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ALGEBRA IN THE STONE-CECH
COMPACTIFICATION-AN UPDATE

NEIL HINDMAN AND DONA STRAUSS

AssTracT. The first edition of the book Algebra in the Stone-Cech
compactification was published in 1998 and the second edition in
2012. Since that time there have been many new results published
about the algebraic structure of the Stone-Cech compactification
BS of the discrete semigroup S and the combinatorial applications
of that structure, mostly in the area of Ramsey Theory. We present
here, with proofs so far as possible, what we believe to be some of
the most significant of these new results.

Part 1. Introduction

There has been a substantial amount of research on the algebraic struc-
ture of the Stone-Cech compactification of a discrete semigroup or its
combinatorial applications since the publication of [72]. In this paper we
present a few of what we feel are the most significant and striking of these
results.

We shall assume that the reader is familiar with the basic structure
of BS as presented in [72, Part I]. We will provide detailed proofs of the
results we present. The only result that we use and do not prove is the
density Hales-Jewett Theorem, Theorem 2.1.
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In Part 2 of this paper we present some new Ramsey theoretic appli-
cations.

Early in the applications of the algebraic structure of 5S to Ramsey
Theory came some results about the combined additive and multiplicative
structure of N. Specifically, it was shown in [57] that if N is finitely colored
there exist sequences (z,)52; and (y,)52; in N such that F'S((z,)52,)U
FP({yn)p1) is monochromatic, where F\S({x,)521) = {D ;cp®t : F €
Pr(N)} and FP((ya)2,) = {Tl,epue : F € P(N)} and Py(X) is the
set of finite nonempty subsets of X. Shortly thereafter it was shown that
there is a 2-coloring of N for which there is no sequence (z,)22; with
FS((xn)$2 1) U FP({x,)$ ;) monochromatic.

Since at least 1985 the first author of the current paper has maintained
that it is a fact that if m,r € N and N is r-colored, there exists (z,)"_,
such that FS({x,)™ ;) U FP({x,)™ ;) is monochromatic. Note that he
has not claimed that he could prove that fact. And the only instance that
has been proved is m = r = 2. That remains the situation today, but
dramatic progress has been made recently, beginning with the result [108]
of Joel Moriera that whenever » € N and N is r-colored, there exist a
color class C' and infinitely many y such that {z € N: {x, 2y, z+y} C C}
is infinite — in fact that set is piecewise syndetic. We present that result
in Section 1.

Noticeably missing from the above result is y itself. In Section 2 we
present the result [25] of Matt Bowen and Marcin Sabok that whenever
r € N and Q is r-colored, there exist a color class C' and infinitely many
y such that {z € N: {x,y,zy,z + y} C C} is infinite. That is, the claim
above is valid for m = 2 and all r, provided one replaces the requirement
that x and y come from N by the requirement that they come from Q.

In [117] Alessandro Sisto proved that whenever N\ {1} is 2-colored,
there exist infinitely many monochromatic exponential triples, that is sets
of the form {a,b,b%}. In [114] Julian Sahasrabudhe extended this result
to any finite coloring of N\ {1}. In Section 3 we present the very simple
proof [44] of Sahasrabudhe’s result by Mauro Di Nasso and Mariaclara
Ragosta as well as a new infinitary extension.

In Section 4 we present a new result of Vitaly Bergelson, John Johnson,
and Joel Moreira about configurations of polynomials from Z’ to Z with
zero constant terms for j € N.

In Part 3 we present some new results about the algebraic structure of
BS.

In a handwritten manuscript written in 1978, Eric K. van Douwen
asked whether there exist topological and algebraic copies of SN in N*.
That question was answered in the negative in [122], where it was shown
that if ¢ : SN — N* is a continuous homorphism, then p[SN] is finite.
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The question then immediately arose as to whether the image could be
nontrivial. That question remained open for 29 years. We present the
strong affirmative answer by Yevhen Zelenyuk [132] in Section 5.

In Section 6 we present results from [80] showing that if S is a count-
ably infinite cancellative semigroup, then several simply defined algebraic
subsets are not at all simple topologically. Specifically under assumptions
a bit weaker than cancellativity, the set of idempotents, K(3S5), p + 85
for any p € S*, and S*S* are not Borel.

Given idempotents p and ¢ in (8S,+), p <g ¢ if and only if p = ¢ + p,
p<pqifandonlyif p=p+gq,andp <gqgifandonlyifp=g+p=p+gq.
We write p <gr ¢q provided p <p ¢ and it is not true that ¢ <g p.

In [95, Theorem 5.4] it was shown that there exists a sequence (p,)52;
of idempotents in AN such that p, <gr pn41 for each n € N. (It was
also shown in [95] that for each countable ordinal A, there is a sequence
(Po)o<x of idