pick an idempotent q in K(βN,+).
Then qy−1 ∈ βS. Pick u ∈ βS such that x = u + qy−1 + x. By Lemma
1.4, y distributes over βS so xy = uy + qy−1y + xy = uy + q + xy ∈
K(βS) ∩Ay. �

Lemma 1.7. Let y ∈ N and let A be a piecewise syndetic subset of N
such that A ⊆ Ny. Then A/y is piecewise syndetic.

Proof. Pick x ∈ A ∩ K(βN). Then x ∈ yN = yβN so pick z ∈ βN such
that x = yz. Pick q ∈ K(βN). Then yq ∈ βN so pick u ∈ βN such
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that yz = u + yq + yz. Then u ∈ yN so u = yw for some w ∈ βN.
Then yz = y(w + q + z) by [72, Lemma 13.1] so by [72, Lemma 8.1],
z = w + q + z ∈ K(βN) ∩A/y. �

De�nition 1.8. Let (S, ·) be a semigroup, let m ∈ N, and let 〈yt〉mt=1

be a sequence in S. The sequence satis�es uniqueness of �nite products
if and only if, whenever H,K ∈ Pf ({1, 2, . . . ,m}) and H 6= K, then∏
t∈H yt 6=

∏
t∈K yt. If 〈yt〉∞t=1 is an in�nite sequence in S, then the

sequence satis�es uniqueness of �nite products if and only if, whenever
H,K ∈ Pf (N) and H 6= K, then

∏
t∈H yt 6=

∏
t∈K yt.

.

Lemma 1.9. Let (S, ·) be a group with identiy 1, let m ∈ N, let 〈yt〉mt=1

be a sequence with FP (〈yt〉mt=1) ⊆ S \ {1} satifying uniqlueness of �nite
products, and let A be an in�nite subset of S. There exists ym+1 ∈ A
such that FP (〈yt〉m+1

t=1 ) ⊆ S \{1} and 〈yt〉m+1
t=1 sati�es uniqueness of �nite

products.

Proof. Let B = FP (〈yt〉mt=1). Pick

ym+1 ∈ A \ ({1} ∪B ∪ {b−1 : b ∈ B} ∪ {b−1c : b, c ∈ B}) .
Then ym+1 is as required. �

Theorem 1.10. Let S be N or an in�nite �eld, let r ∈ N, and let S =⋃r
i=1 Ci. There exist i ∈ {1, 2, . . . , r} an injective sequence 〈zn〉∞n=1 in

S, and a sequence 〈En〉∞n=1 of piecewise syndetic subsets of (S,+) such
that for each n ∈ N, En ⊆ Szn and if w ∈ En and x = wz−1

n , then
{x, xzn, x+ zn} ⊆ Ci.

Proof. All references in this proof to piecewise syndetic sets refer to sets
piecewise syndetic in (S,+). Choose t0 ∈ {1, 2, . . . , r} such that Ct0 is
piecewise syndetic and let B0 = Ct0 . By Lemma 1.3 with M = {1}, pick
y1 ∈ S \ {0, 1} such that B0 ∩ (B0 − y1) is piecewise syndetic and let
D1 = B0 ∩ (B0 − y1). By Lemma 1.5 or 1.6, y1D1 is piecewise syndetic.
Since y1D1 =

⋃r
i=1(y1D1∩Ci), pick t1 ∈ {1, 2, . . . , r} such that y1D1∩Ct1

is piecewise syndetic and let B1 = (y1D1 ∩ Ct1).
Let k ∈ N and assume we have chosen 〈yj〉kj=1, 〈Bj〉kj=0, 〈tj〉kj=0, and

〈Dj〉kj=1 satisfying the following induction hypotheses.
(1) For j ∈ {1, 2, . . . , k}, yj ∈ S and

(a) if S = N and j > 1, yj > yj−1;
(b) if S is a �eld, then FP (〈yt〉kt=1) ⊆ S \{0, 1} and FP (〈yt〉kt=1)

sati�es uniqueness of �nite products.
(2) For j ∈ {1, 2, . . . , k}, Dj is a piecewise syndetic subset of S.
(3) For j ∈ {0, 1, . . . , k}, tj ∈ {1, 2, . . . , r}.
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(4) For j ∈ {0, 1, . . . , k}, Bj is a piecewise syndetic subset of S.
(5) For j ∈ {0, 1, . . . , k}, Bj ⊆ Ctj .
(6) For j ∈ {1, 2, . . . , k}, Bj ⊆ yjDj .
(7) For j < m in {0, 1, . . . , k}, Bm ⊆ ymym−1 · · · yj+1Bj .
(8) For m ∈ {1, 2, . . . , k}, Dm ⊆ Bm−1 ∩ (Bm−1 − ym) and, if m > 1,

then Dm ⊆
⋂m−1
j=1 (Bm−1 − (ym−1ym−2 · · · yj)2ym).

All hypotheses hold for k = 1.
For j ∈ {1, 2, . . . , k}, let uj = ykyk−1 · · · yj and let M =

{1, u2
1, u

2
2, . . . , u

2
k}. By Lemma 1.3,

A = {y ∈ S : Bk ∩ (Bk − y) ∩
⋂k
j=1(Bk − u2

jy) is piecewise syndetic}

is an IP ∗-set in (S,+). If S = N, pick yk+1 ∈ A with yk+1 > yk. If S is a
�eld, then by Lemma 1.9 applied to the group (S \ {0}, ·) pick yk+1 ∈ A
such that FP (〈yt〉k+1

t=1 ) ⊆ S \ {0, 1} and FP (〈yt〉k+1
t=1 ) sati�es uniqueness

of �nite products. Let Dk+1 = Bk ∩ (Bk − yk+1) ∩
⋂k
j=1(Bk − u2

jyk+1).
Note that hypotheses (1), (2), and (8) hold at k + 1.

By Lemma 1.5 or 1.6, yk+1Dk+1 is piecewise syndetic and

yk+1Dk+1 =
⋃r
i=1(yk+1Dk+1 ∩ Ci)

so pick tk+1 ∈ {1, 2, . . . , r} such that yk+1Dk+1 ∩ Ctk+1
is piecewise syn-

detic and let Bk+1 = yk+1Dk+1 ∩ Ctk+1
. Note that hypotheses (3), (4),

(5), and (6) hold for k + 1.
We need to verify hypothesis (7) so let j < m in {0, 1, . . . , k + 1} be

given. If m ≤ k, then (7) holds by assumption so assume that m = k+ 1.
We have Bk+1 ⊆ yk+1Dk+1 ⊆ yk+1Bk. If j = k, we are done, so assume
that j < k in which case by (7) at k we have Bk ⊆ ykyk−1 · · · yj+1Bj so
Bk+1 ⊆ yk+1yk · · · yj+1Bj as required.

The construction is complete. Pick i ∈ {1, 2, . . . , r} such that {k ∈ N :
tk = i} is in�nite and let G = {k ∈ N : tk = i}. We then choose a sequence
〈k(n)〉∞n=0 in G so that, letting zn = yk(n)yk(n)−1 · · · yk(n−1)+1 for n ∈ N,
we have 〈zn〉∞n=1 is an injective sequence. (This is either because 〈yn〉∞n=1

is increasing in N or satis�es uniqueness of �nite products in the �eld S.)
For n ∈ N, let En = Bk(n). Then each En is piecewise syndetic. Also,

En = Bk(n) ⊆ yk(n)yk(n)−1 · · · yk(n−1)+1Bk(n−1) = znBk(n−1) ⊆ znS .

Let w ∈ En and let x = wz−1
n . We need to show that {x, xzn, x+zn} ⊆

Ci. Now xzn = w ∈ En = Bk(n) ⊆ Ctk(n)
= Ci. Also xzn ∈ En ⊆

znBk(n−1) so x ∈ Bk(n−1) ⊆ Ctk(n−1)
= Ci. It remains to show that
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x+ zn ∈ Ci. Now
zn(x+ zn)

= w + z2
n ∈ Bk(n) + z2

n ⊆ yk(n)Dk(n) + z2
n

⊆ yk(n)(Bk(n)−1 − yk(n)y
2
k(n)−1y

2
k(n)−2 · · · y

2
k(n−1)+1) + z2

n

⊆ yk(n)(yk(n)−1yk(n)−2 · · · yk(n−1)+1Bk(n−1)

− yk(n)y
2
k(n)−1y

2
k(n)−2 · · · y

2
k(n−1)+1) + z2

n

= yk(n)yk(n)−1yk(n)−2 · · · yk(n−1)+1Bk(n−1)

− y2
k(n)y

2
k(n)−1y

2
k(n)−2 · · · y

2
k(n−1)+1 + z2

n

= znBk(n−1) .

So x+ zn ∈ Bk(n−1) ⊆ Ctk(n−1)
= Ci. �

Corollary 1.11. Let S be N or an in�nite �eld, let r ∈ N, and let S =⋃r
i=1 Ci. There exist i ∈ {1, 2, . . . , r} and in�nitely many y such that
{x ∈ N : {x, xy, x+ y} ⊆ Ci} is piecewise syndetic.

Proof. Pick i, 〈zn〉∞n=1, and 〈En〉∞n=1 as guaranteed by Theorem 1.10.
Given n ∈ N, if y = zn, then Eny

−1 ⊆ {x ∈ N : {x, xy, x + y} ⊆ Ci}
and by Lemma 1.7 or 1.6, Eny−1 is piecewise syndetic. �

2. x, y, x+ y and xy in Q

In this section we present the proof by Bowen and Sabok [25] that if
r ∈ N and Q =

⋃r
i=1 Ci, there exist i ∈ {1, 2, . . . , r} and in�nitely many

y such that {x ∈ Q \ {0} : {x, y, x+ y, xy} ⊆ Ci} is in�nite.
Throughout this section we let S = Q \ {0} and for n ∈ N, we will let

[n] = {1, 2, . . . , n}. We denote the characteristic function of a set A by
χ
A.
We will use the density Hales-Jewett Theorem, which we will not prove.

See [72, Section 14.2] for the terminology surrounding the Hales-Jewett
Theorem.

Theorem 2.1 (Density Hales-Jewett). Let n ∈ N and η ∈ (0, 1). There
exists r ∈ N such that whenever C ⊆ [n]r and |C| ≥ ηnr, there is a length
r variable word w over the alphabet [n] such that {w(t) : t ∈ [n]} ⊆ C.

Proof. This is due to Furstenberg and Katznelson in [53]. For a simpli�ed
elementary proof see [113] which is an anonymous collaborative e�ort. �

The next two lemmas are consequences of [7, Theorems 3.2 and 7.5]
respectively.

Lemma 2.2. Let F ∈ Pf (Q), let F : F → N, let 0 < η < δ < 1, let λ be
a left invariant mean on (Q,+), let A ⊆ Q such that λ(χA) ≥ δ, and let

R = {t ∈ Q :
∑
x∈F∩(A−t) F(x) ≥ η

∑
x∈F F(x)}. Then λ(χR) ≥ δ − η

1− η
.
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Proof. De�ne g : Q→ [0, 1] by g(t) =

∑
x∈F∩(A−t) F(x)∑

x∈F F(x)
. Then for t ∈ Q,

g(t) =
1∑

x∈F F(x)

∑
x∈F F(x) · χ(A−t)(x)

=
1∑

x∈F F(x)

∑
x∈F F(x) · χ(−x+A)(t) ,

so

λ(g) =
1∑

x∈F F(x)
·
(∑

x∈F F(x) · λ(χ(−x+A))
)

=
1∑

x∈F F(x)
·
(∑

x∈F F(x) · λ(χA)
)

since λ is invariant. Therefore λ(g) =
λ(χA)∑
x∈F F(x)

·
∑
x∈F F(x) = λ(χA).

Since λ is additive, λ(χA) = λ(g) ≤ λ(gχR) + λ(gχQ\R). Since gχR ≤
χ
R, λ(gχR) ≤ λ(χR). For t ∈ Q \ R,

∑
x∈F∩(A−t) F(x) < η

∑
x∈F F(x)

so g(t) =

∑
x∈F∩(A−t) F(x)∑

x∈F F(x)
< η and λ(χQ\R) = 1 − λ(χR) so λ(χA) ≤

λ(χR) + η
(
1− λ(χR)

)
. Therefore λ(χA)− η ≤ λ(χR) · (1− η) so λ(χR) ≥

δ − η
1− η

. �

Lemma 2.3. Let n ∈ N and 0 < δ < 1. Let λ be an invariant mean on
(Q,+) and for A ⊆ Q, let d(A) = λ(χA). There exist r ∈ N and β > 0
such that for any A ⊆ S with d(A) > δ and any q1, q2, . . . , qn ∈ Q,

{x ∈ S : d
(⋂n

i=1(A− qix)
)
≥ β} is IP ∗r .

Proof. Pick η such that 0 < η < δ. Pick by Theorem 2.1, r ∈ N such
that whenever C ⊆ [n]r and |C| ≥ ηnr, there is a length r variable word
w over the alphabet [n] such that {w(t) : t ∈ [n]} ⊆ C. Let A ⊆ S with
d(A) > δ and let q1, q2, . . . , qn ∈ Q.

Let β =
δ − η

(1− η)(n+ 1)r
. Let s1, s2, . . . , sr ∈ Q. We need to show that

there exists x ∈ FS(〈si〉ri=1) such that d
(⋂n

i=1(A− qix)
)
≥ β.

De�ne ψ : [n]r → Q by, for w = l1l2 · · · lr ∈ [n]r, ψ(w) =
∑r
i=1 qlisi.

Let F = {ψ(w) : w ∈ [n]r} and de�ne F : F → N by

F(x) = |{w ∈ [n]r : ψ(w) = x}| .

Let R = {t ∈ Q :
∑
x∈F∩(A−t) F(x) ≥ η

∑
x∈F F(x)}. Notice that∑

x∈F F(x) = nr so R = {t ∈ Q :
∑
x∈F∩(A−t) F(x) ≥ ηnr}. By Lemma

2.2, d(R) ≥ δ − η
1− η

.
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Now∑
x∈F∩(A−t) F(x) =

∑
x∈F∩(A−t) |{w ∈ [n]r : ψ(w) = x}|

= |{w ∈ [n]r : ψ(w) ∈ A− t}|
= |{w ∈ [n]r : t+ ψ(w) ∈ A}| ,

so R = {t ∈ Q : |{w ∈ [n]r : t+ ψ(w) ∈ A}| ≥ ηnr}.
For a length r variable word w over [n], let

Bw = {t ∈ R : {t+ ψ
(
w(k)

)
: k ∈ [n]} ⊆ A} .

We claim that R ⊆
⋃
{Bw : w is a length r variable word over [n]}.

To see this, let t ∈ R and let C = {w ∈ [n]r : t + ψ(w) ∈ A}. Then
|C| ≥ ηnr so by the choice of r, there is a length r variable word w such
that {w(k) : k ∈ [n]} ⊆ C. That is, t ∈ Bw.

Now we claim that there is a length r variable word w over [n] such
that d(Bw) ≥ β. There are (n+ 1)r − nr < (n+ 1)r variable words over
[n]. If for each variable word w one had d(Bw) < β, then we would have

d(R) < β · (n+ 1)r =
δ − η
1− η

, a contradiction. So pick a length r variable

word w = l1l2 · · · lr over [n] such that d(Bw) ≥ β.
Let α = {i ∈ [r] : li = v}, where v is the variable. For k ∈ [n],

ψ
(
w(k)

)
=
∑
i∈[r]\α qlisi +

∑
i∈α qksi. Let u =

∑
i∈[r]\α qlisi and let

x =
∑
i∈α si. Then ψ

(
w(k)

)
= u+qkx so for each t ∈ Bw, t+u+qkx ∈ A

so Bw + u ⊆
⋂n
k=1(A− qkx) and d(Bw + u) = d(Bw) ≥ β so

d(
⋂n
k=1(A− qkx) ≥ β. �

Notice that one may change the conclusion of Lemma 2.3 to

{x ∈ S : d
(
A ∩

⋂n
i=1(A− qix)

)
≥ β} is IP ∗r ,

by replacing n by n+ 1 and letting qn+1 = 0.

Lemma 2.4. Let k, r,N ∈ N and let T1, T2,. . . , Tk be subsets of S that

are thick in (S, ·). Then there exist
〈
〈Sl,i〉kl=1

〉N−1

i=1
such that

(1) for l ∈ {1, 2, . . . , k} and i ∈ {1, 2, . . . , N − 1}
(a) Sl,i is a �nite IPr set in (Q,+) and
(b) Sl,i ⊆ Tl; and

(2) for 1 ≤ i ≤ j < N and li, li+1, . . . , lj ∈ {1, 2, . . . , k},
Sli,i · Sli+1,i+1 · · ·Slj ,j ⊆ Tli .

Proof. Note that if F is IPr in (Q,+) and t ∈ S, then Ft is IPr in (Q,+).
Consequently, if V is thick in (S, ·), then V contains an IPr set.

We claim that if V is thick in (S, ·), F ∈ Pf (S), and R = {t ∈ S : Ft ⊆
V }, then R is thick in (S, ·). To see this, let G ∈ Pf (S) be given. Let
H = FG. Pick a ∈ S such that Ha ⊆ T . Then FGa ⊆ T so Ga ⊆ R.
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Now we construct
〈
〈Sl,i〉kl=1

〉N−1

i=1
by downward induction on i. To

begin, for l ∈ {1, 2, . . . , k} pick a �nite IPr set Sl,N−1 ⊆ Tl.
Now let m ∈ {2, 3, . . . , N − 1} and assume we have

〈
〈Sl,i〉kl=1

〉N−1

i=m
satisfying (1) and (2). Let

R = {1} ∪
⋃N−1
j=m

{
Slm,m · Slm+1,m+1 · · ·Slj ,j :

lm, lm+1, . . . , lj ∈ {1, 2, . . . , k}
}
.

For l ∈ {1, 2, . . . , k} pick a �nite IPr set Sl,m−1 ⊆ {x ∈ S : xR ⊆ Tl}.
Since 1 ∈ R, each Sl,m−1 ⊆ Tl. To verify (2), let m − 1 ≤ j < N and
lm−1, lm, . . . , lj ∈ {1, 2, . . . , k} be given. If j = m − 1 there is nothing
to show, so assume j ≥ m. Then Slm,m · Slm+1,m+1 · · ·Slj ,j ⊆ R so
Slm−1,m−1 · Slm,m · · ·Slj ,j ⊆ Tlm−1

. �

Lemma 2.5. Let n ∈ N and let S =
⋃n
i=1 Ci. There exist k ∈ N, subsets

Y1, Y2, . . . , Yk of {1, 2, . . . , n}, and F ∈ Pf (S) such that

(i) for all l ∈ {1, 2, . . . , k},
⋃
m∈Yl Cm is thick in (S, ·) and

(ii) (∀x ∈ S)(∃l ∈ {1, 2, . . . , k})(∀m ∈ Yl)(∃f ∈ F )(fx ∈ Cm).

Proof. For Y ⊆ {1, 2, . . . , n}, let CY =
⋃
m∈Y Cm. Let

T = {Y ⊆ {1, 2, . . . , n} : CY is thick in (S, ·)} and let
S = {Y ⊆ {1, 2, . . . , n} : CY is syndetic in (S, ·)}.

Note that T 6= ∅ and S 6= ∅ since S is both thick and syndetic in
(S, ·). For Y ∈ S, pick FY ∈ Pf (S) such that S =

⋃
t∈FY t

−1CY and let
F =

⋃
Y ∈S FY .

For x ∈ S, let Ax = {m ∈ {1, 2, . . . , n} : (∃f ∈ F )(fx ∈ Cm)}. Given
x ∈ S and Y ∈ S, one may pick f ∈ FY such that fx ∈ CY so there is
some m ∈ Y such that fx ∈ Cm so we have Ax ∩ Y 6= ∅.

We claim that for all x ∈ S, Ax ∈ T . So let x ∈ S and suppose that
CAx is not thick in (S, ·). Let V = {1, 2, . . . , n} \Ax. We have S \CAx is
syndetic and S\CAx ⊆ CV so V ∈ S and thus Ax∩V 6= ∅, a contradiction.

Let R = {Ax : x ∈ S}. Since T ⊆ P({1, 2, . . . , n}), R is �nite.
Enumerate R as Y1, Y2, . . . , Yk. Since R ⊆ T , conclusion (i) is immediate.
To verify (ii), let x ∈ S. Pick l ∈ {1, 2, . . . , k} such that Ax = Yl. By
the de�nition of Ax, we have for all m ∈ Yl, there is some f ∈ F with
fx ∈ Cm. �

Theorem 2.6. Let n ∈ N and let S =
⋃n
i=1 Ci. There exist y ∈ S and

m ∈ {1, 2, . . . , n} such that {x ∈ S : {x, y, x+ y, xy} ⊆ Cm} is in�nite.

Proof. Pick k, Y1, Y2, . . . , Yk, and F as guaranteed by Lemma 2.5. As
before, for Y ⊆ {1, 2, . . . , n}, let CY =

⋃
m∈Y Cm. Pick an invariant

mean λ on (Q,+) and pick z ∈ F . For A ⊆ Q, let d(A) = λ(χA). We
claim that
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(∗) (∀x ∈ S)(∃l ∈ {1, 2, . . . , k})(∃(f1, f2, . . . , fn) ∈ Fn)
(∀m ∈ Yl)(fmx ∈ Cm) .

To see this, let x ∈ S. Pick by Lemma 2.5(ii), l ∈ {1, 2, . . . , k} such
that (∀m ∈ Yl)(∃f ∈ F )(fx ∈ Cm). So given m ∈ Yl, pick fm ∈ F such
that fmx ∈ Cm. If m ∈ {1, 2, . . . , n} \ Yl, let fm = z.

De�ne Ψ : S → {1, 2, . . . , k}×Fn by choosing Ψ(x) = (l, f1, f2, . . . , fn)
where (∀m ∈ Yl)(fmx ∈ Cm). (This is a choice, since for m ∈ Yl there
may be many possible choices for fm.) Let K = k · |F |n+ 1 and note that
K > |Ψ[S]|,.

Pick N ∈ N large enough so that, given any sequence 〈~vj〉Nj=1 in
{1, 2, . . . , k} × Fn, there exist i and j with 1 < i < j − 1 < N − 2

such that ~vi = ~vj . Let s =

(
N
2

)
· |F |.

We now choose inductively 〈αj〉Nj=1, 〈α′j〉Nj=1, and 〈rj〉Nj=1 with each
αj > 0, each α′j > 0, and each rj ∈ N. Let α1 = 1

K . By Lemma 2.3 pick
r1 ∈ N and α′1 > 0 such that for any R ∈ Pf (S) with |R| ≤ s and A ⊆ S
such that d(A) > α1, one has

{x ∈ S : d
(
A ∩

⋂
q∈R(A− qx)

)
> α′1} is IP ∗r1 .

Given j ∈ {1, 2, . . . , N − 1} and having chosen αj , α′j , and rj , let αj+1 =
α′j
K . Again using Lemma 2.3 pick rj+1 ∈ N and α′j+1 > 0 such that for
any R ∈ Pf (S) with |R| ≤ s and A ⊆ S such that d(A) > αj+1, one has

{x ∈ S : d
(
A ∩

⋂
q∈R(A− qx)

)
> α′j+1} is IP ∗rj+1

.

Let r = max
{
rj : j ∈ {1, 2, . . . , N}

}
. If j ∈ {1, 2, . . . , N} and a set is

IP ∗rj , then it is IP ∗r .

By Lemma 2.4, pick
〈
〈Sl,i〉kl=1

〉N−1

i=1
such that

(1) for l ∈ {1, 2, . . . , k} and i ∈ {1, 2, . . . , N − 1}
(a) Sl,i is a �nite IPr set in (Q,+) and
(b) Sl,i ⊆ CYl ; and

(2) for 1 ≤ i ≤ j < N and li, li+1, . . . , lj ∈ {1, 2, . . . , k},
Sli,i · Sli+1,i+1 · · ·Slj ,j ⊆ CYli .

Let Q1 = { 1
f : f ∈ F}. We de�ne

(I) A1, A2, . . . , AN , subsets of S,
(II) Q1, Q2, . . . QN , �nite nonempty subsets of S,
(III) tuples (l1, f1,1, f2,1, . . . , fn,1), . . . , (lN , f1,N , f2,N , . . . , fn,N )

in {1, 2, . . . , k} × Fn, and
(IV) y1, y2, . . . , yN−1 in S such that for j ∈ {1, 2, . . . , N − 1},

(1) Aj+1 ⊆ Aj ∩
⋂
q∈Qj (Aj − qyj),
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(2) Aj+1 ⊆ {x ∈ Aj : Ψ(xy1y2 · · · yj) =

(lj+1, f1,j+1, f2,j+1, . . . , fn,j+1)},
(3) yj ∈ Slj ,j ,
(4) d(Aj) > αj , and
(5) if j > 1, then Qj = {yiyi+1···yj−1

fy1y2···yi−1
: 1 ≤ i < j and f ∈ F}.

Now |Ψ[S]| < K so α1 = 1
K < 1

|Ψ[S]| . If for each ~v ∈ {1, 2, . . . , k} × F
n

we had d(Ψ−1[{~v}]) ≤ α1 we would have d(S) ≤ |Ψ[S]|
K < 1, so we can

pick (l1, f1,1, f2,1, . . . , fn,1) ∈ {1, 2, . . . , k} × Fn such that
d
(
Ψ−1[{(l1, f1,1, f2,1, . . . , fn,1)}]

)
> α1 and let

A1 = Ψ−1[{(l1, f1,1, f2,1, . . . , fn,1)}] .

Since |Q1| < s and d(A1) > α1, we have that

{x ∈ S : d
(
A1 ∩

⋂
q∈Q1

(A1 − qx)
)
> α′1} is IP ∗r1 ,

hence is IP ∗r . Since Sl1,1 is an IPr set, we can pick y1 ∈ Sl1,1 such that
d
(
A1 ∩

⋂
q∈Q1

(A1 − qy1)
)
> α′1 and let A′1 = A1 ∩

⋂
q∈Q1

(A1 − qy1).
We claim that there is some ~v ∈ {1, 2, . . . , k} × Fn such that

d({x ∈ A′1 : Ψ(xy1) = ~v}) > α2 =
α′1
K
.

If instead for each ~v ∈ {1, 2, . . . , k} × Fn one has

d({x ∈ A′1 : Ψ(xy1) = ~v}) ≤ α2 ,

then d(A′1) < α2 · |Ψ[S]| < α′1
K · K = α′1, a contradiction. So pick

(l2, f1,2, f2,2, . . . , fn,2) ∈ {1, 2, . . . , k} × Fn such that

d({x ∈ A′1 : Ψ(xy1) = (l2, f1,2, f2,2, . . . , fn,2)}) > α2

and let A2 = A′1 ∩ {x ∈ S : Ψ(xy1) = (l2, f1,2, f2,2, . . . , fn,2)}). Let
Q2 = {y1f : f ∈ F}.

Let j ∈ {2, 3, . . . , N − 1} and assume we have constructed A1, A2, . . . ,
Aj , Q1, Q2, . . . , Qj , and y1, y2, . . . , yj−1 as required. Now |Qj | < s and
d(Aj) > αj so {x ∈ S : d

(
Aj ∩

⋂
q∈Qj (Aj − qx)

)
> α′j} is IP ∗rj so is IP ∗r .

Since Slj ,j is IPr, we may pick yj ∈ Slj ,j such that
d
(
Aj ∩

⋂
q∈Qj (Aj− qyj)

)
> α′j and let A′j+1 = Aj ∩

⋂
q∈Qj (Aj− qyj). Let

Qj+1 = { yiyi+1···yj
fy1y2···yi−1

: 1 ≤ i < j + 1 and f ∈ F}.
We claim that there is some ~v ∈ {1, 2, . . . , k} × Fn such that d({x ∈

A′j+1 : Ψ(xy1 · · · yj) = ~v}) > αj+1 =
α′j
K . If instead for each ~v ∈

{1, 2, . . . , k} × Fn one has d({x ∈ A′j+1 : Ψ(xy1 · · · yj) = ~v}) ≤ αj+1,

then d(A′j+1) ≤ αj+1 · |Ψ[S]| < α′j
K · K = α′j , a contradiction. So pick

(lj+1, f1,j+1, f2,j+1, . . . , fn,j+1) ∈ {1, 2, . . . , k} × Fn such that d({x ∈
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A′j+1 : Ψ(xy1 · · · yj) = (lj+1, f1,j+1, f2,j+1, . . . , fn,j+1)}) > αj+1 and let
Aj+1 = A′j+1∩{x ∈ S : Ψ(xy1 · · · yj) = (lj+1, f1,j+1, f2,j+1, . . . , fn,j+1)}).

The construction is complete. By our choice of N , we may pick i
and j such that 1 < i < j − 1 < N − 2 and (li, f1,i, f2,i, . . . , fn,i) =
(lj , f1,j , f2,j , . . . , fn,j) and let (l, f1, f2, . . . , fn) = (li, f1,i, f2,i, . . . , fn,i).
Let y = yiyi+1 · · · yj−1. We have for each t ∈ {i, i + 1, . . . , j − 1} that
yt ∈ Slt,t so

y ∈ Sli,i · Sli+1,i+1 · · ·Slj−1,j−1 ⊆ CYli = CYl =
⋃
m∈Yl Cm

so pick m ∈ Yl such that y ∈ Cm.
We will show now that for any x′ ∈ Aj , if x = fmx

′y1 · · · yi−1, then
{x, y, x + y, xy} ⊆ Cm. So let x′ ∈ Aj and let x = fmx

′y1 · · · yi−1. Since
x′ ∈ Aj , by (IV)(2), Ψ(x′y1 · · · yj−1) = (l, f1, f2, . . . , fn) so fmx′y1 · · · yj−1

∈ Cm so xy = (fmx
′y1 · · · yi−1)(yi · · · yj−1) ∈ Cm. Also x′ ∈ Ai so by

(IV)(2), Ψ(x′y1 · · · yi−1) = (l, f1, f2, . . . , fn) so x = fmx
′y1 · · · yi−1 ∈ Cm.

Finally,

x′ ∈ Aj ⊆ Aj−1 ∩
⋂
q∈Qj−1

(Aj−1 − qyj−1) ⊆ Ai ∩
⋂
q∈Qj−1

(Ai − qyj−1) .

Let q =
yi···yj−2

fmy1···yi−1
∈ Qj−1. Then x′ + qyj−1 = x′ +

yi···yj−1

fmy1···yi−1
∈ Ai

so by (IV)(2), Ψ
(
(x′ + qyj−1) · y1 · · · yi−1

)
= (l, f1, . . . fn). That is,

Ψ(x′y1 · · · yi−1 +
yi···yj−1

fm
) = (l, f1, . . . fn) so fmx′y1 · · · yi−1 +yi · · · yj−1 ∈

Cm. That is, x+ y ∈ Cm. �

3. Exponential Triples

In this section we present the very simple proof by Mauro Di Nasso
and Mariaclara Ragosta [44] of the result of Sahasrabudhe [114] that for
any �nite coloring of N \ {1}, there exist a and b such that {a, b, ba} is
monochromatic. We also present their in�nitary extension showing that
for any �nite coloring of N\{1} there exists a sequence 〈bn〉∞n=1 such that
{bn : n ∈ N} ∪ {bbnn+1 : n ∈ N} is monochromatic. (The in�nitary result is
new in [44].)

The proofs use the operation ∗ on N de�ned by n ∗m = 2nm. That
operation is not associative, but by [72, Theorem 4.1], there is a unique
binary operation on βN, which we also denote by ∗, such that for each
n ∈ N, λn : βN→ βN is continuous and for each p ∈ βN, ρp : βN→ βN is
continuous. (Here as usual, λn(q) = n∗q and ρp(q) = q∗p.) Given n ∈ N,
q ∈ βN, and A ⊆ N, if A ∈ n ∗ q, then there is some B ∈ q such that
λn[B ] ⊆ A so {m ∈ N : n∗m ∈ A} ∈ q; that is (2n)−1A ∈ q. Then, given
p, q ∈ βN and A ⊆ N, if A ∈ p ∗ q, then there is some C ∈ p such that
ρq[C ] ⊆ A so {n ∈ N : n∗q ∈ A} ∈ p and thus {n ∈ N : (2n)−1A ∈ q} ∈ p.
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Lemma 3.1. There exists p ∈ βN such that for all A ∈ p and every
l ∈ N, there exist b, c ∈ N such that {b, c, b+ c, b+ 2c, . . . , b+ lc} ⊆ A.

Proof. Let l ∈ N and let

M =



1 0
0 1
1 1
1 2
...

...
1 l


.

Then M satis�es the �rst entries condition so by [72, Theorem 15.24] has
images in any central set. Thus one my let p be any minimal idempotent
in (βN,+). �

Alternatively, one can prove Lemma 3.1 by invoking Rado's Theorem
[72, Theorem 15.20] with an appropriately chosen matrix and [72, Theo-
rem 3.11].

The existence of monochromatic exponential triples is a special case of
the in�nitary theorem that we will prove (Corollary 3.5), but the proof
for triples is very simple, so we present it �rst.

Theorem 3.2. Let p ∈ βN be as guaranteed by Lemma 3.1. For each
A ∈ p ∗ p, there exist x and y in N \ {1} such that {x, y, 2xy} ⊆ A.

Proof. Let A ∈ p ∗ p and let A′ = {n ∈ N : (2n)−1A ∈ p}. Then A′ ∈ p.
Pick a ∈ A′. Pick (with l = 2a) b and c in N such that {b, c, b + 2ac} ⊆
(2a)−1A ∩ A′. Then (2b)−1A ∩ (2b+2ac)−1A ∈ p so pick d ∈ (2b)−1A ∩
(2b+2ac)−1A. Let x = 2ac and y = 2bd. Since c ∈ (2a)−1A, we have
x ∈ A. Since d ∈ (2b)−1A, we have y ∈ A. Since d ∈ (2b+2ac)−1A, we
have 2xy = 22ac2bd = 2b+2acd ∈ A. �

Corollary 3.3. Let r ∈ N and let N =
⋃r
i=1 Ci. There exist i ∈

{1, 2, . . . , r} and a, b ∈ N \ {1} such that {a, b, ba} ⊆ Ci.

Proof. Pick p ∈ βN as guaranteed by Lemma 3.1. For i ∈ {1, 2, . . . , r}
let Di = {n : 2n ∈ Ci} and pick i ∈ {1, 2, . . . , r} such that Di ∈ p ∗ p.
Pick x, y ∈ N such that {x, y, 2xy} ⊆ Di. Let a = 2x and b = 2y. Then
immediately a ∈ Ci and b ∈ Ci. Also ba = (2y)2x = 22xy ∈ Ci. �

Now we turn our attention to the in�nitary result of Di Nasso and
Ragosta.

Theorem 3.4. Let p ∈ βN be as guaranteed by Lemma 3.1. For each
A ∈ p ∗ p, there exists an increasing sequence 〈an〉∞n=1 in N with the
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property that for all i, j, k in N with i < 2j and 2j + 1 < k, if x = a2j2
ai

and y = ak2a2j+1 , then {x, y, 2xy} ⊆ A.

Proof. Let A ∈ p ∗ p and let A′ = {n ∈ N : (2n)−1A ∈ p}. Then A′ ∈ p.
Pick a1 ∈ A′ and let A1 = A′ ∩ (2a1)−1A. Pick a2 and a3 such that
{a3, a2, a3 + 2a1a2} ⊆ A1. Consequently, 2a1a2, 2

a1a3 ∈ A and (2a2)−1A,
(2a3)−1A, and (a3 + 2a1a2)−1A are in p.

Let A2 = A′ ∩ (2a1)−1A ∩ (2a2)−1A ∩ (2a3)−1A ∩ (a3 + 2a1a2)−1A.
Then A2 ∈ p so pick a4 and a5 in A2 such that a5 + ta4 ∈ A2 for each t ∈
{2a1 , 2a2 , 2a3}. Then 2aia4 and 2aia5 are in A for i ∈ {1, 2, 3}, a42a3+2a1a2

and a52a3+2a1a2 are in A, and all of (2a4)−1A, (2a5)−1A, (2a5+2a1a4)−1A,
(2a5+2a2a4)−1A, and (2a5+2a3a4)−1A are in p.

Now let n ≥ 3 and assume that a1, a2, . . . , a2n−1 have been chosen
satisfying the following induction hypotheses.

(1) ai ∈ A′ for every i ≤ 2n− 1;
(2) a2j+1 + 2aia2j ∈ A′ for all i < 2j < 2n− 1;
(3) 2aiak ∈ A for all i < k ≤ 2n − 1 except when k = i + 1 is odd;

and
(4) ak2a2j+1+2aia2j ∈ A for all i, j, k ∈ N such that i < 2j and 2j+1 <

k ≤ 2n− 1.

Let An = A′ ∩
⋂2n−1
i=1 (2ai)−1A ∩

⋂
{(2a2j+1+2aia2j )−1A : 1 ≤ i < 2j <

2n − 1}. By hypotheses (1) and (2), An ∈ p. Pick a2n and a2n+1 in An
such that a2n+1 + ta2n ∈ An for each t ∈ {2a1 , 2a2 , . . . , 2a2n−1}. Then, all
hypotheses are sati�ed for a1, a2, . . . , a2n+1. Indeed,

(1) a2n, a2n+1 ∈ A′, and hence ai ∈ A′ for every i ≤ 2n+ 1;
(2) a2n+1+2aia2n ∈ A′ for every i ≤ 2n−1, and hence a2j+1+2aia2j ∈

A′ for all i < 2j < 2n+ 1;
(3) a2n ∈ (2ai)−1A for every i ≤ 2n − 1 and a2n+1 ∈ (2ai)−1A for

every i ≤ 2n − 1 (but in general 2a2na2n+1 /∈ A), and hence
2aiak ∈ A for all i < k ≤ 2n + 1 except when k = i + 1 is odd;
and

(4) a2n ∈ (2a2j+1+2aia2j )−1A whenever i < 2j < 2n − 1 and a2n+1 ∈
(2a2j+1+2aia2j )−1A whenever i < 2j < 2n− 1, and hence
ak2a2j+1+2aia2j ∈ A for all i, j, k such that i < 2j and 2j + 1 <
k ≤ 2n+ 1.

Given i, j, k ∈ N with i < 2j and 2j + 1 < k, let x = a2j2
ai and

y = ak2a2j+1 . By (3), x and y are in A. And 2xy = ak2a2j+1+2aia2j ∈ A
by (4). �

Corollary 3.5. Let r ∈ N and let N =
⋃r
t=1 Ct. There exist t ∈

{1, 2, . . . , r} and an in�nite sequence 〈an〉∞n=1 in N with the property that
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for all i, j, k in N with i < 2j and 2j + 1 < k, if a = 2a2j2
ai

and
b = 2ak2a2j+1

, then {a, b, ba} ⊆ Ct.
In particular, if for each n ∈ N, bn = 2a2n2a2n−1

, then for each n,
{bn, bn+1, (bn+1)bn} ⊆ Ct.

Proof. Pick p ∈ βN as guaranteed by Lemma 3.1. For t ∈ {1, 2, . . . , r} let
Dt = {n : 2n ∈ Ct} and pick t ∈ {1, 2, . . . , r} such that Dt ∈ p ∗ p. Pick
a sequence 〈an〉∞n=1 as guaranteed by Theorem 3.4 for Dt. Let i, j, k in
N be given with i < 2j and 2j + 1 < k, let x = a2j2

ai , let y = ak2a2j+1 ,
let a = 2x, and let b = 2y. Then {x, y, 2xy} ⊆ Dt and ba = 22xy so
{a, b, ba} ⊆ Ct.

Now let n ∈ N, let i = 2n − 1, let j = n, and let k = 2n + 2.
Then 2a2j2

ai
= 2a2n2a2n−1

= bn and 2ak2a2j+1
= 2a2n+22a2n+1

= bn+1

so {bn, bn+1, (bn+1)bn} ⊆ Ct. �

4. Polynomials

In recent years there have been important advances in the study of
the Ramsey theoretic properties of polynonials. We are grateful to Vitaly
Bergelson for providing us with several references for this section.

Perhaps the earliest Ramsey theoretic result involving polynomials is
the following result of Sárközy and Furstenberg.

Theorem 4.1. Let p be a polynomial taking on integer values at the
integers with p(0) = 0 and let A ⊆ Z have positive upper Banach density.
Then there exist distinct x and y in A and z ∈ Z such that x− y = p(z).

Proof. [52, Proposition 3.19(b)]. (In that proof, Furstenberg says that it
was proved independently by Sárközy, without citing a reference. It is
probably in [116].) �

See Bergelson's survey [6] for substantial information on early polyno-
mial theorems in Ramsey theory. Another early result involving polyno-
mials is the following theorem due to Bergelson and McCutcheon.

Theorem 4.2. Let j ∈ N, let p : Zj → Z be a polynomial such that
p( 0 ) = 0, let A be a subset of N with positive upper Banach density, let

F ∈ Pf (Zj), and for each i ∈ {1, 2, . . . , j}, let 〈x(i)
n 〉∞n=1 be a sequence

in Z. There exist u ∈ Z and α ∈ Pf (N) such that for each ~z ∈ F ,

u + p(z1x
(1)
α , z2x

(2)
α , . . . , zjx

(j)
α ) ∈ A, where for i ∈ {1, 2, . . . , j}, x(i)

α =∑
t∈α x

(i)
t .

Proof. [15, Theorem 0.10]. �
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In this section we prove a recent result of Bergelson, Johnson, and
Moriera [10] involving multi-variable polynomials and some simple conse-
quences thereof. We will present this result as Corollary 4.8 below.

De�nition 4.3. Let j ∈ N and let f : Zj → Z. Then f is an integral
polynomial provided f is a polynomial with zero constant term. (Equiv-
alently, f(~0 ) = 0.)

We begin with a self contained proof of Theorem 4.4, a version of [12,
Corollary 8.8], which was derived in [12] as a consequence of the di�cult
Polynomial Hales-Jewett Theorem. The proof of Theorem 4.4 is based on
the proof of [58, Theorem 3.6], which was the j = 1 case.

Theorem 4.4. Let j ∈ N and let u = u+ u ∈ β(Nj). If R is a �nite set
of integral polynomials from Zj to Z, A is a piecewise syndetic subset of
N, and L is a minimal left ideal of βN such that A ∩ L 6= ∅, then

{~x ∈ Nj : A ∩ L ∩
⋂
p∈R−p(~x ) +A 6= ∅} ∈ u .

Proof. For each n ∈ N, let Tn = {~v ∈ ωj such that
∑j
i=1 vi = n}.

Given p, an integral polynomial of degree l > 0 from Zj → Z, for each
n ∈ {1, 2, . . . , l} there is a unique ψp,n : Tn → Z such that ψp,l[Tl] 6= {0}
and for each ~x ∈ Zj , p(~x ) =

∑l
n=1

∑
~v∈Tn ψp,n(~v )

∏j
i=1 x

vi
i .

Let R = {R : R is a �nite set of integral polynomials from Zj to
Z}. Recall that

⊕∞
i=1 ω is the set of all sequences in ω with �nitely many

nonzero coordinates. Order
⊕∞

i=1 ω lexicographically based on the largest
coordinate on which elements di�er, denoting this order by <. De�ne
ϕ : R →

⊕∞
i=1 ω as follows. For R ∈ R and l ∈ N, let JR,l = {ψp,l : p ∈ R

and deg p = l}. Let ϕ(R) = (w1, w2, w3, . . .) where for each l ∈ N,
wl = |JR,l|.

For l ∈ N and p ∈ R with degree l, Let p] denote the polynomial
obtained from p be deleting all the terms of degree less than l. Notice
that wl = |{p] : p ∈ R and deg p = l}|.

As an example, let j = 3 and let R = {p, q, r, s}, where for ~x ∈ Zj ,

p(~x) = x2
1x2 − x1x2x3 + 3x2

2 ,
q(~x) = x2

1x2 − x1x2x3 + 2x2
1 − 3x3 ,

r(~x) = −4x3
1 + 2x2

1 , and
s(~x) = −7x3

2x3 .

Since j = 3, we have, for instance, that T2 = {(2, 0, 0), (0, 2, 0), (0, 0, 2),
(1, 1, 0), (1, 0, 1), (0, 1, 1)}. Also ψs,4(0, 3, 1) = −7, and ψs,4[T4\{(0, 3, 1)}]
= {0} so JR,4 = {ψs,4} and thus w4 = 1. And ψp,3(2, 1, 0) = ψq,3(2, 1, 0)
= 1, ψp,3(1, 1, 1) = ψq,3(1, 1, 1) = −1, ψp,3[T3 \ {(2, 1, 0), (1, 1, 1)}] =
ψq,3[T3 \ {(2, 1, 0), (1, 1, 1)}] = {0}, ψr,3(3, 0, 0) = −4, and



ALGEBRA IN βS � AN UPDATE 19

ψr,3[T3 \ {(3, 0, 0)}] = {0}, so JR,3 = {ψp,3, ψq,3, ψr,3} = {ψp,3, ψr,3} so
w3 = 2.

We now claim that
(*) If R ∈ R, R 6= ∅, 0 /∈ R, f ∈ R of smallest degree, F ∈ Pf (Zj),

for ~x ∈ F and p ∈ R, g(p, ~x ) : Zj → Z is de�ned by g(p, ~x )(~y ) =
p(~x + ~y ) − p(~x ) − f(~y), and S = {g(p, ~x ) : p ∈ R and ~x ∈ F}, then
S ∈ R and ϕ(S) < ϕ(R).

To verify (*), assume R, f , F , and S are as speci�ed. Trivially
S ∈ R. Let m = deg f , let ϕ(R) = (w1, w2, w3, . . .), and let ϕ(S) =
(w′1, w

′
2, w

′
3, . . .). We claim that for l > m, w′l = wl and that w′m = wm−1.

So assume �rst that l > m. Let p ∈ R of degree l, let ~x ∈ F , and let
r = g(p, ~x). Then deg r = l and corresponding degree l coe�cients of p
and r are equal. That is, ψr,l = ψp,l, so JS,l = JR,l and so w′l = wl.

Now assume that l = m. Let p ∈ R of degree m, let ~x ∈ F , and
let r = g(p, ~x ). Then for each ~v ∈ Tm, ψr,m(~v ) = ψp,m(~v ) − ψf,m(~v ).
Let ~c = ψf,m. If p = f , then all degree m coe�cients of r are 0. So
JS,m =

{
~z − ~c : ~z ∈ JR,m \ {~c}

}
and thus |JS,m| = |JR,m| − 1 so (*) is

established.

We continue with the example above, in which case m = 3 and f could
be any one of p, q, or r. Say f = r. Then the degree 3 terms in g(p, ~x )(~y )
are (x1 +y1)2(x2 +y2)−(x1 +y1)(x2 +y2)(x3 +y3)−x2

1x2 +x1x2x3 +4y3
1 =

y2
1y2 − y1y2y3 + 4y3

1 + h(~y ) where h is a polynomial of degree 2 in ~y with
coe�cients in Z involving the constants x1, x2, and x3.

Suppose the theorem is false and pick R such that ϕ(R) is minimal
among all counterexamples. Notice that R 6= ∅ and R 6= {0} because the
statement is trivially true for both of these sets. We may in fact assume
that 0 /∈ R becauseR\{0} is also a counterexample and ϕ(R\{0}) = ϕ(R).

Pick a piecewise syndetic subset A of N and a minimal left ideal L of
βN such that A ∩ L 6= ∅ and

{~x ∈ Nj : A ∩ L ∩
⋂
p∈R−p(~x ) +A 6= ∅} /∈ u .

(We know there is a minimal left ideal L of βN such that A ∩ L 6= ∅
because A∩K(βN) 6= ∅ and K(βN) is the union of all of the minimal left
ideals of βN.)

Let D = Nj \ {~x ∈ Nj : A ∩ L ∩
⋂
p∈R−p(~x ) +A 6= ∅} and note that

D ∈ u. Let D? = {~y ∈ D : −~y + D ∈ u} so that by [72, Lemma 4.14],
whenever ~y ∈ D?, −~y +D? ∈ u. Notice also that L is in fact a left ideal
of βZ. (It is an easy exercise, which is [72, Exercise 4.3.5], that N∗ is a
left ideal of βZ so [72, Lemma 1.43(c)] applies.)
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Pick f ∈ R of smallest degree. For ~x ∈ Zj and p ∈ R, let g(p, ~x ) be as
in (*). Pick q0 ∈ A∩L and let B = {x ∈ N : −x+A ∈ q0}. By [72, Lemma
4.39] B is syndetic, so pick H ∈ Pf (N) such that N =

⋃
t∈H(−t + B).

Pick t0 ∈ H such that −t0 +B ∈ q0 and let C0 = −t0 +B. Since C0 ∈ q0,
C0 ∩ L 6= ∅.

Let S0 = {g(p,~0 ) : p ∈ R} and let E0 = {~x ∈ Nj : C0 ∩ L ∩⋂
p∈S0

−p(~x ) + C0 6= ∅}. By (*), S0 ∈ R and ϕ(S0) < ϕ(R) so E0 ∈ u.
Pick ~y1 ∈ E0 ∩ D? and pick r1 ∈ C0 ∩ L ∩

⋂
p∈S0

−p(~y1 ) + C0. Let
q1 = −f(~y1) + r1 and note that, since L is a left ideal of βZ, q1 ∈ L. Pick
t1 ∈ H such that −t1 +B ∈ q1.

Inductively, assume that we have m ∈ N and have chosen 〈qi〉mi=0 in L,
〈ti〉mi=0 in H, and 〈~yi 〉mi=1 in Nj such that

(1) for j ∈ {0, 1, . . . ,m}, −tj +B ∈ qj ,
(2) for l ∈ {1, 2, . . . ,m}, ~yl + ~yl+1 + . . .+ ~ym ∈ D?, and
(3) for l ∈ {0, 1, . . . ,m− 1} and p ∈ R,
−
(
tl + p( ~yl+1 + ~yl+2 + . . .+ ~ym )

)
+B ∈ qm.

Hypotheses (1) and (2) trivially hold for m = 1. To verify hypothesis
(3), let p ∈ R. We need to show that −

(
t0 + p(~y1 )

)
+ B ∈ q1. Now

r1 + g(p,~0 )(~y1) ∈ C0 and so −t0 + B ∈ r1 + g(p,~0)(~y1 ) = r1 + p(~y1 ) −
f(~y1 ) = q1 + p(~y1 ) as required.

Now let Gm =
{
{ ~yl+1 + ~yl+2 + . . .+ ~ym } : l ∈ {0, 1, . . . ,m− 1}

}
∪ {~0 }

and let Sm = {g(p, ~x ) : p ∈ R and ~x ∈ Gm}. Let Cm = (−tm +

B) ∩
⋂
p∈R

⋂m−1
l=0

(
−
(
tl + p( ~yl+1 + ~yl+2 + . . . + ~ym )

)
+ B

)
. Then by

hypotheses (1) and (3), Cm ∈ qm and so Cm∩L 6= ∅. Let Em = {~x ∈ Nj :

Cm∩L∩
⋂
p∈Sm −p(~x ) + Cm 6= ∅}. By (*), Sm ∈ R and ϕ(Sm) < ϕ(R) so

Em ∈ u. By hypothesis (2), for each l ∈ {1, 2, . . . ,m}, −(~yl + ~yl+1 + . . .+
~ym )+D? ∈ u. Pick ~ym+1 ∈ Em∩

⋂m
l=1−(~yl+ ~yl+1+. . .+ ~ym )+D? and pick

rm+1 ∈ Cm ∩L∩
⋂
p∈Sm −p( ~ym+1 ) + Cm. Let qm+1 = −f( ~ym+1 ) + rm+1

and note that qm+1 ∈ L. Pick tm+1 ∈ H such that −tm+1 +B ∈ qm+1.
Hypotheses (1) and (2) hold directly. To verify hypothesis (3), let

l ∈ {0, 1, . . . ,m} and let p ∈ R. Assume �rst that l = m. Then rm+1 +

g(p,~0 )( ~ym+1 ) ∈ Cm and so −tm + B ∈ rm+1 + g(p,~0 )( ~ym+1 ) = rm+1 +
p( ~ym+1 )− f( ~ym+1 ) = qm+1 + p( ~ym+1 ) so that −

(
tm + p( ~ym+1 )

)
+ B ∈

qm+1 as required.
Now assume that l < m, let ~x = ~yl+1 + ~yl+2 + . . .+ ~ym, and notice that

~x ∈ Gm. Then rm+1 + g(p, ~x )( ~ym+1 ) ∈ Cm ⊆ −
(
tl + p(~x )

)
+B and so

−
(
tl+p(~x )

)
+B ∈ rm+1 +g(p, ~x )( ~ym+1 ) = rm+1 +p(~x+ ~ym+1 )−p(~x )−

f( ~ym+1 ) = qm+1 + p(~x+ ~ym+1 )− p(~x ). Thus −
(
tl + p(~x+ ~ym+1)

)
+B ∈

qm+1 as required.
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The induction being complete we may choose l < m such that tl = tm,
because H is �nite. Let ~y = ~yl+1 + ~yl+2 + . . . + ~ym. By hypothesis (2),
~y ∈ D?. We have that (−tm + B) ∩

⋂
p∈R

(
−
(
tm + p(~y )

)
+ B

)
∈ qm so

pick a ∈ (−tm + B) ∩
⋂
p∈R

(
−
(
tm + p(~y )

)
+ B

)
. Let r = a + tm + q0

and notice that r ∈ A ∩L ∩
⋂
p∈R−p(~y ) +A, contradicting the fact that

~y ∈ D. �

Corollary 4.5. Let j ∈ N, let R be a �nite set of integral polynomials
from Zj to Z, let A be a piecewise syndetic subset of N, and let 〈 ~yn〉∞n=1

be a sequence in Nj. There exist a ∈ N and α ∈ Pf (N) such that for every
f ∈ R, a+ f(

∑
n∈α ~yn) ∈ A.

Proof. By [72, Lemma 5.11] pick an idempotent u ∈
⋂∞
m=1 FS(〈 ~yn〉∞n=m).

Pick a minimal left ideal L of βN such that L ∩ A 6= ∅. Let B = {~x ∈
Nj : A ∩ L ∩

⋂
f∈R−f(~x ) +A 6= ∅}. Then FS(〈 ~yn〉∞n=m) ∈ u and by

Theorem 4.4, B ∈ u, so pick α ∈ Pf (N) such that
∑
n∈α ~yn ∈ B. Pick

a ∈ A ∩ L ∩
⋂
f∈R−f(

∑
n∈α ~yn ) +A. �

The proof of the following theorem is adapted from the proof of [10,
Proposition 4.10].

Theorem 4.6. Let j ∈ N, let R be a �nite set of integral polynomials
from Zj to Z, let p be an idempotent in c`K(βN), let A ∈ p, and let
〈 ~yn〉∞n=1 be a sequence in Nj. There exist sequences 〈Hn〉∞n=1 in Pf (N)
and 〈xn〉∞n=1 in N such that for each n ∈ N, maxHn < minHn+1 and
letting ~zn =

∑
t∈Hn ~yt, for each f ∈ R and each β ∈ Pf (N), we have∑

n∈β xn + f(
∑
n∈β ~zn) ∈ A.

Proof. Let A? = {n ∈ A : −n + A ∈ p}. By [72, Lemma 4.14], for all
n ∈ A?, −n+A? ∈ p. By Corollary 4.5 pick x1 ∈ N and H1 ∈ Pf (N) such
that for all f ∈ R, x1 + f(

∑
t∈H1

~yt) ∈ A? and let ~z1 =
∑
t∈H1

~yt.
Let n ∈ N, and assume we have chosen x1, x2, . . . , xn in N, H1, H2, . . . ,

Hn in Pf (N), and ~z1, ~z2, . . . , ~zn in Nj such that
(1) if k ∈ {1, 2, . . . , n− 1}, then maxHk < minHk+1;
(2) if k ∈ {1, 2, . . . , n}, then ~zk =

∑
t∈Hk ~yt; and

(3) if ∅ 6= β ⊆ {1, 2, . . . , n} and f ∈ R, then∑
t∈β xt + f(

∑
t∈β ~zt) ∈ A?.

Let D =
{∑

t∈β xt + f(
∑
t∈β ~zt) : ∅ 6= β ⊆ {1, 2, . . . , n}

}
and let

C = A? ∩
⋂
w∈D(−w+A?). For f ∈ R and ∅ 6= β ⊆ {1, 2, . . . , n} de�ne a

polynomial g(f, β) : Zj → Z by g(f, β)(~v) = f(
∑
t∈β ~zt+~v )−f(

∑
t∈β ~zt).

Let Φ = R∪
{
g(f, β) : f ∈ R and ∅ 6= β ⊆ {1, 2, . . . , n}

}
. Let d = maxHn.

By Corollary 4.5 applied to the sequence 〈~yt〉∞t=d+1, pick xn+1 ∈ N
and Hn+1 ∈ Pf (N) with minHn+1 > d such that for all g ∈ Φ, xn+1 +
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g(
∑
t∈Hn+1

~yt) ∈ C and let ~zn+1 =
∑
t∈Hn+1

~yt. We claim that xn+1,
Hn+1, and ~zn+1 are as required.

Conclusions (1) and (2) hold directly. So let f ∈ R and nonempty β ⊆
{1, 2, . . . , n+ 1} be given. If maxβ ≤ n, then conclusion (3) holds by as-
sumption. So assume maxβ = n+1. If β = {n+1}, then (3) holds because
R ⊆ Φ. So assume {n+ 1} ( β and let γ = β \ {n+ 1}. Then g(f, γ) ∈ Φ
so xn+1 + g(f, γ)(

∑
t∈Hn+1

~yt) ∈ C ⊆ −
(∑

t∈γ xt + f(
∑
t∈γ ~zt )

)
+ A? so∑

t∈γ xt + f(
∑
t∈γ ~zt ) +xn+1 + f(

∑
t∈γ ~zt +

∑
t∈Hn+1

~yt )− f(
∑
t∈γ ~zt ) ∈

A?. That is
∑
t∈β xt + f(

∑
t∈β ~zt) ∈ A?. �

Theorem 4.7. Let m ∈ N, for j ∈ {1, 2, . . . ,m} let Γj be the set of inte-
gral polynomials from Zj to Z. Let p be an idempotent in c`K(βN). For
j ∈ {1, 2, . . . ,m}, let Fj ∈ Pf (Γj) and for j ∈ {0, 1, . . . ,m}, let cj ∈ N.
For any A ∈ p, there exists a sequence 〈 ~sn〉∞n=1 in Nm+1 such that for each
α ∈ Pf (N), if ~rα = 〈rα,0, rα,1, . . . , rα,m〉 =

∑
t∈α〈st,0, st,1, . . . , st,m〉, then

c0rα,0 ∈ A and for j ∈ {1, 2, . . . ,m} and f ∈ Fj, f(rα,0, rα,1, . . . , rα,j−1)+
cjrα,j ∈ A.

Proof. We proceed by induction on m, so assume �rst that m = 1. We
may presume that 0 ∈ F1. Since p is an idempotent, by [72, Lemma 6.6],
c0N ∈ p. Pick a sequence 〈ln〉∞n=1 in N such that FS(〈ln〉∞n=1) ⊆ A ∩ c0N
and for each n let yn = ln

c0
. Then given α ∈ Pf (N), c0

∑
t∈α yt ∈ A.

Now pick sequences 〈xn〉∞n=1 and 〈Hn〉∞n=1 as guaranteed by Theorem
4.6 for j = 1, the set A ∩ c1N ∈ p, the set F1 of polynomials, and the
sequence 〈yn〉∞n=1. Letting zn =

∑
t∈Hn yt, we have for each β ∈ Pf (N)

and each f ∈ F1,
∑
n∈β xn + f(

∑
n∈β zn) ∈ A ∩ c1N. Since 0 ∈ F1,

each xn is in c1N. For n ∈ N, let sn,0 = zn and sn,1 = xn
c1
. For

α ∈ Pf (N), let ~rα =
∑
n∈α〈sn,0, sn,1〉. Then corα,0 = c0

∑
n∈α zn =

c0
∑
n∈α

∑
t∈Hn yt = c0

∑
t∈β yt ∈ A where β =

⋃
n∈αHn. Also for

f ∈ F1 and α ∈ Pf (N), f(rα,0) + c1rα,1 = f(
∑
n∈α zn) +

∑
n∈α xn ∈ A.

So the theorem holds for m = 1.
Now let m ∈ N and assume the theorem has been proved for m. For

j ∈ {1, 2, . . . ,m+ 1} let Γj be the set of integral polynomials from Zj to
Z. Let p be an idempotent in c`K(βN). For j ∈ {1, 2, . . . ,m + 1}, let
Fj ∈ Pf (Γj) and for j ∈ {0, 1, . . . ,m + 1}, let cj ∈ N. We may presume
that 0 ∈ Fm+1 and we note that cm+1N ∈ p.

By assumption we have a sequence 〈 ~bn〉∞n=1 in Nm+1 such that for each
α ∈ Pf (N), if ~aα = 〈aα,0, aα,1, . . . , aα,m〉 =

∑
t∈α〈bt,0, bt,1, . . . , bt,m〉, then

c0aα,0 ∈ A and for j ∈ {1, 2, . . . ,m} and f ∈ Fj , f(aα,0, aα,1, . . . , aα,j−1)+
cjaα,j ∈ A.

Now pick sequences 〈xn〉∞n=1 and 〈Hn〉∞n=1 as guaranteed by Theorem
4.6 for j = m+1, the set A∩cm+1N ∈ p, the set Fm+1 of polynomials, and
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the sequence 〈 ~bn〉∞n=1. For n ∈ N, let ~zn =
∑
t∈Hn

~bt. Then for f ∈ Fm+1

and α ∈ Pf (N),
∑
n∈α xn + f(

∑
n∈α ~zn ) ∈ A ∩ cm+1N. For n ∈ N,

let sn,m+1 = xn
cm+1

and 〈sn,0, sn,1, . . . , sn,m〉 = ~zn. For α ∈ Pf (N) let
~rα = 〈rα,0, rα,1, . . . , rα,m+1〉 =

∑
t∈α〈st,0, st,1, . . . , st,m+1〉. We shall show

that 〈 ~rα〉α∈Pf (N) is as required. So let α ∈ Pf (N) and let β =
⋃
n∈αHn.

Then c0rα,0 = c0
∑
n∈α sn,0 = c0

∑
n∈α zn,0 = c0

∑
n∈α

∑
t∈Hn bt,0 =

c0
∑
t∈β bt,0 = c0aβ,0 ∈ A.

Now let j ∈ {1, 2, . . . ,m + 1} and let f ∈ Fj . We need that cjrα,j +
f(rα,0, rα,1, . . . , rα,j−1) ∈ A. Assume �rst that j = m+ 1. Then
cm+1rα,m+1 + f(rα,0, rα,1, . . . , rα,m) =

∑
n∈α xn + f(

∑
n∈α ~zn ) ∈ A.

Finally, assume that j ≤ m. Then cjrα,j + f(rα,0, rα,1, . . . , rα,j−1) =
cj
∑
n∈α sn,j + f(

∑
n∈α〈sn,0, sn,1, . . . , sn,j−1〉) =

cjaβ,j + f(aβ,0, aβ,1, . . . , aβ,j−1) ∈ A. �

The following is the main Ramsey theoretic result of this section.

Corollary 4.8. Let m ∈ N, for j ∈ {1, 2, . . . ,m} let Fj be a �nite set of
integral polynomials from Zj to Z, and for j ∈ {0, 1, . . . ,m}, let cj ∈ N.
If N is �nitely colored, there exist a color class A and a sequence 〈 ~sn〉∞n=1

in Nm+1 such that for each α ∈ Pf (N), if ~rα = 〈rα,0, rα,1, . . . , rα,m〉 =∑
t∈α〈st,0, st,1, . . . , st,m〉, then c0rα,0 ∈ A and for j ∈ {1, 2, . . . ,m} and

f ∈ Fj, f(rα,0, rα,1, . . . , rα,j−1) + cjrα,j ∈ A.

Proof. Given an idempotent p ∈ c`K(βN) and a �nite coloring of N, pick
a color class A in p and apply Theorem 4.7. (Members of idempotents in
c`K(βN) are known as quasicentral sets � a weaker notion than central.
See [68].) �

The following corollary is probably easier to understand. In the au-
thors' words from [10], it involves a �chain of con�gurations� of the form
{x, y, x+ f(y)}. This corollary is [10, Corollary 1.11].

Corollary 4.9. Let m ∈ N and let f1, f2, . . . , fm be integral polynomials
from Z to Z. For any �nite coloring of N there exist y0, y1, . . . , ym and
x1, x2, . . . , xm all of the same color such that for each j ∈ {1, 2, . . . ,m},
xj = yj + fj(yj−1).

Proof. For j ∈ {1, 2, . . . ,m} let cj = 1 and let Fj = { 0, gj} where
gj(y0, y1, . . . , yj−1) = fj(yj−1) and apply Corollary 4.8. The conclusion
follows when α is a singleton. �

We conclude this section with the statements of two recent Ramsey
theoretic results about more general polynomials. (We will not prove
these results, and they will not be used later in this paper.) The �rst,
due to Bergelson and Robertson, extends the de�nition of polynomials
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to apply to functions into �nite dimensional vector spaces over countable
�elds.

De�nition 4.10. Let F be a countable �eld, letW be a �nite dimensional
vector space over F , and let n ∈ N.

(a) A function q : Fn → F is a monomial if and only if there exist
a ∈ F and (d1, d2, . . . , dn) ∈ ωn \ { 0 } such that for ~x ∈ Fn,
q(~x ) = axd11 x

d2
2 · · ·xdnn .

(b) A function p : Fn →W is a polynomial if and only if for ~x ∈ Fn,
p(~x ) is a linear combination of vectors with monomial coe�cients.

De�nition 4.11. Let (G,+) be an abelian group and let r ∈ N.
(a) A subset A of G is IP∗r if and only if whenever x1, x2, . . . , xr ∈ G,

there exists ∅ 6= α ⊆ {1, 2, . . . , r} such that
∑
n∈α xn ∈ A.

(b) A subset A of G is AIP∗r if and only if there exist subsets B and
C of G such that B is IP∗r , C has zero upper Banach density, and
A = B \ C.

Any AIP∗r set is quite large. For example, if G = Z, and A is AIP∗r ,
then A is a member of any minimal idempotent in βZ.
Theorem 4.12. Let F be a countable �eld, let W be a �nite dimensional
vector space over F , let (X,B, µ) be a probability space, let T be an action
of the additive group of W on (X,B, µ), let n ∈ N, let p : Fn → W be a
polynomial, let B ∈ B, and let ε > 0. Then there is some r ∈ N such that
{~u ∈ Fn : µ(B ∩ T p(~u )B) > µ(B)2 − ε} is AIP∗r.
Proof. [19, Theorem 1.2]. �

As noted in [19], Theorem 4.12 is a strengthening of [105, Corollary 5],
a result of McCutcheon and Windsor.

The last result that we will state is another result from [10]. It uses
an extension of the notion of polynomial to apply to functions from one
countable commutative group to another.

De�nition 4.13. Let H and G be countable abelian groups and let f :
H → G. Then f is of polynomial type of degree 0 if and only if it is
constant. For d ∈ N, f is of polynomial type of degree d if and only if
f is not of polynomial type of degree d − 1 and for every h ∈ H, the
function de�ned by x 7→ f(x+ h)− f(x) is of polynomial type of degree
c for some c < d. The function f is of polynomial type if and only if it is
of polynomial type of degree d for some d ∈ ω.

Notice that the trivial homomorphism from H to G is of polynomial
type of degree 0 and any other homomorphism from H to G is of polyno-
mial type of degree 1. In particular, the following theorem applies if F is
any �nite set of homomorphisms.
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Theorem 4.14. Let j ∈ N, let G be a countable abelian group, let F be
a �nite family of functions of polynomial type from Gj to G such that
f( 0 ) = 0 for each f ∈ F , let A be a piecewise syndetic subset of G, and
let 〈 ~yn 〉∞n=1 be a sequence in Gj. There exist a ∈ A and α ∈ Pf (N) such
that for each f ∈ F , a+ f(

∑
t∈α ~yt ) ∈ A.

Proof. [10, Corollary 2.12]. �

Part 3. Structure of βS

5. Elements of finite order in βN
and continuous homomorphisms into N∗

In this section we present Zelenyuk's proof [132] that for each n ∈ N,
there exists an element of order n in N∗, and consequently there is a
continuous homomorphism ϕ : βN→ N∗ such that |ϕ[βN]| = n.

We start with the simpler proof of the n = 2 version.
For x ∈ N, we denote the binary support of x by supp(x). That is,

x =
∑
t∈supp(x) 2t.

Theorem 5.1. There exist p ∈ c`K(βN) \K(βN) and q ∈ K(βN) such
that p+ p = q = q + q = q + p = p+ q.

Proof. Let I be an in�nite subset of ω such that ω \ I is also in�nite. Let
Y = {x ∈ N : supp(x) ⊆ I} and let T = Y ∩ H. It is routine to verify
that T is a compact subsemigroup of H and that H \T is an ideal of H so
that T ∩K(H) = ∅. By [72, Theorem 1.65], K(H) = H ∩K(βN), so we
have that T ∩K(βN) = ∅.

Let X = {x ∈ N : supp(x) ∩ I 6= ∅}, de�ne τ : X → I by τ(x) =
max(supp(x)∩ I), and let τ̃ : βX → βω be the continuous extension of τ .
The restriction of τ to {2k : k ∈ I} is a bijection onto I so the restriction
of τ̃ to {2k : k ∈ I} is a homeomorphism onto I. We claim that

(∗) if u ∈ βN and v ∈ X ∩H, then u+ v ∈ X and τ̃(u+ v) = τ̃(v).

To verify (∗), let u ∈ βN and v ∈ X ∩H. We claim that N ⊆ {x ∈ N :
−x+X ∈ v} so let x ∈ N. Let m = max supp(x) + 1. Then 2mN∩X ∈ v
and 2mN ∩X ⊆ −x + X, so X ∈ u + v. To see that τ̃(u + v) = τ̃(v) we
show that τ̃ ◦ ρv is constantly equal to τ̃(v) on N. So let x ∈ N and let
m = max supp(x) + 1. Then τ̃ ◦ λx and τ̃ agree on 2mN so agree at v.

Pick a minimal right ideal R of T . By [72, Exercise 3.4.3(b)] we may
pick an injective strongly discrete sequence 〈rj〉∞j=0 in {2k : k ∈ I}∗. For
j ∈ ω pick a minimal left ideal Lj of T with Lj ⊆ T + rj . Let ej be the
identity of R ∩ Lj . By [72, Theorem 1.60] pick an idempotent f ∈ K(H)
such that f < e0. Let D = {f + ej : j ∈ ω}.
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Now τ̃ is a homeomorphism on {2k : k ∈ I} so 〈τ̃(rj)〉∞j=0 is an injective
strongly discrete sequence in I. By (∗), for each j ∈ ω, τ̃ [Lj ] = {τ̃(rj)}
so τ̃(f + ej) = τ̃(ej) = τ̃(rj), so 〈τ̃(f + ej)〉∞j=0 is an injective strongly
discrete sequence in I. In particular, D is in�nite.

Pick w ∈ c`(D) \ D. We claim that w is right cancelable in βN. So
suppose not. Then by [72, Theorem 8.18] we may pick v ∈ N∗ such that
w = v + w. Let D′ = {u ∈ D : τ̃(u) 6= τ̃(w)}. Since τ̃ is injective on D,
|D\D′| ≤ 1. Then w ∈ c`(D′)∩c`(N+w) so by [72, Theorem 3.40] either

(i) there exists k ∈ N such that k + w ∈ c`(D′) or
(ii) there exists u ∈ D′ such that u ∈ βN + w.
Case (i) is out since w ∈ H and c`(D′) ⊆ H while for any k ∈ N,

(k + H) ∩ H = ∅. So pick u ∈ D′ such that u ∈ βN + w. Then by (∗),
τ̃(u) = τ̃(w), so u /∈ D′.

Let p = e0 + w. Now D ⊆ K(H) ⊆ K(βN) so w ∈ c`
(
K(βN)

)
and by

[72, Theorem 4.44], c`
(
K(βN)

)
is an ideal of βN so p ∈ c`(K(βN)

)
. To

see that p /∈ K(βN), suppose instead that p ∈ K(βN). Pick a minimal
right ideal V of βN such that p ∈ V . Pick an idempotent u ∈ V . Then
V = u + βN so by [72, Lemma 1.30], p = u + p so e0 + w = u + e0 + w.
Since w is right cancelable, e0 = u + e0 so e0 ∈ K(βN), while e0 ∈ T , a
contradiction.

Given x ∈ R = e0 + T , we claim that ρx is constantly equal to f + x
on D so that w + x = f + x. To see this, note that for j ∈ ω, x = e0 + x
so ej + x = ej + e0 + x = e0 + x = x so f + ej + x = f + x as claimed. In
particular w + e0 = f + e0 = f . Let q = f + w.

Then p + p = e0 + w + e0 + w = e0 + f + w = f + w = q. And
q+ q = f +w+ f +w = f +w+ e0 + f +w = f + f + f +w = f +w = q.
Also q + p = f + w + e0 + w = f + f + w = f + w = q and p + q =
p+ p+ p = q + p = q. �

In [72] immediately after Corollary 8.31 we noted that we did not know
whether it was possible for the sum of two elements of βN \K(βN) to be
in K(βN). This question is answered by Theorem 5.1 since p /∈ K(βN)
and p+ p ∈ K(βN).

Ordinarily if n ∈ N and p ∈ βN, by np we would mean n · p, that is
multiplication in the semigroup (βN, ·). However, in the statement and
proof of the next theorem, by np we mean the sum of p with itself n times.
Recall that for m,n ∈ N, m ∨ n = max{m,n}.

Theorem 5.2. Let n ∈ N \ {1}. There exists p ∈ c`K(βN) \K(βN) such
that p, 2p, . . . , np are all distinct, (n+ 1)p = np, and np ∈ K(βN).

Proof. The case n = 2 is Theorem 5.1. We will assume that n ≥ 3. For
i ∈ {0, 1, . . . , n} pick a set Ii with ∅ = I0 ⊆ I1 ⊆ . . . ⊆ In = ω such that
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for each i ∈ {1, 2, . . . , n}, |Ii \ Ii−1| = ω. De�ne h : N → {1, 2, . . . , n}
by, for x ∈ N, h(x) = min{i ∈ {1, 2, . . . , n} : supp(x) ⊆ Ii} and note
that h(x) = max{i ∈ {1, 2, . . . , n} : supp(x) ∩ (Ii \ Ii−1) 6= ∅}. Let
h̃ : βN→ {1, 2, . . . , n} be the continuous extension of h. We claim that

(∗) if u ∈ βN and v ∈ H, then h̃(u+ v) = h̃(u) ∨ h̃(v).

To verify (∗), let u ∈ βN and v ∈ H be given. We will show that h̃ ◦ ρv
and ρh̃(v) ◦ h̃ agree on N so let x ∈ N and let m = max supp(x) + 1. We

show that h̃ ◦ λx and λh(x) ◦ h̃ agree on 2mN, so let y ∈ 2mN. Then
supp(x + y) = supp(x) ∪ supp(y) so h(x + y) = max{i ∈ {1, 2, . . . , n} :
supp(x+ y) ∩ (Ii \ Ii−1) 6= ∅} = h(x) ∨ h(y).

For i ∈ {1, 2, . . . , n}, let Ti = h̃−1[{1, 2, . . . , i}] ∩ H. By (∗), the re-
striction of h̃ to H is a homomorphism onto ({1, 2, . . . , n},∨) and each
Ti is a compact subsemigroup of H. Further, for each i ∈ {1, 2, . . . , n},
h̃[K(Ti)] = {i} by [72, Exercaise 1.7.3]. Thus, if i ∈ {1, 2, . . . , n − 1},
then Ti ∩ K(Ti+1) = ∅. Note that Tn = H and by [72, Lemma 6.8 and
Theorem 1.65], K(H) = K(βN) ∩H.

For i ∈ {1, 2, . . . , n}, let Xi = {x ∈ N : supp(x) ∩ (Ii \ Ii−1) 6= ∅}, and
de�ne τi : Xi → ω by for x ∈ Xi, τi(x) = max

(
supp(x)∩ (Ii \ Ii−1)

)
. Let

τ̃i : Xi → βω be the continuous extension of τi.
For k ∈ Ii \ Ii−1, 2k ∈ Xi and τi(2

k) = k, so the restriction of τ̃i to
{2k : k ∈ Ii \ Ii−1} is a homeomorphism onto Ii \ Ii−1.

We now claim that for i ∈ {1, 2, . . . , n},

(1) if u ∈ βN and v ∈ Xi ∩H, then u+ v ∈ Xi and τ̃i(u+ v) = τ̃i(v)
and

(2) if v ∈ Xi and w ∈ H \Xi, then v+w ∈ Xi and τ̃i(v+w) = τ̃i(v).

To verify (1), let u ∈ βN and v ∈ Xi ∩ H. To see that Xi ∈ u + v,
we show that N ⊆ {x ∈ N : −x + Xi ∈ v}. So let x ∈ N and let
m = max supp(x) + 1. Then Xi ∩ 2mN ⊆ −x+Xi.

To see that τ̃i(u+ v) = τ̃i(v) we show that τ̃i ◦ ρv is contstantly equal
to τ̃i(v) on N. So let x ∈ N and let m = max supp(x) + 1. Then τ̃i ◦ λx
and τ̃i agree on 2mN ∩Xi.

To verify (2), let v ∈ Xi and w ∈ H \ Xi. To see that Xi ∈ u + v,
we show that Xi ⊆ {x ∈ N : −x + Xi ∈ w} so let x ∈ Xi and let
m = max supp(x) + 1. Then 2mN ⊆ −x+Xi.

To see that τ̃i(v+w) = τ̃i(v), we show that τ̃i ◦ ρw and τ̃i agree on Xi.
So let x ∈ Xi and let m = max supp(x) + 1. Then τ̃i ◦ λx is constantly
equal to τi(x) on 2mN \Xi.
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We note that for i ∈ {1, 2, . . . , n}, K(Ti) ⊆ Xi ∩ H. To see this, let
i ∈ {1, 2, . . . , n} and let v ∈ K(Ti). Then h̃(v) = i so pick B ∈ v such that
h̃[B ] ⊆ {i}. Then B ⊆ Xi. Note also that if i ≥ 2, then Ti−1 ⊆ H \Xi.

We now construct idempotents e1 > e2 > . . . > en with each ei ∈ K(Ti)
and for i ∈ {1, 2, . . . , n− 1} a right zero semigroup {ei,j : j ∈ ω} ⊆ K(Ti)
with ei,0 = ei such that for each i ∈ {1, 2, . . . , n− 1},

(i) if i ≥ 2, then for each j ∈ ω, ei,j < ei−1 and
(ii) for j < k in ω, τ̃i(ei,j) 6= τ̃i(ei,k) and τ̃i(ei) /∈ c`{τ̃i(ei,j) : j ∈ N}.
Pick a minimal right ideal R1 of T1 By [72, Exercise 3.4.3(b)], pick an

injective strongly discrete sequence 〈r1,j〉∞j=0 in {2k : k ∈ I1}∗. For j ∈ ω,
choose a minimal left ideal L1,j of T1 such that L1,j ⊆ T1 + r1,j , let e1,j

be the identity of R1 ∩ L1,j , and let e1 = e1,0.
Given j ∈ ω, e1,j ∈ βN + r1,j and r1,j ∈ X1 ∩ H so by (1) above,

τ̃1(e1,j) = τ̃1(r1,j). Since τ̃1 is a homeomorphism on {2k : k ∈ I1}, we
have τ̃1(r1,0) /∈ c`{τ̃1(r1,j) : j ∈ N} so τ̃1(e1) /∈ c`{τ̃i(e1,j) : j ∈ N}.

Now let i ∈ {2, 3, . . . , n−1} and assume we have done the construction
for i − 1. Pick a minimal right ideal Ri of Ti with Ri ⊆ ei−1 + Ti. Pick
an injective strongly discrete sequence 〈ri,j〉∞j=0 in {2k : k ∈ Ii \ Ii−1}∗.
For j ∈ ω pick a minimal left ideal Li,j of Ti with Li,j ⊆ Ti + ri,j + ei−1

and let ei,j be the identity of Ri ∩ Li,j .
Now for j ∈ ω, ri,j ∈ Xi and ei−1 ∈ Ti−1 ⊆ H \ Xi so by (2) above,

τ̃i(ri,j + ei−1) = τ̃i(ri,j) and by (1) above, τ̃i(ei,j) = τ̃i(ri,j + ei−1) and
thus τ̃i(ei,j) = τ̃i(ri,j).

Since τ̃i is a homeomorphism from {2k : k ∈ Ii \ Ii−1} onto Ii \ Ii−1

we have 〈τ̃i(ei,j)〉∞j=0 is an injective strongly discrete sequence inIi \ Ii−1

and τ̃i(ei,0) = τ̃i(ri,0) /∈ c`{τ̃i(ri,j) : j ∈ N} = c`{τ̃i(ei,j) : j ∈ N}. Let
ei = ei,0. For j ∈ ω, ei,j ∈ (ei−1 + βN) ∩ (βN + ei−1), so we have that
ei,j < ei−1.

Pick a minimal right ideal Rn of Tn = H with Rn ⊆ en−1 + Tn and
pick a minimal left ideal Ln of Tn with Ln ⊆ Tn + en−1. Let en be the
identity of Rn ∩ Ln and note that en < en−1.

Let Dn−1 = {en + en−1,j : j ∈ N}. Given j ∈ N, τ̃n−1(en + en−1,j) =

τ̃n−1(en−1,j), so Dn−1 is in�nite. Pick qn−1 ∈ Dn−1 \Dn−1. Note that for
j ∈ N, en−1,j ∈ K(Tn−1) ⊆ Xn−1∩H so by (1) above, Dn−1 ⊆ Xn−1∩H.

Now let i ∈ {1, 2, . . . , n − 2} and assume that qi+1 has been chosen.
Let Di = {ei+1 + qi+1 + ei,j : j ∈ N} and note that Di ⊆ Xi ∩H. Given
j ∈ ω, τ̃i(ei+1 + qi+1 + ei,j) = τ̃i(ei,j), so τ̃i is injective on Di and Di is
in�nite. Pick qi ∈ Di \Di.

We can show that for each i ∈ {1, 2, . . . , n − 1}, qi is right cancelable
in βN exactly as in the proof of Theorem 5.1. Note that en ∈ K(Tn) =
K(H) ⊆ K(βN) so Dn−1 ⊆ K(βN) and thus qn−1 ∈ c`K(βN). By [72,
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Theorem 14.44], c`K(βN) is an ideal of βN and given i ∈ {1, 2, . . . , n−2},
Di ⊆ βN + qi+1 + βN so qi ∈ c`K(βN).

Let p = e1 + q1. Then p ∈ c`K(βN). To see that p /∈ K(βN) supose
that p ∈ K(βN). Then as in the proof of Theorem 5.1, we have p = u+ p
for some u ∈ K(βN) so e1 + q1 = u + e1 + q1 so by right cancellation,
e1 = u+ e1 ∈ K(βN) while e1 ∈ T1 ⊆ βN \K(βN).

We note that for each j ∈ N, en−1,j + en−1 = en−1, so en + en−1,j +
en−1 = en + en−1 = en. Thus ρen−1

is constantly equal to en on Dn−1 so
qn−1 + en−1 = en. Also for i ∈ {1, 2, . . . , n− 2} and j ∈ N, ei+1 + qi+1 +
ei,j + ei = ei+1 + qi+1 + ei so ρei is constantly equal to ei+1 + qi+1 + ei
on Di and thus qi + ei = ei+1 + qi+1 + ei.

Now we verify that for k ∈ {1, 2, . . . , n − 2}, e1 + q1 + ek = ek+1 +
qk+1 + ek and e1 + q1 + en−1 = en. First let k = 1. Then e1 + q1 + e1 =
e1 +e2 +q2 +e1 = e2 +q2 +e1. Now assume that k ∈ {2, 3, . . . , n−2} and
we know that e1 +q1 +ek−1 = ek+qk+ek−1. Then e1 +q1 +ek = e1 +q1 +
ek−1 + ek = ek + qk + ek−1 + ek = ek + qk + ek = ek + ek+1 + qk+1 + ek =
ek+1 + qk+1 + ek. Now we have that e1 + q1 + en−2 = en−1 + qn−1 + en−2

so e1 + q1 + en−1 = e1 + q1 + en−2 + en−1 = en−1 + qn−1 + en−2 + en−1 =
en−1 + qn−1 + en−1 = en−1 + en = en.

Now we show that for k ∈ {1, 2, . . . , n − 1}, kp = ek + qk + ek−1 +
qk−1 + . . . + e1 + q1 and np = en + qn−1 + en−2 + qn−2 + . . . + e1 + q1.
In particular this will show that kp ∈ c`K(βN) and np ∈ K(βN). For
k = 1, kp = p = e1 + q1. Let k ∈ {2, 3, . . . , n − 1} and assume that
(k− 1)p = ek−1 + qk−1 + ek−2 + qk−2 + . . .+ e1 + q1. Then kp = e1 + q1 +
ek−1 + qk−1 + . . .+ e1 + q1 = ek + qk + ek−1 + qk−1 + . . .+ e1 + q1.

In particular, (n−1)p = en−1+qn−1+en−2+qn−2+. . .+e1+q1 so np =
e1 +q1 +en−1 +qn−1 +. . .+e1 +q1 = en+qn−1 +en−2 +qn−2 +. . .+e1 +q1.

Also (n + 1)p = e1 + q1 + en + qn−1 + en−2 + qn−2 + . . . + e1 + q1 =
e1 + q1 +en−1 +en+ qn−1 +en−2 + qn−2 + . . .+e1 + q1 = en+en+ qn−1 +
en−2 + qn−2 + . . .+ e1 + q1 = en+ qn−1 + en−2 + qn−2 + . . .+ e1 + q1 = np.

To complete the proof, we need to show that p, 2p, . . . ,np are all
distinct. We have shown that (n+1)p = np, so to show that p, 2p, . . . ,np
are all distinct, it su�ces to show that (n− 1)p 6= np.

We now claim that for each i ∈ {2, 3, . . . , n − 1}, qi + ei−1 = qi. For
i = n − 1 we have that for each j ∈ N, (en + en−1,j) + en−2 = en +
(en−1,j + en−2) = en + en−1,j so ρen−2

is the identity on Dn−1 and thus
qn−1 + en−2 = qn−1. For i ∈ {2, 3, . . . , n − 2} we have for each j ∈ N,
(ei+1 + qi+1 + ei,j) + ei−1 = ei+1 + qi+1 + (ei,j + ei−1) = ei+1 + qi+1 + ei,j
so ρei−1 is the identity on Di and thus qi + ei−1 = qi.

Now suppose that (n− 1)p = np. That is en−1 + qn−1 + en−2 + qn−2 +
. . .+e1 +q1 = en+qn−1 +en−2 +qn−2 + . . .+e1 +q1. Then, using the fact
just established that for each i ∈ {2, 3, . . . , n− 1}, qi + ei−1 = qi, we have
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that en−1 + qn−1 + qn−2 + . . . + q1 = en + qn−1 + qn−2 + . . . + q1. Then
cancelling qn−1 + qn−2 + . . .+ q1 on the right, we have that en−1 = en, a
contradiction. �

6. Subsets of βS that are not Borel

We take as is usual (but not, unfortunately, universal) that the Borel
subsets of a topological spaceX are the members of the smallest σ-algebra
of subsets of X that contains the open subsets.

Given a discrete semigroup (S, ·), there are many algebraically interest-
ing subsets of βS. Included are the set of idempotents in βS, the smallest
ideal of βS, S∗, S∗S∗, any semiprincipal right ideal of the form pβS with
p ∈ S∗, any semiprincipal left ideal, minimal right ideals, minimal left
ideals, maximal groups in the smallest ideal, the closure of the smallest
ideal, and so on. Some of these are automatically compact such as the
semiprincipal left ideals (including the mimimal left ideals) and S∗. And,
of course, the closure of any one of these algebraically interesting subsets
is compact.

We present here results from [80] showing that if S is countable and
cancellative, then none of the set of idempotents of βS, the smallest
ideal of βS, S∗S∗, or pβS for any p ∈ S∗ is Borel. In fact hypotheses
weaker than cancellation su�ce, though not much weaker. The hypothe-
ses cannot be weakened to left cancellative or right cancellative. If S
is a right zero semigroup, then S is left cancellative, βS is a right zero
semigroup, and E(βS) = K(βS) = βS, S∗S∗ = S∗ and if r ∈ S∗, then
rS∗ = S∗. If S is a left zero semigroup, then S is right cancellative, βS
is a left zero semigroup, and E(βS) = K(βS) = βS, S∗S∗ = S∗ and
if r ∈ S∗, then rS∗ = {r}. Nor can they be weakened to weakly right
cancellative and weakly left cancellative as shown by the example (N,∨),
where x ∨ y = max{x, y}. In this case, for p, q ∈ βN, if q ∈ N∗, then
p ∨ q = q, while if q ∈ N and p ∈ N∗, then p ∨ q = p so E(βN) = βN,
N∗ ∨ N∗ = K(βN) = N∗, and if r ∈ N∗, then r ∨ N∗ = N∗.

Throughout this section we will assume that (S, ·) is a countably in�-
nite weakly left cancellative semigroup. We will assume that S has been
ordered in order type ω and write s ≺ t if s precedes t in this ordering.

Lemma 6.1. Every Borel subset of βS is the union of at most c compact
subsets of βS.

Proof. One may construct the Borel subsets of βS as follows. Let A0 =
{A ⊆ βS : A is open or closed in βS}. Inductively let 0 < α < ω1 and
assume Aσ has been de�ned for all σ < α. If α is a limit ordinal let
Aα =

⋃
σ<αAσ. If α = δ + 1, let

Aα = {
⋃
C : C ⊆ Aδ and |C| ≤ ω} ∪ {

⋂
C : ∅ 6= C ⊆ Aδ and |C| ≤ ω} .
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Then it is routine to verify that
⋃
α<ω1

Aα is the set of Borel subsets of
βS.

Let D = {A ⊆ βS : A is compact} and let F = {A ⊆ βS : (∃C ⊆
D)(|C| ≤ c and A =

⋃
C). It su�ces to show that for all α < ω1, Aα ⊆ F .

Since the topology of βS has a basis consisting of c clopen sets, A0 ⊆ F .
Let 0 < α < ω1 and assume that for all σ < α, Aσ ⊆ F . If α is a
limit ordinal, then trivially Aα ⊆ F . So assume that α = δ + 1 and let
C ⊆ Aδ such that 0 < |C| ≤ ω. Trivially

⋃
C ∈ F . To see that

⋂
C ∈ F ,

for each A ∈ C, pick EA ⊆ D such that |EA| ≤ c and A =
⋃
EA. It

is routine to verify that
⋂
C =

⋃
{
⋂
A∈C F (A) : F ∈ ×A∈CEA}. Since

|×A∈CEA| ≤ cω = c, we are �nished. �

Lemma 6.2. There is a sequence 〈sn〉∞n=1 in S such that for each n ∈ N,
(1) sn ≺ sn+1;
(2) if a � sn and b � sn, then ab ≺ sn+1; and
(3) if a � sn and ab � sn, then b ≺ sn+1.

Proof. Pick s1 ∈ S. Let n ∈ N and assume sn has been chosen. Let A =
{ab : a � sn and b � sn} ∪ {b ∈ S : (∃a � sn)(∃c � sn)(ab = c)} ∪ {sn}.
Then A is �nite. (The second of the three listed sets is �nite since S is
weakly left cancellative.) Pick sn+1 such that for all b ∈ A, b ≺ sn+1. �

We will assume that we have �xed 〈sn〉∞n=1 as guaranteed by Lemma
6.2 and let P = {sn : n ∈ N}. If N has its natural order, we can take
sn = 2n for (N,+) and sn = 22n for (N, ·).

De�nition 6.3. We de�ne τ : S → N by τ(t) = min{n ∈ N : t � sn} and
let τ̃ : βS → βN be its continuous extension.

Note that if y ∈ S∗, then τ̃(y) ∈ N∗ so −1 + τ̃(y) ∈ N∗.

Lemma 6.4. Let x ∈ βS and let y ∈ S∗. Then

τ̃(xy) ∈ {−1 + τ̃(y), τ̃(y), 1 + τ̃(y)} .

Proof. We claim that for every a ∈ S, there exists m ∈ N such that if
sm ≺ b, then τ(ab) ∈ {−1 + τ(b), τ(b), 1 + τ(b)}. To see this, pick m > 1
such that a ≺ sm−1 and assume that sm ≺ b. Let n = τ(b). Then
sn−1 ≺ b � sn so m ≤ n−1 and a ≺ sn−2. By Lemma 6.2 (2), ab ≺ sn+1.
If we had ab � sn−2, then by Lemma 6.2 (3) we would have b ≺ sn−1 so
sn−2 ≺ ab ≺ sn+1 so τ(ab) ∈ {n− 1, n, n+ 1}.

For each a ∈ S and i ∈ {−1, 0, 1}, let Ba,i = {b ∈ S : τ(ab) =

i + τ(b)}. Then
⋃1
i=−1Ba,i is co�nite so pick j(a) such that Ba,j(a) ∈ y.

For i ∈ {−1, 0, 1} let Ci = {a ∈ S : j(a) = i} and pick i such that
Ci ∈ x. We claim that τ̃(xy) = i + τ̃(y). For this it su�ces to show
that τ̃ ◦ ρy is constantly equal to i + τ̃(y) on Ci, so let a ∈ Ci. To see



32 NEIL HINDMAN AND DONA STRAUSS

that τ̃(ay) = i + τ̃(y), it su�ces to show that τ̃ ◦ λa and λi ◦ τ̃ agree on
Ba,i, where λi is addition on the left by i in βZ.. So let b ∈ Ba,i. Then
τ(ab) = i+ τ(b) as required. �

Lemma 6.5. Assume that S is left cancellative and k ∈ N \ {1} such
that for any a, b ∈ S, |{x ∈ S : xa = b}| < k. Then for any p, q ∈ βS,
|{x ∈ S : xp = q}| < k.

Proof. Let p, q ∈ βS and suppose that |{x ∈ S : xp = q}| ≥ k. Pick
distinct x1, x2, . . . , xk in S such that xip = q for each i ∈ {1, 2, . . . , k}.
De�ne f : S → S as follows.

(1) If v ∈ S \ x1S, then f(v) = (x1)2.
(2) Assume that v = x1u for some u ∈ S and note that since S is left

cancellative, there is only one such u. Let f(v) = xiu where i is
the �rst member of {2, 3, . . . , k} such that xiu 6= x1u.

Then f has no �xed points so by [72, Lemma 3.33], pick A0, A1, A2 such
that S = A0 ∪ A1 ∪ A2 and for each i ∈ {0, 1, 2}, Ai ∩ f [Ai] = ∅. Pick
i ∈ {0, 1, 2} such that Ai ∈ x1p. For j ∈ {2, 3, . . . , k}, let Bj = {u ∈
S : f(x1u) = xju} and pick j ∈ {2, 3, . . . , k} such that Bj ∈ p. Let
f̃ : βS → βS denote the continuous extension of f . Then for u ∈ Bj ,
f(x1u) = xju so f̃ ◦λx1

and λxj agree on a member of p so f̃(x1p) = xjp.
Since Ai ∈ x1p, f [Ai] ∈ f̃(x1p) = xjp = x1p while f [Ai] ∩ Ai = ∅, a
contradiction. �

Lemma 6.6. Assume that S is left cancellative and k ∈ N\{1} such that
for any a, b ∈ S, |{x ∈ S : xa = b}| < k. Let 〈xn〉∞n=1 be a sequence in S∗

such that τ̃ is injective on 〈xn〉∞n=1 and {τ̃(xn) : n ∈ N} is discrete. If x
is a cluster point of 〈xn〉∞n=1, then x /∈ S∗S∗.

Proof. We claim that τ̃ is injective on c`{xn : n ∈ N}. Suppose instead
we have distinct p and q in c`{xn : n ∈ N such that τ̃(p) = τ̃(q). Pick
A ∈ p and B ∈ q such that A ∩ B = ∅. Then τ̃(p) ∈ c`{τ̃(xn) : xn ∈ A}
and τ̃(q) ∈ c`{τ̃(xn) : xn ∈ B}. By [72, Theorem 3.40] we can assume
without loss of generality that {τ̃(xn) : xn ∈ A}∩ c`{τ̃(xn) : xn ∈ B} 6= ∅
so pick m such that xm ∈ A and τ̃(xm) ∈ c`{τ̃(xn) : xn ∈ B}. This
contradicts the fact that {τ̃(xn) : n ∈ N} is discrete.

Now let x be a cluster point of 〈xn〉∞n=1 and suppose that x = yz
for some y and z in S∗. By Lemma 6.4, τ̃ takes on at most 3 values
on τ̃ [βSz]. Let M = {s ∈ S : sz ∈ c`βS({xn : n ∈ N})}. Since τ̃ is
injective on {xn : n ∈ N} and {xn : n ∈ N} is discrete, τ̃ is injective
on c`{xn : n ∈ N}. By Lemma 6.4 τ̃ takes on at most three values on
βSz so by Lemma 6.5, M is �nite. So x is in c`βS

(
(S \ M)z

)
and in

c`βS({xn : τ̃(xn) /∈ {−1 + τ̃(z), τ̃(z), 1 + τ̃(z)}). Hence, by [72, Theorem
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3.40], there exists v ∈ c`βS({xn : n ∈ N}) and s ∈ S \M such that v = sz,
or else there exists n ∈ N such that τ̃(xn) /∈ {−1 + τ̃(z), τ̃(z), 1 + τ̃(z)}
and xn ∈ βSz. The �rst possibility is ruled out by the de�nition of M ,
and the second possibility is ruled out by Lemma 6.4. �

Lemma 6.7. Assume that S is left cancellative and k ∈ N\{1} such that
for any a, b ∈ S, |{x ∈ S : xa = b}| < k. Let D be a compact subset of
S∗S∗. Then τ̃ [D] is �nite. Consequently for any Borel subset B of S∗S∗,
|τ̃ [B]| ≤ c.

Proof. Supppose not and pick a sequence 〈xn〉∞n=1 in D such that τ̃ is
injective on 〈xn〉∞n=1. We may assume that {τ̃(xn) : n ∈ N} is discrete.
Pick a cluster point x of 〈xn〉∞n=1. Then x ∈ D but by Lemma 6.6,
x /∈ S∗S∗.

Now let B be a Borel subset of S∗S∗. By Lemma 6.1, there is a
set E of compact subsets of βS with |E| ≤ c such that B =

⋃
E so

τ̃ [B] =
⋃
D∈E τ̃ [D]. �

Theorem 6.8. Assume that S is left cancellative and k ∈ N \ {1} such
that for any a, b ∈ S, |{x ∈ S : xa = b}| < k. Let T ⊆ S∗ such that
P ∗ ⊆ T . Then TT is not Borel. (In particular S∗S∗ is not Borel.)

Proof. For each n ∈ N, τ(sn) = n so τ [P ] = N and thus τ̃ [P ∗] = N∗ so
that |τ̃ [P ∗]| = 2c. It will su�ce by Lemma 6.7 to show that |τ̃ [TT ]| = 2c.

Pick x ∈ P ∗. We will show that |τ̃ [xP ∗]| = 2c. For i ∈ {−1, 0, 1}, let
Bi = {y ∈ P ∗ : τ̃(xy) = i + τ̃(y)}. By Lemma 6.4, P ∗ =

⋃1
i=−1Bi so

τ̃ [P ∗] =
⋃1
i=−1 τ̃ [Bi] so pick i ∈ {−1, 0, 1} such that |τ̃ [Bi]| = 2c. Pick a

subset D of Bi such that |D| = 2c and τ̃ is injective on D.
Note that, if y and z are distinct members of D, then τ̃(xy) 6= τ̃(xz).

(Otherwise one has i+ τ̃(y) = τ̃(xy) = τ̃(xz) = i+ τ̃(z) so by [72, Lemma
8.1], τ̃(y) = τ̃(z).) Thus |τ̃ [TT ]| ≥ |τ̃ [xP ∗]| ≥ |τ̃ [xD]| = 2c. �

Recall that H =
⋂∞
n=1 c`βN2nN and that we are assuming that for

(N,+), sn = 2n.

Corollary 6.9. The sets N∗ + N∗ and H + H are not Borel in βN.

Recall that for T ⊆ βS we let E(T ) be the set of idempotents in T .

Corollary 6.10. Assume that S is left cancellative and k ∈ N \ {1} such
that for any a, b ∈ S, |{x ∈ S : xa = b}| < k. Then the following sets are
not Borel: E(βS), K(βS), pβS for any p ∈ S∗, and E(R) for any right
ideal R of S∗.

Proof. We de�ne an equvalence relation ≡ on βS by x ≡ y if and only if
τ̃(x) ∈ Z + τ̃(y). Since τ̃ is injective on P ∗, each equivalence class of ≡
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meets P ∗ in at most countably many points so we may pick D ⊆ P ∗ such
that |D| = 2c and if x and y are distinct members of D, then x 6≡ y.

Note that E(S∗) ⊆ S∗S∗ and, since S∗S∗ is an ideal of βS, K(βS) ⊆
S∗S∗. We will show that

∣∣τ̃[E(K(βS)
)]∣∣ = 2c so that neither K(βS) nor

E(S∗) is Borel by Lemma 6.7. Since E(βS) = E(S)∪E(S∗) and E(S) is
countable, this will also show that E(βS) is not Borel. For each p ∈ D,
there is an idempotent ep in K(βS) ∩ βSp. Then τ̃(ep) = i + τ̃(p) for
some i ∈ {−1, 0, 1} so ep ≡ p and thus

∣∣τ̃[E(K(βS)
)]∣∣ = 2c as required.

Now let p ∈ S∗. Then pD ⊆ S∗S∗ and for q ∈ D, τ̃(pq) = i + τ̃(q)
for some i ∈ {−1, 0, 1} so pq ≡ q and thus |τ̃ [pD]| = 2c. Thus |τ̃ [pβS ∩
S∗S∗]| = 2c so that pβS∩S∗S∗ is not Borel. Since pβS\S∗S∗ is countable,
pβS is not Borel.

Let R be a right ideal of S∗. For every p ∈ P ∗, we can choose an
idempotent ep ∈ R ∩ βSp. Then τ̃(ep) ∈ {−1 + τ̃(p), τ̃(p), 1 + τ̃(p)} by
Lemma 6.4. So τ̃ [P ∗] ⊆ (−1 + τ̃ [E(R)])∪ τ̃ [E(R)]∪ (1 + τ̃ [(E(R)]). Since
τ̃ is injective on P ∗, |τ̃ [P ∗]| = 2c. It follows that |τ̃ [E(R)]| > c. If E(R)
were the union of c or fewer compact sets, there would be a compact subset
C of E(R) for which τ̃ [C] is in�nite. This contradicts Lemma 6.7. �

Corollary 6.11. Let T be an in�nite semigroup. Assume that T is left
cancellative and k ∈ N \ {1} such that for any a, b ∈ T , |{x ∈ T : xa =
b}| < k. Then E(βT ) is not Borel.

Proof. Let S be an in�nite countable subsemigroup of T . By Corollary
6.10, E(βS) is not Borel. Since E(βS) can be identi�ed with c`βT (S) and
E(c`βT (S)) = c`βT (S) ∩ E(βT ), E(βT ) is not Borel. �

Theorem 6.12. Let L be a minimal left ideal of βN. Then E(L) is not
Borel.

Proof. For n ∈ N, de�ne supp(n) by n =
∑
i∈supp(n) 2i and let θ(n) =

min
(
supp(n)

)
. Let θ̃ : βN → βω be the continuous extension of θ. By

[72, Theorem 6.15.1], if 〈qn〉∞n=1 is any sequence of idempotents in βN
such that {θ̃(qn) : n ∈ N} is discrete and θ̃(qm) 6= θ̃(qn) if m and n are
distinct positive integers, then no cluster point of {qn : n ∈ N} can be
idempotent.

Assume that E(L) is Borel, so that E(L) is the union of c or fewer
compact sets by Lemma 6.1. We claim that |θ̃[E(L)]| = 2c. Let B = {2n :

n ∈ N}∗. By [72, Exercise 3.4.1], θ̃ is injective on B and so |θ̃[B]| = 2c.
So to establish the claim it su�ces to show that θ̃[B] ⊆ θ̃[E(L)]. Let
x ∈ B. Pick an idempotent e ∈ (x + βN) ∩ L. Then e = x + y for some
y ∈ βN. Since e ∈ H and x ∈ H we have that y ∈ H. By [72, Lemma 6.8],
θ̃(e) = θ̃(x+ y) = θ̃(x) and so |θ̃[E(L)]| = 2c as required.
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Hence there is a compact subset C of E(L) for which θ̃[C] is in�nite.
Then C contains a sequence 〈qn〉n∈N for which 〈θ̃(qn)〉n∈N is an injec-
tive discrete sequence. This is a contradiction because by Lemma 6.6 no
cluster point of 〈qn〉n∈N can be in E(L). �

Corollary 6.13. Let G be a countable group which can be algebraically
embedded in a compact metrizable topological group. If L is a minimal
left ideal of βG, E(L) is not Borel.

Proof. This follows immedately from Theorem 6.12 and the fact that βG
contains a subset which is topologically isomorphic to H and contains all
the idempotents of βG, by [72, Theorem 7.28]. �

Corollary 6.14. Let (S,+) be a countably in�nite commutative cancella-
tive semigroup with an identity 0. If L is a minimal left ideal of βS, E(L)
is not Borel.

Proof. Let G denote the group of di�erences of S. By [72, Lemma 7.29],
for every a 6= 0 in G there is a homomorphism ha : G → T, where T
denotes the circle group written additively, such that ha(a) 6= 0. Let H =
{ha : a ∈ G \ {0}}. Then TH is a compact metrizable toplogical group,
and the natural mapping of G into TH is an injective homomrphism.
Hence, by Corollary 6.13, E(L) is not Borel if L denotes any minimal left
ideal of G. Now S can be regarded as a subset of G by identifying each
s ∈ S with s − 0. Then S is a thick subset of G because, if n ∈ N and
a1−b1, a2−b2, . . . an−bn ∈ G, where ai, bi ∈ S for every i ∈ {1, 2, . . . , n},
then ai − bi + b1 + b2 + . . . + bn ∈ S for every i ∈ {1, 2, . . . , n}. So βS
contains a minimal left ideal of βG, by [72, Theorem 4.48], and hence
K(βS) ⊆ K(βG), by [72, Theorem 1.65].

We claim that every minimal left ideal of βS is also a minimal left ideal
of βG. It will then follow from Corollary 6.13 that E(L) is not Borel.

Let L be a minimal left ideal of βS and pick p ∈ E(L). We claim
that βG + p ⊆ L = βS + p for which it su�ces that G + p ⊆ L. So let
g ∈ G and pick s, t ∈ S such that g = s − t. Let x denote the inverse of
t+ p = p+ t+ p in the group p+ βS + p. Then t+ x = t+ p+ x = p so
s+ p = s+ t+ x and so g + p = s− t+ p = s+ x ∈ L. �

7. Long increasing <R-chains in βN

In this section we will establish the result from [79] that there is a
sequence 〈pσ〉σ<ω1 of idempotents in βN such that pσ <R pτ whenever
σ < τ < ω1. This result contrasts strongly with the result of Zelenyuk
which we will present in Section 8 that there does not exist a sequence
〈pn〉∞n=1 of idempotents in βN such that pn <L pn+1 for each n ∈ N. (If p
and q are idempotents in βN, then p <L q if and only if βZ+p ( βZ+q.)
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The results of this section through Lemma 7.8 consist of a presentation
of some of the details of [72, Exercise 8.5.1].

Lemma 7.1. Let p ∈ βN such that p is right cancelable in (βN,+).
There is a sequence 〈bn〉∞n=1 in N such that for each k ∈ N, {bn : n ∈
N and bn + k < bn+1} ∈ p.

Proof. This is [72, Lemma 8.27]. �

De�nition 7.2. Let p be a right cancelable element of βN and let 〈bn〉∞n=1

be as guaranteed by Lemma 7.1.
(a) Tp = {bn1

+bn2
+. . .+bnk : if k > 1, then n1 < n2 and for each i ∈

{2, 3, . . . , k} , bni+1 > (1 + 2 + . . .+ bni−1
) + bni}.

(b) For n ∈ N, Tp,n = {bn1
+ bn2

+ . . . + bnk : n1 > n , bn1+1 >
1 + 2 + . . .+ bn + bn1 and if k > 1, then n1 < n2 and for each i ∈
{2, 3, . . . , k} , bni+1 > 1 + 2 + . . .+ bni−1 + bni}.

(c) Tp,∞ =
⋂∞
n=1 c`βNTp,n.

An expression of the form bn1
+bn2

+ . . .+bnk as in the de�nition of Tp
will be called a p-sum. As an example, the requirements for b2 +b5 +b9 to
be a p-sum are that b6 > 1+2+ . . .+b2 +b5 and b10 > 1+2+ . . .+b5 +b9.

Lemma 7.3. Let p be a right cancelable element of βN and let 〈bn〉∞n=1

be as guaranteed by Lemma 7.1. Let a, k, l ∈ N and assume that bm1 +
. . .+ bmk and bn1

+ . . .+ bnl are p-sums, bm1+1 > 1 + 2 + . . .+ a+ bm1
,

bm1
> a, and a + bm1

+ . . . + bmk = bn1
+ . . . + bnl . Then l > k and, if

i = l − k, then a = bn1
+ . . .+ bni and for j ∈ {1, 2, . . . , k}, bmj = bni+j.

Proof. Suppose the conclusion fails and pick a counterexample with k+l a
minimum among all counterexamples. Assume �rst that k > 1 and l > 1.
We cannot have mk = nl, for then the equation a+ bm1

+ . . .+ bmk−1
=

bn1
+ . . .+ bnl−1

would provide a smaller counterexample.
If mk < nl, then mk + 1 ≤ nl, so

bnl ≥ bmk+1 > 1+2+. . .+bmk−1
+bmk ≥ a+bm1+. . .+bmk = bn1+. . .+bnl ,

a contradiction. If nl < mk, then nl + 1 ≤ mk so

bmk ≥ bnl+1 > 1+2+. . .+bnl−1
+bnl ≥ bn1 +. . .+bnl = a+bm1 +. . .+bmk ,

again a contradiction.
Thus we must have k = 1 or l = 1.
Case 1. k = 1 and l = 1. Then a + bm1 = bn1 so bn1 > bm1 and thus

m1 + 1 ≤ n1. Therefore bn1 ≥ bm1+1 > 1 + 2 + . . . + a + bm1 ≥ bn1 , a
contradiction.

Case 2. l = 1 and k > 1. Then a+bm1
+. . .+bmk = bn1

so n1 ≥ mk+1.
Therefore bn1

≥ bmk+1 > 1+2+ . . .+bmk−1
+bmk ≥ a+bm1

+ . . .+bmk =
bn1 , a contradiction.
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Case 3. l > 1 and k = 1. Then a+ bm1 = bn1 + . . .+ bnl . If m1 > nl,
then bm1 ≥ bnl+1 > 1 + 2 + . . .+ bnl−1 + bnl ≥ bn1 + . . .+ bnl = a+ bm1 ,
a contradiction. If nl > m1, then bnl ≥ bm1+1 > 1 + 2 + . . .+ a+ bm1

≥
a+ bm1

= bn1
+ . . .+ bnl , a contradiction.

So m1 = nl and thus the conclusion of the lemma holds, and we did
not have a counterexample. �

Lemma 7.4. Let p be a right cancelable element of βN and let 〈bn〉∞n=1

be as guaranteed by Lemma 7.1. The expression of an element of Tp as a
p-sum is unique.

Proof. Suppose that we have p-sums bm1
+ . . .+ bmk and bn1

+ . . .+ bnl
such that bm1 + . . . + bmk = bn1 + . . . + bnl but (m1,m2, . . . ,mk) 6=
(n1, n2, . . . , nl) and pick such an example with k + l a minimum among
all examples.

Case 1. k > 1 and l > 1. Then mk 6= nl or else the equation bm1
+

. . . + bmk−1
= bn1

+ . . . + bnl−1
provides a smaller example. So assume

without loss of generality that mk + 1 ≤ nl. Then bnl ≥ bmk+1 > 1 + 2 +
. . .+ bmk−1

+ bmk ≥ bm1 + . . .+ bmk = bn1 + . . .+ bnl , a contradiction.
Case 2. k = 1 or l = 1. Assume without loss of generality that

k = 1. If l = 1 also, then there was not a counterexample, so l > 1.
Then m1 ≥ nl + 1 so bm1

≥ bnl+1 > 1 + 2 + . . . + bnl−1
+ bnl ≥ bm1

, a
contradiction. �

De�nition 7.5. Let p be a right cancelable element of βN and let 〈bn〉∞n=1

be as guaranteed by Lemma 7.1. De�ne ψp : Tp → N by ψp(bn1
+ bn2

+

. . .+ bnk) = k and let ψ̃p : c`βNTp → βN be its continuous extension.

De�nition 7.6. Let p ∈ βN. Then Cp is the smallest compact subsemi-
group of (βN,+) with p as a member.

Theorem 7.7. Let p be a right cancelable elment of βN. Tp,∞ is a com-

pact subsemigroup of N∗, Cp ⊆ Tp,∞, the restriction of ψ̃p to Tp,∞ is a

homomorphism, ψ̃p(p) = 1, and ψ̃p[Cp] = βN.

Proof. Let 〈bn〉∞n=1 be as guaranteed for p by Lemma 7.1. For k ∈ N, let
Pk = {bn : n ∈ N and bn + k < bn+1}. We �rst claim that for each n ∈ N,
if k = 1 + 2 + . . . + bn, then {bm ∈ Pk : m > n} ⊆ Tp,n. To see this let
bm ∈ Pk such that m > n. Then bm+1 > 1+2+ . . .+bn+bm so bm ∈ Tp,n.
Thus, given n, since {bm ∈ Pk : m > n} ∈ p, we have that p ∈ c`βNTp,n.
Consequently, p ∈ Tp,∞ and ψ̃p(p) = 1.

To see that Tp,∞ is a subsemigroup of βN, let m ∈ N and let x ∈ Tp,m.
Pick k ∈ N and m1,m2, . . . ,mk in N such that x = bm1

+ . . . + bmk ,
where m1 > m , bm1+1 > 1 + 2 + . . .+ bm + bm1 and if k > 1, then m1 <
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m2 and for each i ∈ {2, 3, . . . , k} , bmi+1 > 1 + 2 + . . .+ bmi−1 + bmi . By
[72, Theorem 4.20], it su�ces to show that x + Tp,mk ⊆ Tp,m. So let
y ∈ Tp,mk . Pick l ∈ N and n1, n2, . . . , nl in N such that y = bn1

+ . . .+bnl ,
where n1 > mk , bn1+1 > 1 + 2 + . . . + bmk + bn1

and if l > 1, then n1 <
n2 and for each i ∈ {2, 3, . . . , l} , bni+1 > 1 + 2 + . . . + bni−1

+ bni . To
see that x + y ∈ Tp,m we need that bm1 + . . . + bmk + bn1 + . . . + bnl
is as in the de�nition of Tp,m. If k > 1, we only need to note that
bn1+1 > 1 + 2 + . . . + bmk + bn1

. If k = 1, we also need to note that
n1 > mk.

Further, with x = bm1
+ . . . + bmk and y = bn1

+ . . . + bnl as in the
preceeding paragraph, we have that ψp(x+y) = k+ l = ψp(x) +ψp(y), so
by [72, Theorem 4.21], the restriction of ψ̃p to Tp,∞ is a homomorphism.

Since p ∈ Tp,∞, we have Cp ⊆ Tp,∞. SinceD = {p, p+p, p+p+p, . . .} ⊆
Cp and ψp[D] = N, we have ψ̃p[Cp] = βN. �

Lemma 7.8. Let x ∈ βN, let y ∈ Tp,∞, and assume that x + y ∈ Tp,∞.
Then x ∈ Tp,∞.

Proof. Suppose that x /∈ Tp,∞ and pick r ∈ N such that x /∈ c`βNTp,r. Let
X = N\Tp,r and let Z = {a+bm1

+ . . .+bmk : a ∈ X , bm1
+ . . .+bmk is a

p-sum, bm1+1 > 1+2+. . .+a+bm1
, andm1 > a}. We claim that Z ∈ x+y

for which it su�ces that X ⊆ {a ∈ N : −a + Z ∈ y}. So let a ∈ X. We
claim that Tp,a ⊆ −a+ Z. To see this, let bm1 + . . .+ bmk be a p-sum in
Tp,a. Thenm1 > a and bm1+1 > 1+2+. . .+ba+bm1 ≥ 1+2+. . .+a+bm1 .
so a+ bm1

+ . . .+ bmk ∈ Z as claimed.
Now x+ y ∈ Tp,∞ ⊆ c`βNTp,r so pick w ∈ Z ∩ Tp,r. Since w ∈ Z, pick

a ∈ X and a p-sum bm1
+ . . .+bmk such that bm1+1 > 1+2+ . . .+a+bm1

,
m1 > a, and w = a + bm1 + . . . + bmk . Since w ∈ Tp,r, pick a p-sum
bn1 + bn2 + . . .+ bnl such that w = bn1 + bn2 + . . .+ bnl , n1 > r, bn1+1 >
1 + 2 + . . . + br + bn1

and if k > 1, then n1 < n2. By Lemma 7.3,
there is some i < l such that a = bn1

+ . . . + bni , so that a ∈ Tp,r, a
contradiction. �

De�nition 7.9. (a) For n ∈ N, supp(n) is the �nite set F ⊆ ω such
that n =

∑
t∈F 2t.

(b) De�ne φ : N → ω by φ(n) = max supp(n) and let φ̃ : βN → βω
be its continuous extension.

We write H =
⋂∞
n=1 c`βN2nN. Given any p ∈ βN, Cp is a compact

right topological semigroup, so it has a smallest ideal and idempotents
minimal in Cp.

Lemma 7.10. Assume that p ∈ N∗, p is right cancelable in βN, and q is
an idempotent which is minimal in Cp. There exist p′ ∈ Cp ∩ H and an
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idempotent q′ which is minimal in Cp′ such that p′ is right cancelable in
βN, q <R q′, and p′ + q = q.

Proof. By Theorem 7.7, ψ̃p is a homomorphism on Tp,∞, Cp ⊆ Tp,∞,
and ψ̃p[Cp] = βN. By [72, Lemma 6.8] if r ∈ βN and s ∈ H, then
φ̃(r + s) = φ̃(s).

Pick a sequence 〈Dn〉∞n=1 of pairwise disjoint in�nite subsets of N and
for n ∈ N, pick xn ∈ N∗ such that {2t : t ∈ Dn} ∈ xn. Then for each
n, Dn ∈ φ̃(xn) so {φ̃(xn) : n ∈ N} is discrete. For each n ∈ N pick
yn ∈ Cp such that ψ̃p(yn) = xn. Then Cp + yn is a left ideal of Cp which
therefore contains a minimal left ideal of Cp and q+Cp is a minimal right
ideal of Cp. Recalling that in any compact Hausdor� right topological
semigroup, the intersection of a minimal left ideal and a minimal right
ideal is a group, we may pick an idempotent qn ∈ (Cp + yn) ∩ (q + Cp)
and pick sn ∈ Cp such that qn = sn + yn. Let p′ be a cluster point of the
sequence 〈qn〉∞n=1. Since by [72, Lemma 6.6] all idempotents of βN are in
H, we have that p′ ∈ Cp ∩H.

Let r = ψ̃p(p
′) and note that r is a cluster point of 〈ψ̃p(qn)〉∞n=1. Note

that φ[N] = ω; for all n < ω, {m ∈ N : φ < n} is �nite; and for all n
and k in N, if φ(n) + 1 < φ(k), then φ(n + k) ∈ {φ(k), φ(k) + 1}. Also,
given n ∈ N, ψ̃p(qn) = ψ̃p(sn + yn) = ψ̃p(sn) + ψ̃p(yn) = ψ̃p(sn) + xn and
since xn ∈ H, φ̃(ψ̃(sn) + xn) = φ̃(xn). That is φ̃

(
ψ̃p(qn)

)
= φ̃(xn). Since

{φ̃(xn) : n ∈ N} is discrete and r is a cluster point of 〈ψ̃(qn)〉∞n=1, we have
by [72, Theorem 6.54.4] with S = T = N, f = φ, and pn = ψ̃p(qn), that
(N + r) ∩ (N∗ + N∗) = ∅.

We claim that r is right cancelable in βN. By (9)⇒ (3) of [72, Theorem
8.11] with S = T = N, it su�ces to show that for a ∈ N and s ∈ βN\{a},
a + r 6= s + r. If s ∈ N, this holds by [72, Corollary 8.2]. If s ∈ N∗, this
holds because (N + r) ∩ (N∗ + N∗) = ∅.

Next we claim that p′ is right cancelable in βN. Suppose not and by
[72, Theorem 8.18] pick an idempotent e ∈ N∗ such that p′ = e+ p′. Now
p′ ∈ Cp ⊆ Tp,∞ so by Lemma 7.8, e ∈ Tp,∞ and thus by Theorem 7.7,
r = ψ̃p(p

′) = ψ̃p(e) + ψ̃p(p
′) = ψ̃p(e) + r so by [72, Theorem 8.18], r is

not right cancelable in βN, a contradiction.
For each n ∈ N, qn ∈ q+Cp so qn+Cp ⊆ q+Cp and, since q is minimal

in Cp, q + Cp is a minimal right ideal of Cp, so qn + Cp = q + Cp and
therefore qn + q = q. That is ρq is constantly equal to q on {qn : n ∈ N},
so p′ + q = q.

Since p′ ∈ {y ∈ βN : y+q = q} = ρ−1
q [{q}] we have {y ∈ βN : y+q = q}

is a compact subsemigroup of βN with p′ as a member and thus Cp′ ⊆



40 NEIL HINDMAN AND DONA STRAUSS

{y ∈ βN : y + q = q}. Let q′ be a minimal idempotent in Cp′ . Then
q′+q = q so q ≤R q′. It remains only to show that the inequality is strict.

We show now that Cr∩K(βN) = ∅. To this end, we �rst establish that
we may pick a minimal right ideal R of βN such that r ∈ c`E(R), where
E(R) is the set of idempotents in R. By Theorem 7.7, the restriction of ψ̃p
to Cp is a homomorphism onto βN so by [72, Exercise 1.7.3], ψ̃p[K(Cp)] =

K(βN). Pick a minimal right ideal R of βN such that ψ̃p(q) ∈ R. By [72,
Exercise 1.7.3] again, ψ̃p[q + Cp] = R. Each qn ∈ q + Cp and p′ ∈ c`{qn :

n ∈ N} so r = ψ̃p(p
′) ∈ c`{ψ̃p(qn) : n ∈ N} ⊆ c`E(R).

Let G = {v ∈ βN : (∀u ∈ R)(v + u = u)}. By [72, Lemma 1.30(b)],
E(R) ⊆ G, so G is a compact subsemigroup of βN. We claim that Cr ⊆ G
for which it su�ces that r ∈ G. To see this, let u ∈ R. We show that
r + u ⊆ u, so let A ∈ (r + u) and let B = {x ∈ N : −x + A ∈ u}. Then
B ∈ r and r ∈ c`E(R) so pick w ∈ E(R) ∩ B. Then w + u = u so A ∈ u
and thus r + u = u as required.

Now suppose that Cr ∩K(βN) 6= ∅. We claim that Cr ∩K(βN) ⊆ R.
To see this, let w ∈ Cr ∩ K(βN). Pick a minimal right ideal R′ of βN
such that w ∈ R′. Pick u ∈ R. Since Cr ⊆ G, w + u = u so R ∩ R′ 6= ∅
and thus R′ = R.

Now �x v ∈ Cr∩K(βN). By Theorem 7.7, the restriction of ψ̃r to Cr is
a homomorphism onto βN so by [72, Exercise 1.7.3], ψ̃r[K(Cr)] = K(βN).
Also Cr ∩K(βN) = K(Cr) by [72, Theorem 1.65]. We claim that ψ̃r(v) is
a left identity for K(βN) so let w ∈ K(βN) and pick u ∈ K(Cr) such that
ψ̃r(u) = w. Then ψ̃r(v) + w = ψ̃r(v) + ψ̃r(u) = ψ̃r(v + u) = ψ̃r(u) = w.
We thus have that ψ̃r(v) ∈ K(βN) and ψ̃r(v) + K(βN) = K(βN) so βN
has only one minimal right ideal, while by [72, Theorem 6.9] βN has 2c

minimal right ideals. This contradiction establishes that Cr∩K(βN) = ∅.
To �nish the proof of the lemma, we will show that Cp′ ∩K(Cp) = ∅.

This will su�ce since then if q′ = q + q′ we have q′ ∈ Cp′ ⊆ Cp and
q ∈ K(Cp) so q′ = q + q′ ∈ Cp′ ∩K(Cp).

So suppose we have s ∈ Cp′ ∩ K(Cp). Then ψ̃p(s) ∈ K(βN). Also,

ψ̃p
−1

[Cr] is a compact semigroup and p′ ∈ ψ̃p
−1

[Cr] so Cp′ ⊆ ψ̃p
−1

[Cr]

and thus ψ̃p(s) ∈ Cr ∩K(βN), a contradiction. �

In the proof of the following theorem we shall inductively construct two
ω1 sequences, 〈pσ〉σ<ω1

and 〈qσ〉σ<ω1
where each pσ is right cancelable in

βN and 〈qσ〉σ<ω1
is a <R-increasing chain of idempotents, with each qσ

being a minimal idempotent in Cpσ .
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Theorem 7.11. Let p be a right cancelable element of βN and let q
be a minimal idempotent in Cp. There exists a sequence 〈qσ〉σ<ω1 of
idempotents in βN such that q0 = q and qσ <R qδ whenever σ < δ < ω1.

Proof. Let p0 = p and q0 = q. Let 0 < α < ω1 and assume we have
chosen 〈pσ〉σ<α and 〈qσ〉σ<α such that

(1) if 0 < δ < α, then pδ ∈ H;
(2) if δ < α, then pδ is right cancelable in βN;
(3) if δ < α, then qδ is a minimal idempotent in Cpδ ;
(4) if δ < σ < α, then qδ <R qσ;
(5) if δ < σ < α, then pσ ∈ Cpδ ; and
(6) if δ < σ < α, then pσ + qδ = qδ.
The hypotheses hold for α = 1, all but (2) amd (3), vacuously.
Case 1. α = γ + 1 for some γ. By hypotheses (2) and (3) and Lemma

7.10 we may pick pα ∈ Cpγ ∩ H which is right cancelable in βN and an
idempotent qα which is minimal in Cpα such that qγ <R qα and pα+qγ =
qγ . One sees immediately that hypotheses (1) through (4) hold at α+ 1.
To verify hypothesis (5), let δ < α. If δ = γ, we have pα ∈ Cpδ directly.
Otherwise, pγ ∈ Cpδ by assumption so pα ∈ Cpγ ⊆ Cpδ .

To verify hypothesis (6), again if δ = γ we have pα + qδ = qδ directly,
so assume δ < γ. Then pα + qγ = qγ and, since qδ <R qγ , qγ + qδ = qδ so
pα + qδ = pα + qγ + qδ = qγ + qδ = qδ.

Case 2. α is a limit ordinal. Choose a co�nal sequence 〈δ(n)〉n<ω in
α such that δ(0) > 0 and δ(n) < δ(n + 1) for each n < ω. Let pα be a
cluster point of the sequence 〈pδ(n)〉n<ω. Let qα be a minimal idempotent
in Cpα . Since pδ(n) ∈ H for each n < ω, we have pα ∈ H.

We claim that pα is right cancelable in βN. Suppose not and by [72,
Theorem 8.18] pick an idempotent e ∈ N∗ such that pα = e + pα. Then
pα ∈ βN + pα = c`βN(N + pα) and pα ∈ c`βN{pδ(n) : n < ω} so by [72,
Theorem 3.40], either there is some n ∈ N such that n+ pα ∈ c`βN{pδ(n) :
n < ω} or there is some n < ω such that pδ(n) ∈ βN + pα. The �rst
alternative is impossible because pα ∈ H and {pδ(n) : n < ω} ⊆ H. So
pick n < ω and x ∈ βN such that pδ(n) = x + pα. Since pδ(m) ∈ Cpδ(n)

for all m > n by hypothesis (5), we have pα ∈ Cpδ(n)
⊆ Tpδ(n),∞. Since

also pδ(n) ∈ Tpδ(n),∞, we have by Lemma 7.8 that x ∈ Tpδ(n),∞. But

now, by Theorem 7.7, 1 = ψ̃pδ(n)
(pδ(n)) = ψ̃pδ(n)

(x) + ψ̃pδ(n)
(pα) which is

impossible. Thus hypothesis (2) holds.
Hypothesis (3) holds directly. To verify hypotheses (4), (5), and (6), let

σ < α and pick n < ω such tht σ < δ(n) < α. For eachm with n < m < ω,
we have by hypothesis (6) that pδ(m) + qδ(n) = qδ(n) so pα + qδ(n) = qδ(n).
Therefore {y ∈ βN : y + qδ(n) = qδ(n)} is a compact subsemigroup of βN
with pα as a member so Cpα ⊆ {y ∈ βN : y + qδ(n) = qδ(n)}. Therefore
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qα + qδ(n) = qδ(n) so qσ <R qδ(n) ≤R qα and we have veri�ed hypothesis
(4). Also, for each m ≥ n we have pδ(m) ∈ Cpσ so pα ∈ Cpσ as required by
hypothesis (5). Since for all m ≥ n, pδ(m) +qσ = qσ, we have pα+qσ = qσ
as required by hypothesis (6). �

8. Increasing Principal Left Ideals in βZ

In this section we present Yevhen Zelenyuk's proof [133] that there
does not exist a sequence of increasing principal left ideals of (βZ,+).

We begin with some notation that will be used throughout the section.

De�nition 8.1. (a) W is the set of �nite nonempty words over the
alphabet N. That is, w ∈W if and only if there exists n ∈ N such
that w : {1, 2, . . . , n} → N.

(b) Given w ∈W , if the domain of w is {1, 2, . . . , n}, then `(w) = n.
(c) Given an in�nite sequence 〈wj〉∞j=1 inW , we say that the sequence

is increasing if and only if for each j ∈ N, `(wj) ≥ j and the
sequence 〈wk(j)〉∞k=j is strictly increasing.

(d) Given a �nite sequence 〈wj〉nj=1 in W , we say that the sequence is
increasing if and only if for each j ∈ {1, 2, . . . , n}, `(wj) ≥ j and
the sequence 〈wk(j)〉nk=j is strictly increasing.

(e) If n ∈ N and 〈wj〉nj=1 is an increasing sequence in W , then
[w1, w2, . . . , wn] is the word v ∈W with `(v) = `(wn) such that for
j ∈ {1, 2, . . . , n−1}, v(j) = wj(j) and for j ∈ {n, n+1, . . . , `(wn)},
v(j) = wn(j).

Notice that if w ∈ W , then [w] = w. Also, if 〈wj〉∞j=1 is an increasing
sequence in W , then whenever j ≤ k in N, wk(j) ≥ k − j + 1.

We will write w = α1α2 · · ·αm when m = `(w) and for each i ∈
{1, 2, . . . ,m}, αi = w(i).

Lemma 8.2. There is a 2-coloring of W such that there does not exist
an increasing sequence 〈wj〉∞j=1 in W such that

{[wj1 , wj2 , . . . , wjk ] : k ∈ N and j1 < j2 < . . . < jk}

is monochromatic.

Proof. Given w ∈ W with `(w) = m > 1, we de�ne inductively r(w) ∈
N and a sequence s(w) = 〈i0, i1, . . . , ir(w)〉 such that m = i0 > i1 >
. . . > ir(w) = 1. Let w = α1α2 · · ·αm and let i0 = m. Assume that
t ∈ {0, 1, . . . ,m − 1} and it has been de�ned. If it = 1, let r(w) = t.
Otherwise, let

it+1 = min{i ∈ {1, 2, . . . , it−1} : (∀j ∈ {i, i+1, . . . , it−1})(it−j ≤ αj)} .
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Notice that if j = it − 1, then it − j = 1 ≤ αj so such a choice is always
possible.

Let d1(w) = ir(w)−1 − 1 and, if r(w) ≥ 2, let d2(w) = ir(w)−2 − 1. We
claim that if `(w) > d1(w) + 1, then r(w) ≥ 2 so that d2(w) is de�ned.
To see this, note that if r(w) = 1, then d1(w) = i0 − 1 = `(w) − 1 so
`(w) = d1(w) + 1.

De�ne χ : W → {0, 1} by

χ(w) =

{
1 if r(w) is odd
0 if `(w) = 1 or r(w) is even.

Suppose we have an increasing sequence 〈wj〉∞j=1 in W such that χ is
constant on {[wj1 , wj2 , . . . , wjk ] : k ∈ N and j1 < j2 < . . . < jk}. The
sequence 〈wj〉∞j=2 is also an increasing sequence, so we may assume that
each `(wj) > 1.

We claim that {d1(wj) : j ∈ N} is �nite. Suppose instead that {d1(wj) :
j ∈ N} is in�nite. Pick j such that d1(wj) > w1(1) and let α = w1(1).
Let β1β2 · · ·βm = wj , let w = [w1, wj ], and let δ1δ2 · · · δm = w. Then
δ1 = α and for t ∈ {2, 3, . . . ,m}, δt = βt.

Let s(wj) = 〈i0, i1, . . . , ir(wj)〉 where m = i0 > i1 > . . . > ir(wj) = 1
and if t ∈ {0, 1, . . . , r(wj)− 1}, then
it+1 = min{i ∈ {1, 2, . . . , it−1} : (∀j ∈ {i, i+1, . . . , it−1})(it−j ≤ βj)} .
Let s(w) = 〈i′0, i′1, . . . , i′r(w)〉 where m = i′0 > i′1 > . . . > i′r(w) = 1 and if
t ∈ {0, 1, . . . , r(w)− 1}, then
i′t+1 = min{i ∈ {1, 2, . . . , i′t−1} : (∀j ∈ {i, i+1, . . . , i′t−1})(i′t− j ≤ δj)} .
Let r = r(wj). We claim that for t ∈ {0, 1, . . . , r − 1}, i′t = it. This
is true for t = 0. The claim holds if r = 1, so assume that r ≥ 2, let
t ∈ {0, 1, . . . , r − 2} and assume that i′t = it. Then

it+1 = min{i ∈ {1, 2, . . . , it−1} : (∀j ∈ {i, i+1, . . . , it−1})(it−j ≤ βj)} .
Also

i′t+1 = min{i ∈ {1, 2, . . . , it−1} : (∀j ∈ {i, i+1, . . . , it−1})(it− j ≤ δj)} .
Now t + 1 ≤ r − 1 so it+1 ≥ ir−1 = d1(wj) + 1 > w1(1) ≥ 2. So for
all j ∈ {it+1, it+1 + 1, . . . , it − 1}, it − j ≤ βj and if j = it+1 − 1, then
it − j > βj and j > 1. So for j ∈ {it+1 − 1, it+1, . . . , it − 1}, δj = βj so
i′t+1 = it+1.

Now we claim that i′r = 2. Since ir = 1, ir−1 − j ≤ βj for all j ∈
{1, 2, . . . , ir−1 − 1} and therefore i′r−1 ≤ δj for all j ∈ {2, 3, . . . , i′r−1 − 1}
so that i′r ≤ 2. Since also ir−1 − 1 = d1(wj) > α = δ1, we have i′r = 2 as
claimed. Consequently r(w) = r(wj) + 1 and thus χ([wj ]) 6= χ([w1, wj ]).
We have established that {d1(wj) : j ∈ N} is �nite. Consequently only
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�nitely many j have `(wj) ≤ d1(wj) + 1 so d2(wj) is de�ned for all by
�nitely many values of j. So we may assume that d2(wj) is de�ned for all
j.

Now we claim that {d2(wj) : j ∈ N} is in�nite. Suppose instead that
{d2(wj) : j ∈ N} is �nite. Recall that whenever j ≤ k in N, wk(j) ≥
k − j + 1. Let k = max{d2(wj) : j ∈ N}+ 1. Let w = wk = β1β2 · · ·βm.
Let s(w) = 〈i0, i1, . . . , ir(w)〉 where m = i0 > i1 > . . . > ir(w) = 1 and if
t ∈ {0, 1, . . . , r(w)− 1}, then

it+1 = min{i ∈ {1, 2, . . . , it−1} : (∀j ∈ {i, i+1, . . . , it−1})(it−j ≤ βj)} .

We claim that ir(w)−1 = 1, which is a contradiction. We need to show
that for each j ∈ {1, 2, . . . , ir(w)−2 − 1}, ir(w)−2 − j ≤ βj = wk(j). So let
j ∈ {1, 2, . . . , ir(w)−2− 1}. Then wk(j) ≥ k− j+ 1 ≥ d2(wk) + 1− j+ 1 =
ir(w)−2 − j + 1 so ir(w)−2 − j < wk(j) = βj .

So now we have that {d1(wj) : j ∈ N} is �nite and {d2(wj) : j ∈ N} is
in�nite. Pick j1 such that wj1(1) ≥ max{d1(wj) : j ∈ N}. Let α1 = wj1(1)
and note that α1 ≥ j1. Let k = α1 +1 so that k−1+1 > α1. Pick j2 > j1
such that wj2(2) > k − 2 + 1. Given t ∈ {2, 3, . . . , k − 1} pick jt+1 > jt
such that wjt+1

(t + 1) > k − (t + 1) + 1. If t = k − 1, require also that
wjt+1(t + 1) > 3. For t ∈ {1, 2, . . . , k}, let αt = wjt(t). Pick jk+1 > jk
such that d2(wjk+1

) > αk + k − 1.
Let β1β2 · · ·βm = wjk+1

. Let r = r(wjk+1
). Let s(wjk+1

) = 〈i0, i1, . . . ,
ir〉 where m = i0 > i1 > . . . > ir = 1 and if t ∈ {0, 1, . . . , r − 1}, then

it+1 = min{i ∈ {1, 2, . . . , it−1} : (∀j ∈ {i, i+1, . . . , it−1})(it−j ≤ βj)} .

Now k − 1 = α1 = wj1(1) ≥ d1(wjk+1
) = ir−1 − 1 so ir−1 ≤ k. Also

αk + k − 1 < d2(wjk+1
) = ir−2 − 1 so ir−2 > αk + k ≥ 2 + k and

ir−2 − k > αk.
Let w = [wj1 , wj2 , . . . , wjk+1

] = δ1δ2 · · · δm. Then w = α1α2 · · ·αkβk+1

· · ·βm. (Since `(wjk+1
) ≥ jk+1 > k, we have that m > k.) Let s(w) =

〈i′0, i′1, . . . , i′r(w)〉 where m = i′0 > i′1 > . . . > i′r(w) = 1 and if t ∈
{0, 1, . . . , r(w)− 1}, then

i′t+1 = min{i ∈ {1, 2, . . . , i′t−1} : (∀j ∈ {i, i+1, . . . , i′t−1})(i′t− j ≤ δj)} .

We claim that
(1) for t ∈ {0, 1, . . . , r − 2}, i′t = it,
(2) i′r−1 = k + 1, and
(3) i′r = 2

so that r(w) = r(wjk+1
) + 1. This will complete the proof.

To establish (1), note that i′0 = m = i0. Let t ∈ {0, 1, . . . , r − 3}
and assume that i′t = it. Then t + 1 ≤ r − 2. Let i = it+1. Then
for j ∈ {i, i + 1, . . . , it − 1}, it − j ≤ βj and it − (i − 1) > βi−1. Since



ALGEBRA IN βS � AN UPDATE 45

i−1 = it+1−1 ≥ ir−2−1 ≥ k+2 we have that for j ∈ {i, i+1, . . . , i′t−1},
i′t − j ≤ δj and i′t − (i− 1) > δi−1. so i′t+1 = it+1 as required.

For (2), we have seen that ir−1 ≤ k so for j ∈ {k+1, k+2, . . . , ir−2−1},
ir−2− j ≤ βj = δj and thus i′r−1 ≤ k+ 1. But also ir−2− k > αk = δk so
i′r−1 = k + 1.

To verify (3), let t ∈ {2, 3, . . . , k}. Then αt = wjt(t) > k − t + 1 so
i′r−1−t = k+1−t < αt so i′r ≤ 2. But we chose k > α1 so i′r−1−1 = k > α1

so i′r = 2. �

Proposition 8.3. Assume that there is an increasing sequence of prin-
cipal left ideals of βZ. Then for every �nite coloring of W , there is an
in�nite sequence w1 < w2 < . . . such that the set

{[wj1 , wj2 , . . . , wjk ] : k ∈ N and 1 ≤ j1 < . . . < jk}

is monochromatic.

Proof. Let 〈pn〉∞n=0 be a sequence in βZ such that the sequence 〈βZ +
pn〉∞n=0 is strictly increasing. If p ∈ Z, then βZ+ p = βZ so each pn ∈ Z∗.
Since {pn : n ∈ ω} is an in�nite Hausdor� space, it contains an in�nite
strongly discrete subspace, so we may presume that {pn : n ∈ ω} is
strongly discrete. For each n ∈ ω, pick An ∈ pn such that all An are
pairwise disjoint and An+1 ∩ (βZ + pn) = ∅. Then x+ pn /∈ An+1 for all
x ∈ Z and all n ∈ ω.

For n ∈ ω, let Xn,n = {x ∈ Z : x + pn ∈ An} and Xn+1,n = {x ∈ Z :

x + pn+1 ∈ An}. We note that for each n ∈ ω, pn ∈ c`{x + pn+1 : x ∈
Xn+1,n}. To see this, let B ∈ pn. Since pn ∈ βZ + pn+1 = c`(Z + pn+1)

and B ∩ An ∈ pn, pick x ∈ Z such that x + pn+1 ∈ An ∩B. Then
x ∈ Xn+1,n and x+ pn+1 ∈ B.

We shall construct inductively for each n ∈ N a sequence 〈An,j〉∞j=0 of
members of pn and a sequence 〈xn,j〉∞j=1 of members of Z. For n ∈ ω,
let An,0 = An. (We do not de�ne x0,j for any j.) Let E = {(x, n) : n ∈
ω and x ∈ Xn+1,n} and let A =

⋃∞
n=0An. Let 〈em〉∞m=0 enumerate E and

let 〈am〉∞m=0 enumerate A.
For m ∈ ω we inductively choose kmn and Zmn for each n ∈ ω and

sequences 〈An,j〉
kmn
j=1 and 〈xn,j〉

kmn
j=1 for each n ∈ N satisfying the following

induction hypotheses, where

Cm0 =
⋃
{x1,j +A1,j : j ∈ {1, 2, . . . , km1 } and x1,j ∈ X1,0}

and if n ∈ N,

Cmn =
⋃
{xn,j +An,j : j ∈ {1, 2, . . . , kmn } and xn,j ∈ Xn,n} ∪⋃
{xn+1,j +An+1,j : j ∈ {1, 2, . . . , kmn+1} and xn+1,j ∈ Xn+1,n} .

(i) For n ∈ N and j ∈ {1, 2, . . . , kmn }, An,j ∈ pn and An,j ⊆ An,j−1.
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(ii) The sets
{
xn,j+An,j : n ∈ N and j ∈ {1, 2, . . . , kmn }

}
are pairwise

disjoint and for n ∈ N and j ∈ {1, 2, . . . , kmn }, (xn,j+An,j)∩An,j =
∅.

(iii) For n ∈ N and j ∈ {1, 2, . . . , kmn }, xn,j ∈ Xn,n−1 ∪Xn,n.
(iv) For n ∈ ω and j ∈ {1, 2, . . . , kmn+1}, if xn+1,j ∈ Xn+1,n+1, then

xn+1,j+An+1,j ⊆ An+1,k−1\An+1,k for some k ∈ {1, 2, . . . , kmn+1}
or xn+1,j +An+1,j ⊆ An+1,kmn+1

.
(v) For n ∈ ω and j ∈ {1, 2, . . . , kmn+1}, if xn+1,j ∈ Xn+1,n, then

xn+1,j + An+1,j ⊆ An,k−1 \ An,k for some k ∈ {1, 2, . . . , kmn } or
xn+1,j +An+1,j ⊆ An,kmn .

(vi) For n ∈ ω, Zmn is a �nite subset of An, Zmn ∩ Cmn = ∅, and
Cmn /∈ pn.

(vii) If m > 0, then for each n ∈ N, An,kmn ∩ C
m−1
n = ∅.

(viii) If m > 0 and am ∈ At, there exist l ∈ ω, �nite J0, J1, . . . , Jl ⊆ N
with Ji 6= ∅ if i > 0, and zm ∈ Zmt+l such that am = zm +∑l
i=0

∑
j∈Ji xt+i,j ;

(a) J0 = ∅ if and only if
am /∈

⋃
{xt,j +At,j : j ∈ {1, 2, . . . , km−1

t } and xt,j ∈ Xt,t};
(b) l = 0 if and only if −

∑
j∈J0 xt,j + am /∈

⋃
{xt+1,j + At+1,j :

j ∈ {1, 2, . . . , km−1
t+1 } and xt+1,j ∈ Xt+1,t};

(c) for each k ∈ J0, if any, xt,k ∈ Xt,t and −
∑
J03j<k xt,j+am ∈

xt,k +At,k;
(d) for each i ∈ {1, 2, . . . , l}, if any, and each k ∈ Ji,
−
(∑

Ji3j<k xt+i,j +
∑i−1
n=0

∑
j∈Jn xt+n,j

)
+ am ∈

xt+i,k +At+i,k;
(e) for i ∈ {1, 2, . . . , l}, if any, if j = min Ji, then xt+i,j ∈

Xt+i,t+i−1 and if j ∈ Ji \ {min Ji}, then xt+i,j ∈ Xt+i,t+i;
(f) for i ∈ {1, 2, . . . , l− 1}, if any, −

∑i
n=0

∑
j∈Jn xt+n,j + am ∈⋃

{xt+i+1,j +At+i+1,j : j ∈ {1, 2, . . . , km−1
t+i+1} and xt+i+1,j ∈

Xt+i+1,t+i};
(g) if l > 0, then −

∑l
n=0

∑
j∈Jn xt+n,j + am /∈ Cm−1

t+l ;
(h) −

∑
j∈J0 xt,j + am /∈⋃

{xt,j +At,j : j ∈ {1, 2, . . . , km−1
t } and xt,j ∈ Xt,t};

(j) for each i ∈ {0, 1, . . . , l}, Ji ⊆ {1, 2, . . . , km−1
t+i }; and

(ix) If em = (x, r), then there exist �nite K0 with K0 = ∅ if r = 0
or m = 0 and K0 ⊆ {1, 2, . . . , km−1

r } if r ≥ 1 and m ≥ 1 and
�nite nonemptyK1 ⊆ {1, 2, . . . , kmr+1} such that x =

∑
j∈K0

xr,j+∑
j∈K1

xr+1,j ,
(a) K0 = ∅ if and only if x+ pr+1 /∈⋃

{xr,j +Ar,j : j ∈ {1, 2, . . . , kmr } and xr,j ∈ Xr,r};
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(b) for each k ∈ K0, if any, xr,k ∈ Xr,r and −
∑
K03j<k xr,j +

x+ pr+1 ∈ xr,k +Ar,k;
(c) −

∑
j∈K0

xr,j + x+ pr+1 /∈⋃
{xr,j +Ar,j : j ∈ {1, 2, . . . , km−1

r } and xr,j ∈ Xr,r};
(d) for each k ∈ K1, −(

∑
j∈K0

xr,j +
∑
K13j<k xr+1,j) + x +

pr+1 ∈ xr+1,k +Ar+1,k;
(e) if s = minK1, then xr+1,s ∈ Xr+1,r, and if K0 6= ∅ and

v = maxK0, then xr+1,s +Ar+1,s ⊆ Ar,v; and
(f) if p ∈ K1 \ {minK1}, then xr+1,p ∈ Xr+1,r+1.

(x) For each m ∈ ω there is at most one n ∈ N such that km+1
n > kmn

and if km+1
n > kmn , then k

m+1
n = kmn + 1.

(Of course, if kmn = 0, then the sequences 〈An,j〉
kmn
j=1 and 〈xn,j〉

kmn
j=1 are

empty.)
First let m = 0. We may assume that a0 ∈ A0 and that e0 = (x0, 0)

for some x0 ∈ X1,0. We have that x0 + p1 6= p0 since if x0 + p1 = p0, then
Z + p1 = Z + p0 and thus βZ + p1 = βZ + p0. Pick D ∈ p0 \ (x0 + p1).
Pick B ∈ p1 such that B ⊆ A1, a0 /∈ x0 +B, and x0 +B ⊆ A0 \D. (One
may make the latter two choices since x0 + p1 ∈ Z∗ and so a0 6= x0 + p1

and x0 + p1 ∈ A0 \D and addition on the left by x0 is continuous.) Let
A1,1 = B, x1,1 = x0,

for n ∈ ω, let k0
n =

{
1 if n = 1
0 otherwise and Z0

n =

{
{a0} if n = 0
∅ otherwise.

Hypotheses (i) � (v) and (x) can be routinely checked, (iv) being vacu-
ous. For hypothesis (vi) note that Z0

n = ∅ unless n = 0 and C0
n = ∅ unless

n = 0. If n = 0, then C0
n = x0 +B and Z0

n = {a0}. Further, C0
0 ∩D = ∅,

so C0
0 /∈ p0.

Hypotheses (vii) and (viii) are vacuous.
For hypothesis (ix) let K0 = ∅ and K1 = {1}. All statements can be

routinely checked, (b) and (f) vacuosly.

Now letm ∈ ω and assume that the construction has proceeded through
m. Pick t ∈ ω such that am+1 ∈ At. We shall construct l, J0, J1, . . . , Jl
as required by hypothesis (viii) for m+ 1.

Note for later reference that by hypotheses (i), (iv), and (v), for each
n ∈ ω, Cmn ⊆ An. We will regularly use the following fact:

(�)
If t, n ∈ ω , i, j ∈ {1, 2, . . . , kmn } , and
(xt,j +At,j) ∩At,i 6= ∅ , then i < j .

To verify (�), assume that t, n ∈ ω, i, j ∈ {1, 2, . . . , kmn }, and (xt,j+At,j)∩
At,i 6= ∅. By hypothesis (ii), (xt,j + At,j) ∩ At,j = ∅ so we cannot have
At,i ⊆ At,j so by hypothesis (i), we must have i < j.
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If am+1 /∈ Cmt let l = 0, let J0 = ∅, and for n ∈ N, let

Zm+1
n =

{
Zmt ∪ {am+1} if n = t

Zmn otherwise.

Then hypothesis (viii) holds with z = am+1. (Even though x0,j is not
de�ned for any j, we take

∑
j∈∅ x0,j to be 0.) Statements (a), (b), (h),

and (j) of hypothesis (viii) hold directly and (c), (d), (e), (f), and (g) are
vacuous.

If am+1 ∈
⋃
{xt+1,j +At+1,j : j ∈ {1, 2, . . . , kmt+1} and xt+1,j ∈ Xt+1,t},

let J0 = ∅.
Now assume that am+1 ∈ Γ =

⋃
{xt,j + At,j : j ∈ {1, 2, . . . , kmt } and

xt,j ∈ Xt,t}. We show that there exist u and j1, j2, . . . , ju ∈ {1, 2, . . . , kmt }
such that

(1) if p ∈ {1, 2, . . . , u}, −
∑p
s=1 xt,js + am+1 ∈ At,jp and

(2) −
∑u
s=1 xt,js + am+1 /∈ Γ.

By hypothesis (ii), there is a unique j1 ∈ {1, 2, . . . , kmt } such that am+1 ∈
xt,j1 +At,j1 . If −xt,j1 + a /∈ Γ, let u = 1.

Assume now that −xt,j1 +am+1 ∈ Γ in which case there is a unique j2 ∈
{1, 2, . . . , kmt } such that xr,j2 ∈ Xr,r and −xt,j1 + am+1 ∈ xt,j2 +At,j2 , so
that p = 2 satis�es (1). Let p > 1 and assume we have chosen j1, j2, . . . , jp
satisfying (1). Since −

∑p−1
s=1 xt,js + am+1 ∈ (xt,jp + At,jp) ∩ At,jp−1

, by
(�), jp > jp−1.

If −
∑p
s=1 xt,js+am+1 /∈ Γ, let u = p. Otherwise, let jp+1 be the unique

member of {1, 2, . . . , kmt } such that xr,jp+1
∈ Xr,r and −

∑p
s=1 xt,js +

am+1 ∈ xt,jp+1
+ At,jp+1

. Since j1 < j2 < . . . < jp ≤ kmt , this process
must terminate and we have u and j1, j2, . . . , ju ∈ {1, 2, . . . , kmt } satisfying
(1) and (2). Let J0 = {j1, j2, . . . , ju} and note that J0 satis�es statements
(c) and (j) of hypothesis (viii) and that −

∑
j∈J0 xt,j + am+1 ∈ At.

If −
∑
j∈J0 xt,j+am+1 /∈ Cmt let l = 0, let z = −

∑
j∈J0 xt,j+am+1, and

let Zm+1
n =

{
Zmt ∪ {z} if n = t

Zmn otherwise. Statements (a), (b), (c), (h), and

(j) of hypothesis (viii) hold directly and (d), (e), (f) and (g) are vacuous.

Now assume that −
∑
j∈J0 xt,j +am+1 ∈ Cmt . Notice that this holds in

particular if am+1 ∈
⋃
{xt+1,j + At+1,j : j ∈ {1, 2, . . . , kmt+1} and xt+1,j ∈

Xt+1,t}, in which case we have let J0 = ∅. Then −
∑
j∈J0 xt,j + am+1 ∈

xt+1,k + At+1,k for some k ∈ {1, 2, . . . , kmt+1} such that xt+1,k ∈ Xt+1,t.
Then −(

∑
j∈J0 xt,j + xt+1,k) + am+1 ∈ At+1,k.

Assume now that we have s ∈ N and for i ∈ {1, 2, . . . , s − 1}, if any,
we have Ji ⊆ {1, 2, . . . , kmt+i} such that −

∑s−1
n=0

∑
j∈Jn xt+n,j + am+1 ∈
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At+s−1,v where v = max Js−1 and have j(s, 1) < j(s, 2) < . . . < j(s, k)

such that −(
∑s−1
n=0

∑
j∈Jn xt+n,j +

∑k
p=1 xt+s,j(s,p)) + am+1 ∈ At+s,j(s,k).

If −(
∑s−1
n=0

∑
j∈Jn xt+n,j +

∑k
p=1 xt+s,j(s,p)) + am+1 ∈⋃

{xt+s,j + At+s,j : j ∈ {1, 2, . . . , kmt+s} and xt+s,j ∈ Xt+s,t+s}, then
pick j(s, k + 1) ∈ {1, 2, . . . , kmt+s} such that xt+s,j(s,k+1) ∈ Xt+s,t+s and
−(
∑s−1
n=0

∑
j∈Jn xt+n,j +

∑k
p=1 xt+s,j(s,p)) + am+1 ∈

xt+s,j(s,k+1) +At+s,j(s,k+1). Note that
−(
∑s−1
n=0

∑
j∈Jn xt+n,j +

∑k+1
p=1 xt+s,j(s,p)) + am+1 ∈ At+s,j(s,k+1).

Since −(
∑s−1
n=0

∑
j∈Jn xt+n,j +

∑k
p=1 xt+s,j(s,p)) + am+1 ∈

(xt+s,j(s,k+1) + At+s,j(s,k+1)) ∩ At+s,j(s,k), by (�), j(s, k + 1) > j(s, k).
Since j(s, 1) < j(s, 2) < . . . < j(s, k + 1) ≤ kmt+s we eventually arrive
at j(s, u) ≤ kmt+s such that −(

∑s−1
n=0

∑
j∈Jn xt+n,j +

∑u
p=1 xt+s,j(s,p)) +

am+1 ∈ At+s,j(s,u) \⋃
{xt+s,j + At+s,j : j ∈ {1, 2, . . . , kmt+s} and xt+s,j ∈ Xt+s,t+s}. Let

Js = {j(s, 1), j(s, 2), . . . , j(s, u)} and note that −
∑s
n=0

∑
j∈Jn xt+n,j +

am+1 ∈ At+s,j(s,u) \
⋃
{xt+s,j + At+s,j : j ∈ {1, 2, . . . , kmt+s} and xt+s,j ∈

Xt+s,t+s}.
If −

∑s
n=0

∑
j∈Jn xt+n,j + am+1 ∈ Cmt+s, then since

−
∑s
n=0

∑
j∈Jn xt+n,j + am+1 /∈⋃

{xt+s,j + At+s,j : j ∈ {1, 2, . . . , kmt+s} and xt+s,j ∈ Xt+s,t+s}, we may
pick j(s+1, 1) ∈ {1, 2, . . . , kmt+s+1} such that xt+s+1,j(s+1,1) ∈ Xt+s+1,t+s

and −
∑s
n=0

∑
j∈Jn xt+n,j + am+1 ∈ xt+s+1,j(s+1,1) + At+s+1,j(s+1,1) so

that −(
∑s
n=0

∑
j∈Jn xt+n,j + xt+s+1,j(s+1,1)) + am+1 ∈ At+s+1,j(s+1,1).

By hypothesis (x) and the de�nition of k0
n for n ∈ N we have that

|
⋃m
y=0

⋃∞
n=0{1, 2, . . . , kyn}| ≤ m + 1 so this construction must halt. So

we have some s ∈ N so that −
∑s
n=0

∑
j∈Jn xt+n,j + am+1 /∈ Cmt+s. We

then let l = s, let z = −
∑l
i=0

∑
j∈Ji xt+i,j + am+1 and, for n ∈ ω, let

Zm+1
n =

{
Zmt+l ∪ {z} if n = t+ l

Zmn otherwise. All of the statements of hypothesis

(viii) can be routinely veri�ed.
Notice that in any event, Zm+1

n ∩ Cmn = ∅.

Now let em+1 = (x, r). We shall construct K0 and K1 as required by
hypothesis (ix) for m+ 1. For the construction of K0, let

Γ =
⋃
{xr,j +Ar,j : j ∈ {1, 2, . . . , kmr } and xr,j ∈ Xr,r} .

We have that x + pr+1 ∈ Ar. If x + pr+1 /∈ Γ, in particular if r = 0,
let K0 = ∅. Notice that in this event, statements (a), (b), and (c) of
hypothesis (ix) are satis�ed.
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Now assume that x + pr+1 ∈ Γ. We show that there exist u and
j1, j2, . . . , ju ∈ {1, 2, . . . , kmr } such that

(1) if p ∈ {1, 2, . . . , u}, −
∑p
s=1 xr,js + x+ pr+1 ∈ Ar,jp and

(2) −
∑u
s=1 xr,js + x+ pr+1 /∈ Γ.

We have that x+ pr+1 ∈ xr,j1 +Ar,j1 for some (necessarily unique) j1 ∈
{1, 2, . . . , kmr } such that xr,j1 ∈ Xr,r. Since xr,j1 +Ar,j1 = xr,j1 + Ar,j1
we have that −xr,j1 +x+pr+1 ∈ Ar,j1 . If −xr,j1 +x+pr+1 /∈ Γ, let u = 1
and note that (1) and (2) are satis�ed.

Assume now that −xr,j1 +x+pr+1 ∈ Γ in which case there is a unique
j2 ∈ {1, 2, . . . , kmr } such that−xr,j1+x+pr+1 ∈ xr,j2 +Ar,j2 , so that p = 2
satis�es (1). Let p > 1 and assume we have chosen j1, j2, . . . , jp satisfying
(1). Since −

∑p
s=1 xr,js + x+ pr+1 ∈ Ar,jp , we have that −

∑p−1
s=1 xr,js +

x+ pr+1 ∈ xr,jp +Ar,jp ∩Ar,jp−1 so by (�), jp > jp−1.
If −

∑p
s=1 xr,js + x + pr+1 /∈ Γ, let u = p. Otherwise, let jp+1 be

the unique member of {1, 2, . . . , kmr } such that −
∑p
s=1 xt,js + x+ pr+1 ∈

xr,jp+1
+Ar,jp+1

. Since j1 < j2 < . . . < jp ≤ kmr , this process must
terminate and we have u and j1, j2, . . . , ju ∈ {1, 2, . . . , kmr } satisfying (1)
and (2). Let K0 = {j1, j2, . . . ju}.

Statements (a), (b), and (c) of hypothesis (ix) hold.

To complete the construction, we consider two cases for the construc-
tion of K1 for hypothesis (ix). If K0 = ∅, let v = 0. If K0 6= ∅, let
v = maxK0.

Case 1: −
∑
j∈K0

xr,j + x+ pr+1 /∈⋃
{xr+1,j +Ar+1,j : j ∈ {1, 2, . . . , kmr+1} and xr+1,j ∈ Xr+1,r} .

Let x′ = −
∑
j∈K0

xr,j + x. We have established that
x′+pr+1 /∈

⋃
{xr,j +Ar,j : j ∈ {1, 2, . . . , kmr } and xr,j ∈ Xr,r} so we have

x′+pr+1 /∈ Cmr . IfK0 = ∅, then x′+pr+1 = x+pr+1 ∈ Ar = Ar,0. IfK0 6=
∅, then by statement (b) of hypothesis (ix), x′ + pr+1 ∈ Ar,v. Therefore,
x′+pr+1 ∈ Ar,v \ Cmr . Since x′+pr+1 6= pr, pickD ∈ pr\(x′+pr+1). Note
that by hypothesis (i), Ar,v ⊆ Ar = Ar,kmr ∪

⋃kmr
j=1(Ar,j−1\Ar,j). Therefore

either Ar,kmr ∈ x′ + pr+1 or there is some j ∈ {1, 2, . . . , kmr } such that
(Ar,j−1 \Ar,j) ∈ x′+pr+1. We have that Zm+1

r+1 is �nite and by hypothesis
(vi), Cmr+1 /∈ pr+1, so (Zm+1

r+1 ∪ Cmr+1) /∈ pr+1. Also D /∈ x′ + pr+1,
Cmr /∈ x′+pr+1, and Zm+1

r+1 is �nite so (D∪Cmr ∪Zm+1
r ) /∈ x′+pr+1. Pick

B ∈ pr+1 such that B ⊆ Ar+1,kmr+1
, B∩(Cmr+1∪Zm+1

r+1 ) = ∅, (x′+B)∩(D∪
Cmr ∪Zm+1

r ) = ∅, x′+B ⊆ Ar,v, and either x′+B ⊆ Ar,kmr or there is some
j ∈ {1, 2, . . . , kmr } such that x′ + B ⊆ Ar,j−1 \ Ar,j . Let Ar+1,km+1

r+1
= B,
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xr+1,km+1
r+1

= x′, and for n ∈ ω, let km+1
n =

{
kmr+1 + 1 if n = r + 1

kmn otherwise,
and let K1 = {km+1

r+1 }.
We verify that all hypotheses hold for m + 1. If n 6= r + 1, then

hypothesis (i) holds by assumption. It holds for n = r+1 by construction.
To verify hypothesis (ii) we need to show that (xr+1,km+1

r+1
+Ar+1,km+1

r+1
)∩

Ar+1,km+1
r+1

= ∅, that is that (x′ + B) ∩ B = ∅, and that for each j ∈
{1, 2, . . . , kmr+1}, (xr+1,j + Ar+1,j) ∩ (x′ + B) = ∅. We have that (x′ +
B) ∩ B = ∅ since x′ + B ⊆ Ar,v ⊆ Ar and B ⊆ Ar+1,kmr+1

⊆ Ar+1. For
the other conclusion, let j ∈ {1, 2, . . . , kmr+1} be given. By hypothesis
(iii), either xr+1,j ∈ Xr+1,r or xr+1,j ∈ Xr+1.r+1. In the former case,
xr+1,j + Ar+1,j ⊆ Cmr and (x′ + B) ∩ Cmr = ∅. In the latter case, by
hypothesis (iv), xr+1,j +Ar+1,j ⊆ Ar+1 while x′ +B ⊆ Ar,v ⊆ Ar.

Hypothesis (iii) holds because x′ + pr+1 ∈ Ar so xr+1,km+1
r+1
∈ Xr+1,r.

Hypothesis (iv) holds because it holds at m and hypothesis (v) holds
directly.

For hypothesis (vi), we have already noted that Zm+1
n ∩Cmn = ∅. Also

Cm+1
n =

{
Cmr ∪ (x′ +B) if n = r

Cmn otherwise.

Since (x′ + B) ∩ Zm+1
r = ∅ we have Zm+1

r ∩ Cm+1
r = ∅. Since Cmr /∈ pr

and (x′ +B) ∩D = ∅, we have Cm+1
r /∈ pr.

The new part of hypothesis (vii) says that Ar+1,km+1
r+1
∩Cmr+1 = ∅, which

is true.
We have already veri�ed hypothesis (viii).
We have noted that statements (a), (b), and (c) of hypothesis (ix) hold.
We have that

−
∑
j∈K0

+x+ pr+1 = x′ + pr+1 ∈ x′ +B = xr+1,km+1
r+1

+Ar+1,km+1
r+1

so statement (d) holds.
We have already noted that xr+1,km+1

r+1
∈ Xr+1,r so, since x′+B ⊆ Ar,v,

statement (e) holds. Statement (f) holds directly.
Hypothesis (x) holds directly.

Case 2: −
∑
j∈K0

xr,j + x + pr+1 ∈ xr+1,k1 +Ar+1,k1 for some k1 ∈
{1, 2, . . . , kmr+1} with xr+1,k1 ∈ Xr+1,r.

We note that, as long as k1 = minK1, then statement (e) of hypothesis
(ix) holds. To see this, let v = maxK0. we have directly that xr+1,k1 ∈
Xr+1,r and that −

∑
j∈K0

xr,j + x+ pr+1 ∈ xr+1,k1 +Ar+1,k1 . By state-
ment (b) of hypothesis (ix), −

∑
j∈K0

xr,j + x + pr+1 ∈ Ar,v. Therefore
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(xr+1,k1 + Ar+1,k1) ∩ Ar,u 6= ∅ so by hypothesis (v), xr+1,k1 + Ar+1,k1 ⊆
Ar,v.

We show that there exist w and k1, k2, . . . , kw in {1, 2, . . . , kmr+1} such
that

(1) if p ∈ {1, 2, . . . , w}, then
−(
∑
j∈K0

xr,j +
∑p
s=1 xr+1,ks) + x+ pr+1 ∈ Ar+1,kp and

(2) −(
∑
j∈K0

xr,j +
∑w
s=1 xr+1,ks) + x+ pr+1 /∈ Cmr+1.

Note that (1) holds for p = 1. Assume we have p and k1, k2, . . . , kp
satisfying (1). If (2) holds for w = p, let w = p. Now assume that

−(
∑
j∈K0

xr,j +
∑p
s=1 xr+1,ks) + x+ pr+1 ∈ Cmr+1 .

Notice that −(
∑
j∈K0

xr,j +
∑p
s=1 xr+1,ks) + x+ pr+1 /∈⋃

{xr+2,j +Ar+2,j : j ∈ {1, 2, . . . , kmr+2} and xr+2,j ∈ Xr+2,r+1}. (If it
were, we would have some u ∈ {1, 2, . . . , kmr+2} such that

−(
∑
j∈K0

xr,j +
∑p
s=1 xr+1,ks + xr+2,u) + x+ pr+1 ∈ Ar+2,u

while for all y ∈ Z, y + pr+1 /∈ Ar+2.) Thus it must be that
−(
∑
j∈K0

xr,j+
∑p
s=1 xr+1,ks)+x+pr+1 ∈ xr+1,kp+1

+Ar+1,kp+1
for some

kp+1 ∈ {1, 2, . . . , kmr+1} with xr+1,kp+1
∈ Xr+1,r+1.

Since (xr+1,kp+1
+Ar+1,kp+1

)∩Ar+1,kp 6= ∅ we have by (�) that kp+1 >
kp. Let K ′1 = {k1, k2, . . . , kw}.

If x =
∑
j∈K0

xr,j +
∑
j∈K′1

xr+1,j , let K1 = K ′1 and for each n ∈ N,
let km+1

n = kmn .
Hypotheses (i) � (v) and (vii) hold because they held atm. Given n ∈ N

we have noted that Zm+1
n ∩ Cmn = ∅ and we have that Cm+1

n = Cmn so
hypothesis (vi) holds. We have veri�ed hypothesis (viii). We have noted
that statements (a), (b), and (c) of hypothesis (ix) hold, and statement
(d) follows from (1). Since k1 = minK1 we have shown that statement
(e) holds. Statement (f) holds directly as does hypothesis (x).

Finally, assume that x′ = x − (
∑
j∈K0

xr,j +
∑
j∈K′1

xr+1,j) 6= 0. We

have x′+pr+1 ∈ Ar+1 \ Cmr+1. Since x
′ 6= 0, x′+pr+1 6= pr+1 so pick D ∈

pr+1\(x′+pr+1). Note that Ar+1 = Ar+1,kmr+1
∪
⋃kmr+1

j=1 (Ar+1,j−1\Ar+1,j).
Pick B ∈ pr+1 such that B ⊆ Ar+1,kmr+1

∩ D, B ∩ Cmr+1 = ∅, x′ + B ⊆
Ar+1 \ (D ∪ Cmr+1 ∪ Zm+1

r+1 ), and either (x′ + B) ⊆ Ar+1,kmr+1
or there is

some j ∈ {1, 2, . . . , kmr+1} such that (x′ + B) ⊆ (Ar+1,j−1 \ Ar+1,j). Let

km+1
n =

{
kmr+1 + 1 if n = r + 1

kmn otherwise, , let Ar+1,km+1
r+1

= B, let xr+1,km+1
r+1

=

x′, and let K1 = K ′1 ∪ {km+1
r+1 }.
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Hypothesis (i) holds directly. The newly introduced set of the form
xn,j + An,j is x′ + B. Since B ⊆ D and (x′ + B) ∩D = ∅ we have that
(x′ + B) ∩ Ar+1,km+1

r+1
= ∅. If j ∈ {1, 2, . . . , kmr+1} and xr+1,j ∈ Xr+1,r+1,

then xr+1,j +Ar+1,j ⊆ Cmr+1 so, since (x′ +B) ∩ Cmr+1 = ∅, we have that
(xr+1,j+Ar+1,j)∩(x′+B) = ∅. If j ∈ {1, 2, . . . , kmr+1} and xr+1,j ∈ Xr+1,r,
then by hypothesis (v), xr+1,j +Ar+1,j ⊆ Ar so, since x′+B ⊆ Ar+1, we
have that (xr+1,j +Ar+1,j) ∩ (x′ +B) = ∅. Thus hypothesis (ii) holds.

Since x′+pr+1 ∈ Ar+1, xr+1,km+1
r+1
∈ Xr+1,r+1 so hypothesis (iii) holds.

Hypothesis (iv) holds directly and hypothesis (v) holds because it holds
at m.

For hypothesis (vi), we have already noted that Zm+1
n ∩Cmn = ∅. Also

Cm+1
n =

{
Cmr+1 ∪ (x′ +B) if n = r + 1

Cmn otherwise.

Since (x′+B)∩Zm+1
r+1 = ∅ we have Zm+1

r+1 ∩C
m+1
r+1 = ∅. Since Cmr+1 /∈ pr+1

and (x′ +B) ∩D = ∅, we have Cm+1
r+1 /∈ pr+1.

The new part of hypothesis (vii) says that Ar+1,km+1
r+1
∩Cmr+1 = ∅, which

is true.
We have already noted that hypothesis (viii) holds.
We have noted that statements (a), (b), and (c) of hypothesis (ix)

hold, and since k1 = minK1, statement (e) holds. We have veri�ed
that statement (d) holds for k ∈ K ′1. The assertion for k = km+1

r+1 is that
−(
∑
j∈K0

xr,j+
∑
j∈K′1

xr+1,j)+x+pr+1 = x′+pr+1 ∈ x′ +B. Statement
(f) holds directly as does hypothesis (x).

This completes the inductive construction.

We now show that for each n ∈ N, lim
m→∞

kmn =∞. At the same time, we

show that for each n ∈ N, {j ∈ N : xn,j ∈ Xn,n−1} is in�nite. We proceed
by induction on n. So let n = 1 and let m0 be given. We will show that
there exists m such that km1 > km0

1 . If 1 ≤ j ≤ km0
1 , then x1,j +A1,j /∈ p0.

(If x1,j ∈ X1,1, then by hypothesis (iv) x1,j + A1,j ⊆ A1. If x1,j ∈ X1,0,
then x1,j + A1,j ⊆ Cm0

0 and by hypothesis (vi), Cm0
0 /∈ p0.) Since p0 ∈

c`({x+ p1 : x ∈ X1,0} pick x ∈ X1,0 such that x+ p1 /∈
⋃km0

1
j=1 x1,j +A1,j .

Pick m such that em = (x, 0). Pick K0 = ∅ and K1 ⊆ {1, 2, . . . , km1 } as
guaranteed by hypothesis (ix). Let t = minK1. Then by statement (d)
of hypothesis (ix), x + p1 ∈ x1,t +A1,t so t > km0

1 . By statement (e) of
hypothesis (ix), xn,t ∈ Xn,n−1.

Now assume n ≥ 2 and lim
m→∞

kmn−1 = ∞. Let m0 be given. We claim

that we can pick s such that for 1 ≤ j ≤ km0
n , An−1,s ∩ (xn,j +An,j) = ∅.

Indeed, if xn,j ∈ Xn,n, then by hypothesis (iv), xn,j+An,j ⊆ An. If xn,j ∈
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Xn,n−1, then xn,j + An,j ⊆ Cm0
n−1 and by hypothsis (vii), A

n−1,k
m0+1
n−1

∩
Cm0
n−1 = ∅. So, letting s = km0+1

n−1 we get that An−1,s ∩ (xn,j + An,j) = ∅
for 1 ≤ j ≤ km0

n . Now pn−1 ∈ (βZ + pn) = c`(Z + pn) so pick x ∈ Z
such that x+ pn ∈ An−1,s and notice that x ∈ Xn,n−1. Pick m such that
(x, n− 1) = em.

Pick K0 and K1 as guaranteed by hypothesis (ix) for x and let t =
minK1. IfK0 = ∅, then by statement (e) of hypothesis (ix), xn,t ∈ Xn,n−1

and by statement (b), x+ pn ∈ xn,t +An,t so t > km0
n .

Now assume that K0 6= ∅. Let i = minK0 and let v = maxK0. Then
x + pn ∈ xn−1,i +An−1,i ∩ An−1,s so by (�), i > s. Then by statement
(e) of hypothesis (ix), xn,t +An,t ⊆ An−1,v and An−1,v ⊆ An−1,s because
v ≥ i > s. Therefore t > km0

n . We have completed the proof that
lim
m→∞

kmn =∞.

For r ∈ ω, let Cr =
⋃∞
m=0 C

m
r . By hypotheses (iv) and (v), Cr ⊆ Ar.

Given (x, r) ∈ E, we call the sum x =
∑
j∈K0

xr,j +
∑
j∈K1

xr+1,j

guaranteed by hypothesis (ix) the Xr-decomposition of x. We claim that
each x ∈ Xr+1,r has a unique Xr-decomposition. So let x ∈ Xr+1,r and
pickm ∈ ω such that em = (x, r). Suppose we have (K0,K1) and (K ′0,K

′
1)

as in the statement of hypothesis (ix). We show �rst that K0 = K ′0. If
r = 0 or m = 0, this is immediate so assume r ∈ N and m ∈ N, suppose
K0 6= K ′0, and let k = min(K0 4K ′0). Assume without loss of generality
that k ∈ K0. Then k ∈ {1, 2, . . . , km−1

r }. Let L = {j ∈ K0 : j < k} =
{j ∈ K ′0 : j < k}. By statement (b)

(*1) −
∑
j∈L xr,j + x+ pr+1 ∈ xr,k +Ar,k and xr,k ∈ Xr,r.

Assume �rst that K ′0 6= L and let k′ = min(K ′0\L). Then by statement
(b), −

∑
j∈L xr,j + x + pr+1 ∈ xr,k′ +Ar,k′ . This contradicts (*1) by

hypothesis (ii) at m− 1.
Now assume that K ′0 = L. By statement (c), −

∑
j∈L xr,j +x+pr+1 /∈

{xr,j +Ar,j : j ∈ {1, 2, . . . , km−1
r } and xr,j ∈ Xr,r}. This contradicts

(*1). Thus we have established that K0 = K ′0.
Suppose K1 6= K ′1, and let k = min(K1 4K ′1). Assume without loss

of generality that k ∈ K1. Then k ∈ {1, 2, . . . , kmr+1}. Let
L = {j ∈ K1 : j < k} = {j ∈ K ′1 : j < k}. By statement (d)

(*2) −(
∑
j∈K0

xr,j +
∑
j∈L xr+1,j) + x+ pr+1 ∈ xr+1,k +Ar+1,k.

Assume �rst that K ′1 6= L and let k′ = min(K ′1\L). Then by statement
(d), −(

∑
j∈K0

xr,j +
∑
j∈L xr+1,j) + x + pr+1 ∈ xr+1,k′ +Ar+1,k′ . This

contradicts (*2).
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Now assume that K ′1 = L. Then x =
∑
j∈K0

xr,j +
∑
j∈L xr+1,j so by

(*2), pr+1 = −x + x + pr+1 ∈ xr+1,k +Ar+1,k. But by hypothesis (ii),
(xr+1,k + Ar+1,k) ∩ Ar+1,k = ∅ and by hypothesis (i), Ar+1,k ∈ pr+1 so
(xr+1,k + Ar+1,k) /∈ pr+1. This completes the proof of the uniqueness of
the Xr-decomposition.

We call the sum a = z +
∑l
i=0

∑
j∈Ji xt+i,j guaranteed by hypothesis

(viii) the A-decomposition of a.
We show now that the A-dcomposition is unique in the following strong

sense. Given t ∈ N and a ∈ At, pick m ∈ ω such that a = am.
We had a0 ∈ A0 so m > 0. Assume we have l, J0, J1, . . . , Jl, and z
satisfying hypothesis (viii). Suppose also that we have l′ ∈ ω, �nite
subsets J ′0, J

′
1, . . . , J

′
l′ of N, and z′ such that J ′i 6= ∅ if i > 0, am =

z′ +
∑l′

i=0

∑
j∈J′i

xt+i,j and

(a') J ′0 = ∅ if and only if
am /∈

⋃
{xt,j +At,j : j ∈ N and xt,j ∈ Xt,t};

(b') l′ = 0 if and only if −
∑
j∈J′0

xt,j + am /∈
⋃
{xt+1,j + At+1,j :

j ∈ N and xt+1,j ∈ Xt+1,t};
(c') for each k ∈ J ′0, if any, xt,k ∈ Xt,t and −

∑
J′03j<k

xt,j + am ∈
xt,k +At,k;

(d') for each i ∈ {1, 2, . . . , l′}, if any, and each k ∈ J ′i ,
−
(∑

J′i3j<k
xt+i,j +

∑i−1
n=0

∑
j∈J′n

xt+n,j

)
+ am ∈

xt+i,k +At+i,k;
(e') for i ∈ {1, 2, . . . , l′}, if any, if j = min J ′i , then xt+i,j ∈ Xt+i,t+i−1

and if j ∈ J ′i \ {min J ′i}, then xt+i,j ∈ Xt+i,t+i;
(f') for i ∈ {1, 2, . . . , l′ − 1}, if any, −

∑i
n=0

∑
j∈J′n

xt+n,j + am ∈⋃
{xt+i+1,j +At+i+1,j : j ∈ N and xt+i+1,j ∈ Xt+i+1,t+i};

(g') if l′ > 0, then −
∑l
n=0

∑
j∈J′n

xt+n,j + am /∈ Ct+l; and
(h') −

∑
j∈J′0

xt,j + am /∈⋃
{xt,j +At,j : j ∈ N and xt,j ∈ Xt,t}.

We shall show that l = l′, z = z′, and for each s ∈ {0, 1, . . . , l}, Js = J ′s.
In the proof we will frequently encounter a situation where we have

some j0 > km−1
n and xn,j0 and An,j0 were constructed at a stage after m.

In that situation, by the fact that lim
m→∞

kmn = ∞ and hypothesis (x) we

have some m′ ≥ m − 1 such that j0 = km
′+1

n = km
′

n + 1. Then one had
em′+1 = (x, n− 1) for some x ∈ Xn,n−1 and either

(�1) xn,j0 ∈ Xn,n−1 and (xn,j0 +An,j0) ∩ Zm
′+1

n−1 = ∅
or
(�2) xn,j0 ∈ Xn,n and (xn,j0 +An,j0) ∩ Zm′+1

n = ∅.
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(Condition (�1) happened under Case 1 for the construction of K1 and
(�2) happened under Case 2 for the construction of K1.)

In this proof all references to statement (a), (b), and so on refer to the
statements of hypothesis (viii). We show �rst that J0 = ∅ if and only if
J ′0 +∅. By statements (a) and (a') it is immediate that if J0 6= ∅ then J ′0 6=
∅. So suppose that J0 = ∅ and J ′0 6= ∅. Then we have am ∈ xt,j0 + At,j0
for some j0 > km−1

t such that xt,j0 ∈ Xt,t. Then we have m′ ≥ m−1 such
that j0 = km

′+1
t = km

′

t + 1 and em′+1 = (x, t − 1) for some x ∈ Xt,t−1.
Since xt,j0 ∈ Xt,t, we have by (�2) that (xt,j0 + At,j0) ∩ Zm

′+1
t = ∅. But

since J0 = ∅, z = am ∈ Zmt ⊆ Zm
′+1

t so (xt,j0 + At,j0) ∩ Zm
′+1

t 6= ∅, a
contradiction.

Thus we have that J0 = ∅ if and only if J ′0 = ∅. To see that J0 = J ′0,
suppose instead that we have j0 = min(J0 4 J ′0). Let L = {j ∈ J0 :
j < j0} = {j ∈ J ′0 : j < j0}. Assume �rst that j0 ∈ J0. Then by
statement (c), −

∑
j∈L xt,j + am ∈ xt,j0 + At,j0 . If J ′0 6= L, let k =

min J ′0 \ L. Then by statement (c'), −
∑
j∈L xt,j + am ∈ xt,k + At,k,

contradicting hypothesis (ii). So we have J ′0 = L and by statment (h'),
−
∑
j∈L xt,j + am /∈ xt,j0 +At,j0 , a contradiction.

Thus we must have j0 ∈ J ′0 so by statement (c'), xt,j0 ∈ Xt,t and
−
∑
j∈L xt,j + am ∈ xt,j0 + At,j0 . If J0 6= L, let k = min J0 \ L. Then by

statement (c), −
∑
j∈L xt,j + am ∈ xt,k + At,k, contradicting hypothesis

(ii). So we have J0 = L and by statment (h), −
∑
j∈L xt,j+am /∈

⋃
{xt,j+

At,j : j ∈ {1, 2, . . . , km−1
t } and xt,j ∈ Xt,t}. So we must have that j0 >

km−1
t and we have m′ ≥ m − 1 such that j0 = km

′+1
t = km

′

t + 1 and
em′+1 = (x, t−1) for some x ∈ Xt,t−1. Since xt,j0 ∈ Xt,t, we have by (�2)
that (xt,j0 + At,j0) ∩ Zm

′+1
t = ∅. If l = 0, we have −

∑
j∈L xt,j + am =

z ∈ Zmt ⊆ Zm
′+1

t , a contradiction. So l > 0. Let k = min J1. Then by
statement (d), we have −

∑
j∈L xt,j +am ∈ xt+1,k +At+1,k, contradicting

hypothesis (ii). So we have shown that J0 = J ′0.
Now we show that l = 0 if and only if l′ = 0. By statements (b) and

(b'), it is immediate that if l > 0, then l′ > 0. So suppose that l = 0
and l′ > 0. By statements (b) and (b') we have −

∑
j∈J′0

xt,j + am ∈
xt+1,j0 + At+1,j0 and xt+1,j0 ∈ Xt+1,t for some j0 > km−1

t+1 . So we have
some m′ ≥ m− 1 such that j0 = km

′+1
t+1 = km

′

t+1 + 1 and em′+1 = (x, t) for
some x ∈ Xt+1,t. Since xt+1,j0 ∈ Xt+1,t, we have by (�1) that (xt+1,j0 +

At+1,j0)∩Zm
′+1

t = ∅. Since l = 0, we have that z = −
∑
j∈J0 xt,j + am ∈

Zmt ⊆ Zm
′+1

t , a contradiction. We have established that l = 0 if and only
if l′ = 0. If l = 0, then z = −

∑
j∈J0 xt,j + am = z′ and we are done.
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Assume that min{l, l′} > 0. Let 0 < s ≤ min{l, l′} and assume that for
i ∈ {0, 1, . . . , s−1}, Ji = J ′i . Suppose that Js 6= J ′s, let j0 = min(Js4J ′s),
and let L = {j ∈ J0 : j < j0} = {j ∈ J ′0 : j < j0}. By statement (d) or
(d'),

−(
∑
j∈L xt+s,j +

∑s−1
i=0

∑
j∈Ji xt+i,j) + am ∈ xt+s,j0 +At+s,j0 .

Assume �rst that j0 ∈ Js. If J ′s 6= L, let k = min J ′s. By statement (d'),
−(
∑
j∈L xt+s,j+

∑s−1
i=0

∑
j∈Ji xt+i,j)+am ∈ xt+s,k+At+s,k, contradicting

hypothesis (ii). So we have J ′s = L. If s < l′, then by statement (f'),
−(
∑
j∈L xt+s,j +

∑s−1
i=0

∑
j∈Ji xt+i,j) +am ∈ xt+s+1,j +At+s+1,j for some

j, again contradicting hypothesis (ii). So we must have s = l′. Then
L 6= ∅ so by statement (e'), xt+s,j0 ∈ Xt+s,t+s so that by statement (g'),
−(
∑
j∈L xt+s,j+

∑s−1
i=0

∑
j∈Ji xt+i,j)+am /∈ Ct+l′ . But xt+s,j0 +At+s,j0 ∈

Ct+s = Ct+l′ , a contradiction.
So we must have j0 ∈ J ′s. If Js 6= L, let k = min Js. By statement (d),

−(
∑
j∈L xt+s,j+

∑s−1
i=0

∑
j∈Ji xt+i,j)+am ∈ xt+s,k+At+s,k, contradicting

hypothesis (ii). So we have Js = L. If s < l, then by statement (f),
−(
∑
j∈L xt+s,j +

∑s−1
i=0

∑
j∈Ji xt+i,j) +am ∈ xt+s+1,j +At+s+1,j for some

j, again contradicting hypothesis (ii). So we must have s = l. Then
L 6= ∅ so by statement (e), xt+s,j0 ∈ Xt+s,t+s so that by statement
(g), −(

∑
j∈L xt+s,j +

∑s−1
i=0

∑
j∈Ji xt+i,j) + am /∈ Cm−1

t+l . Since xt+s,j0 +

At+s,j0 ∈ Ct+s, we must have that j0 > km−1
t+s . So we have some m′ ≥

m−1 such that j0 = km
′+1

t+s = km
′

t+s+1 and em′+1 = (x, t+s−1) for some
x ∈ Xt+1,t. Since xt+s,j0 ∈ Xt+s,t+s we have (xt+s,j0 +At+s,j0)∩Zm

′+1
t+s =

∅. But xt+s,j0 + At+s,j0 = am −
∑l
i=0

∑
j∈Ji xt+i,j = z ∈ Zmt+l ⊆ Zm

′+1
t+l ,

a contradiction.
So we have established that for all s ≤ min{l, l′}, Js = J ′s. It remains

only to show that l = l′ since then z = z′ follows. Suppose �rst that
l′ < l. Then by statement (g'), −

∑l′

i=0

∑
j∈Ji xt+i,j + am /∈ Ct+l′ while

by statement (f), −
∑l′

i=0

∑
j∈Ji xt+i,j + am ∈ xt+l′+1,j0 + At+l′+1,j0 for

some j and xt+l′+1,j0 +At+l′+1,j0 ⊆ Ct+l′ , a contradiction.
Finally, suppose that l < l′. By statement (g), −

∑l
i=0

∑
j∈Ji xt+i,j +

am /∈ Cm−1
t+l while by statement (f'),

−
∑l
i=0

∑
j∈Ji xt+i,j + am ∈ xt+l+1,j0 +At+l+1,j0

for some j0 such that xt+l+1,j0 ∈ Xt+l+1,t+l. Then we must have that
j0 > km−1

t+l+1. So we have some m′ ≥ m − 1 such that j0 = km
′+1

t+l+1 =

km
′

t+l+1 + 1 and em′+1 = (x, t+ l) for some x ∈ Xt+l+1,t+l.
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Then by (�1), (xt+l+1,j0 +At+l+1,j0) ∩ Zm
′+1

t+l = ∅ while
am −

∑l
i=0

∑
j∈Ji xt+i,j = z ∈ Zmt+l ⊆ Z

m′+1
t+l , a contradiction.

This completes the proof that the A-decomposition of a satis�es the
strong uniqueness property.

For x ∈ Xn+1,n, if x =
∑
j∈K0

xn,j +
∑
j∈K1

xn+1,j is its
Xn-decomposition, let θn(x) = minK1 and let φn(x) = maxK1. Then we
may choose Fn(x) ∈ pn+1 such that Fn(x) ⊆ An+1,φn(x), for each k ∈ K0,
if any, −

∑
K03j<k xn,j + x+ Fn(x) ⊆ xn,k + An,k, and for each k ∈ K1,

−(
∑
j∈K0

xn,j +
∑
K13j<k xn+1,j) + x+ Fn(x) ⊆ xn+1,k +An+1,k.

Next we claim that for n ∈ ω and j ∈ N, if xn+1,j ∈ Xn+1,n+1, then
xn+1,j + An+1,j ⊆ An+1,k−1 \ An+1,k for some k ∈ N. So let n ∈ ω and
j ∈ N be given and assume that xn+1,j ∈ Xn+1,n+1. Since lim

m→∞
k∞n+1 =

∞, by hypothesis (x) we may pick the largest m such that kmn+1 = j,
so that km+1

n = kmn + 1. By hypothesis (iv) either xn+1,j + An+1,j ⊆
An+1,k−1 \ An+1,k for some k ∈ {1, 2, . . . , kmn+1} or xn+1,j + An+1,j ⊆
An+1,kmn+1

. In the �rst case, we are done, so assume the latter. We have
that xn+1,j +An+1,j ⊆ Cmn+1. By hypothesis (vii), An+1,km+1

n+1
∩Cmn+1 = ∅.

Since km+1
n+1 = kmn+1 + 1, we then have that xn+1,j +An+1,j ⊆ An+1,kmn+1

\
An+1,kmn+1+1.

Now we show that for n, j ∈ N, if xn+1,j ∈ Xn+1,n, then xn+1,j +
An+1,j ⊆ An,k−1 \ An,k for some k ∈ N. So assume xn+1,j ∈ Xn+1,n.
Pick m such that kmn+1 ≥ j and km+1

n = kmn + 1. By hypothesis (v)
either xn+1,j + An+1,j ⊆ An,k−1 \ An,k for some k ∈ {1, 2, . . . , kmn } or
xn+1,j + An+1,j ⊆ An,kmn . In the �rst case we are done, so assume the
latter. We have that xn+1,j+An+1,j ⊆ Cmn . By hypothesis (vii), An,km+1

n
∩

Cmn = ∅. Since km+1
n = kmn + 1, we then have that xn+1,j + An+1,j ⊆

An,kmn \An,kmn +1.

We now observe that if n ∈ ω, x ∈ Xn+1,n, and a ∈ Fn(x), then
l(a + x) ≥ 1. to see this, let x =

∑
j∈K0

xn,j +
∑
j∈K1

xn+1,j be the
Xn-decomposition of x. Since a ∈ Fn(x) ⊆ An+1,φn(x), a ∈ An+1. Let
a = z +

∑l
i=0

∑
j∈Ji xn+1+i,j be the A-decomposition of a. I claim that

if J0 6= ∅, then φn(x) = maxK1 < min J0. So let k = min J0. Then by
statement (c) of hypothesis (viii), a ∈ xn+1,k + An+1,k so that (xn+1,k +
An+1,k) ∩ An+1,φn(x) 6= ∅ so by (�), φn(x) < k. Thus we have that
x + a = z +

∑
j∈K0

xn,j +
∑
j∈K1∪J0 xn+1,j +

∑l+1
i=2

∑
j∈Ji−1

xn+i,j . Let
l′ = l + 1, J ′0 = K0, J ′1 = K1 ∪ J0, and for i ∈ {2, 3, . . . , l + 1}, if any,
let J ′i = Ji−1. It is then routine to establish that l′ and J ′0, J

′
1, . . . , J

′
l′
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satisfy statements (a') � (h') so that by the strong uniqueness of the A-
decomposition, x+ a = z +

∑l′

i=0

∑
j∈J′i

xn+i,j is the A-decomposition of
x+ a so that l(x+ a) = l′ ≥ 1.

For n ∈ N, let Dn = {a ∈ An : l(a) > 0}. Let n ∈ N. We claim that
Dn ⊆ Cn and Dn ∈ pn. To see that Dn ⊆ Cn, note that if a ∈ An \ Cn,
then the A-decomposition of a is a = a, so that l(a) = 0. To see that
Dn ∈ pn, suppose instead that Z\Dn ∈ pn. Recall that pn ∈ c`{x+pn+1 :

x ∈ Xn+1,n} so pick x ∈ Xn+1,n such that x + pn+1 ∈ Z \Dn. Pick
B ∈ pn+1 such that x+B ⊆ Z \Dn. We have that Fn(x) ∈ pn+1 so pick
a ∈ Fn(x) ∩ B. Then as we saw above, l(a + x) > 0 so a + x ∈ Dn, a
contradiction.

De�ne f : D1 → W as follows. Given a ∈ D1, let the A-decompo-
sition of a be a = z +

∑l
i=0

∑
j∈Ji x1+i,j . Let αs = minJs for each s ∈

{1, 2, . . . , l} and let f(a) = α1α2 · · ·αl. Assume that W has been �nitely
colored, and pick B1 ∈ p1 such that B1 ⊆ D1 and f [B1] is monochromatic.
We shall show that there is an in�nite sequence w1 < w2 < . . . such that
the set {[wj1 , wj2 , . . . , wjk ] : k ∈ N and 1 ≤ j1 < . . . < jk} ⊆ f [B1]. That
will complete the proof of the proposition.

We claim that given any k ∈ N and n ≥ 2, there is some v ∈ N
such that (xn,j + An,j) ∩ An−1,v = ∅ for each j ∈ {1, 2, . . . , k}. For
this, it su�ces to show that for each j ∈ N, there exists v ∈ N such that
(xn,j+An,j)∩An−1,v = ∅, so let j ∈ N. If xn,j ∈ Xn,n, then xn,j+An,j ⊆
An and An ∩ An−1 = ∅. So assume that xn,j ∈ Xn,n−1. Then we have
shown that there is some v such that xn,j +An,j ⊆ An−1,v−1 \An−1,v so
(xn,j +An,j) ∩An−1,v = ∅.

For each j ∈ N, let B1,j = B1. We let i ≥ 2 and assume we have chosen
a sequence 〈Bi−1,j〉∞j=i−1 of members of pi−1 such that Bi−1,j+1 ⊆ Bi−1,j

for each j ≥ i− 1.
We construct a sequence 〈yi,j〉∞j=i−1 in Xi,i−1 and a decreasing se-

quence 〈Bi,j〉∞j=i−1 of members of pi such that yi,j + Bi,j ⊆ Bi−1,j ,
Bi,j ⊆ Fi−1(yi,j), and θi−1(yi,j) < θi−1(yi,j+1) for each j ≥ i− 1.

Since pi−1 ∈ c`{x + pi : x ∈ Xi,i−1} we may pick yi,i−1 ∈ Xi,i−1 such
that yi,i−1 + pi ∈ Bi−1,i−1. Then Fi−1(yi,i−1) ∈ pi so pick Bi,i−1 ∈ pi
such that yi,i−1 +Bi,i−1 ⊆ Bi−1,i−1 and Bi,i−1 ⊆ Fi−1(yi,i−1).

Now assume that 〈yi,j〉kj=i−1 and 〈Bi,j〉kj=i−1 have been chosen. We
have v such that (xi,j+Ai,j)∩Ai−1,v = ∅ for each j ∈ {1, 2, . . . , θi−1(yi,k)}.
Pick yi,k+1 ∈ Xi,i−1 such that yi,k+1 + pi ∈ Bi−1,k+1 ∩Ai−1,v. Then
Fi−1(yi,k+1) ∈ pi so pick Bi,k+1 ∈ pi such that Bi,k+1 ⊆ Bi,k, yi,k+1 +
Bi,k+1 ⊆ (Bi−1,k+1 ∩Ai−1,v), and Bi,k+1 ⊆ Fi−1(yi,k+1).
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We need to show that θi−1(yi,k+1) > θi−1(yi,k). So let

yi,k+1 =
∑
j∈K0

xi−1,j +
∑
j∈Ki−1

xi,j

be the X-decomposition of yi,k+1. Let u = minK1 = θi−1(yi,k+1). If
K0 = ∅, then yi,k+1 + pi ∈ xi,u +Ai,u so (xi,u + Ai,u) ∩ Ai−1,v 6= ∅ so
u > θi−1(yi,k) as required. So assume that K0 6= ∅, let s = minK0,
and let t = maxK0. Then yi,k+1 + pi ∈ xi−1,s +Ai−1,s so (xi−1,s +
Ai−1,s) ∩ Ai−1,v 6= ∅ while (xi−1,s + Ai−1,s) ∩ Ai−1,s = ∅ so s > v.
Now −

∑
K03j<t xi−1,j+yi,k+1 +pi ∈ xi−1,t +Ai−1,t so −

∑
j∈K0

xi−1,j+

yi,k+1 + pi ∈ Ai−1,t and −
∑
j∈K0

xi−1,j + yi,k+1 + pi ∈ xi−1,u +Ai−1,u

so (xi−1,u + Ai−1,u) ∩ Ai−1,t 6= ∅. And t ≥ s > v so Ai−1,t ⊆ Ai−1,v.
Therefore (xi−1,u +Ai−1,u) ∩Ai−1,v 6= ∅ so u > θi−1(yi,k) as required.

We then have that for all n ≥ 2 and j2 ≤ j3 ≤ . . . ≤ jn with each
ji ≥ i− 1, y2,j2 + . . .+ yn,jn +Bn,jn ⊆ B1.

We now claim that if n ≥ 2 and j2 ≤ j3 ≤ . . . ≤ jn with each ji ≥
i− 1, b ∈ Bn,jn , for each i ∈ {2, 3, . . . , n}, the X-decomposition of yi,ji is
yi,ji =

∑
j∈Ii−1

xi−1,j +
∑
j∈Ji xi,j , and the A-decomposition of b is

b = z +
∑
j∈In xn,j +

∑l
i=1

∑
j∈Jn+i

xn+i,j ,

then the A-decomposition of d = y2,j2 + . . .+ yn,jn + b is

d = z +
∑
j∈I1 x1,j +

∑n
i=2

∑
j∈Ji∪Ii xi,j +

∑l
i=1

∑
j∈Jn+i

xn+i,j

and for each i ∈ {2, 3, . . . , n}, either Ii = ∅ or min Ii > max Ji (so that
min(Ji ∪ Ii) = minJi = θi−1(yi,ji).

We show �rst that

yn,jn + b = z +
∑
j∈In−1

xn−1,j +
∑
j∈Jn∪In xn,j +

∑l
i=1

∑
j∈Jn+i

xn+i,j

is the A-decomposition of yn,jn + b. We claim that either In = ∅ or
min In > max Jn so that the equation holds. Suppose instead that k =
min In ≤ max Jn = φn−1(yn,jn). Then b ∈ xn,k + An,k while b ∈ Bn,jn ⊆
Fn−1(yn,jn) ⊆ An,φn−1(yn,jn ) ⊆ An,k and (xn,k +An,k)∩An,k = ∅. To see
that

yn,jn + b = z +
∑
j∈In−1

xn−1,j +
∑
j∈Jn∪In xn,j +

∑l
i=1

∑
j∈Jn+i

xn+i,j

is the A-decomposition of yn,jn + b, we need that for k ∈ In−1, if any,

−
∑
In−13j<k xn−1,j + yn,jn + b ∈ xn−1,k +An−1,k

and for k ∈ Jn, −(
∑
j∈In−1

xn−1,j+
∑
Jn3j<k xn,j)+yn,jn+b ∈ xn,k+An,k.

Both of these statements hold because b ∈ Bn,jn ⊆ Fn−1(yn,jn). For k ∈
In, if any, we need that −(

∑
j∈In−1

xn−1,j+
∑
j∈Jn xn,j+

∑
In3j<k xn,j)+

yn,jn + b ∈ xn,k + An,k, that is, that −
∑
In3j<k xn,j + b ∈ xn,k + An,k,

which holds. Similarly, the remainder of the requirements for yn,jn + b



ALGEBRA IN βS � AN UPDATE 61

follow from the corresponding requrements for b and the fact that yn,jn =∑
j∈In−1

xn−1,j +
∑
j∈Jn xn,j .

Now let 2 < r ≤ n and assume we have shown that theA-decomposition
of d = yr,jr + . . .+ yn,jn + b is

d = z +
∑
j∈Ir−1

xr−1,j +
∑n
i=r

∑
j∈Ji∪Ii xi,j +

∑l
i=1

∑
j∈Jn+i

xn+i,j

and for each i ∈ {r, . . . , n}, either Ii = ∅ or min Ii > max Ji. We have
that yr−1,jr−1

=
∑
j∈Ir−2

xr−2,j+
∑
j∈Jr−1

xr−1,j . Then exactly as before,
we show that either Ir−1 = ∅ or min Ir−1 > max Jr−1 so that the equa-
tion holds. And one shows in the same way as before that the required
conditions to verify that it is the A-decomposition hold.

Having determined the A-decomposition of y2,j2 + . . . + yn,jn + b, we
have that f(y2,j2 + . . .+ yn,jn + b) = θ1(y2,j2) · · · θn−1(yn,jn)αn+1 · · ·αn+l

where αn+s = min Jn+s for s ∈ {1, 2, . . . , l}.
For every n ≥ 2 pick bn ∈ Bn,n, let an = y2,n+y3,n+. . .+yn,n+bn, and

let wn = f(an). For each n ≥ 2, let Jn,n, Jn,n+1, . . . , Jn,ln be the �nite sets
from the A-decomposition of bn and for s ∈ {1, 2, . . . , ln}, let αn,n+s =
min Jn,n+s. Then wn = θ1(y2,n) · · · θn−1(yn,n)αn,n+1 · · ·αn,n+ln . Clearly
w2 < w3 < . . ..

Let 2 ≤ j2 < . . . < jk = n be given and let w = [wj2 , . . . , wjk ] and
a = y2,j2 + . . .+ yk,jk + yk+1,n + . . .+ yn,n + bn. Then

w = θ1(y2,j2) · · ·
θk−1(yk,jk)θk(yk+1,n) · · · θn−1(yn,n)αn,n+1 · · ·αn,n+ln and

f(a) = θ1(y2,j2) · · ·
θk−1(yk,jk)θk(yk+1,n) · · · θn−1(yn,n)αn,n+1 · · ·αn,n+ln ,

so w = f(a) and since a ∈ B1, w ∈ f [B1]. �

Theorem 8.4. There does not exist an increasing sequence of principal
left ideals in (βZ,+).

Proof. Lemma 8.2 and Proposition 8.3. �

In [133, Remark 6], the author notes that if q /∈ N∗ + N∗, for n ∈ ω,
pn = −n + q, and Ln = {pn} ∪ (βN + pn), then 〈Ln〉∞n=0 is a strictly
increasing sequence of principal left ideals of βN. We conclude this section
by noting that the same result holds under the weaker assumption that q
is right cancelable in βN, and as a consequence of Theorem 8.4, any such
sequence in βN must be generated by in�nitely many right cancelable
elements.

Theorem 8.5. Let q be a right cancelable element of βN, for each n ∈ ω,
let pn = −n + q, and let Ln = {pn} ∪ (βN + pn). Then 〈Ln〉∞n=0 is a
strictly increasing sequence of principal left ideals of βN.
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Proof. Let n ∈ ω. Then pn = 1+pn+1 so Ln ⊆ Ln+1. Suppose Ln+1 ⊆ Ln
and pick x ∈ βN such that 1+pn+1 = x+pn. Then 1−n−1+q = x−n+q
so 1 + q = 1 + x+ q so 1 = 1 + x, a contradiction. �

Lemma 8.6. Let p ∈ N∗. Then p is not right cancelable in βN if and
only if βN + p = βZ + p.

Proof. For the necessity, assume that p is not right cancelable in βN.
By [72, Theorem 8.18], pick u ∈ N∗ such that p = u + p. To see that
βZ+ p ⊆ βN+ p, let q ∈ βZ. Then q+ p = q+u+ p and by [72, Exercise
4.3.5], q + u ∈ N∗, so q + p ∈ βN + p.

For the su�ciency assume that βN+p = βZ+p. Then −1+p ∈ βN+p
so pick x ∈ βN such that −1 + p = x+ p. Then 2− 1 + p = 2 + x+ p. If
p were right cancelable, we would have x = −1, a contradiction. �

Corollary 8.7. Let 〈pn〉∞n=0 be a sequence such that 〈Ln〉∞n=0 is strictly
increasing, where Ln = {pn} ∪ (βN + pn). Then {n ∈ ω : pn is not right
cancelable in βN} is �nite.

Proof. Suppose not. Then by passing to a subsequence we may presume
that each pn is not right cancelable in βN so that by Lemma 8.6, Ln =
βZ + pn. This contradicts Theorem 8.4. �

We include an extensive bibliography listing all of the papers that
we are aware of dealing with the algebraic structure of the Stone-�ech
compacti�cation of a discrete semigroup or the combinatorial applications
of that structure that were published since the publication of [72]. Except
for papers cited in this current paper we do not duplicate items in the
bibliography of [72].
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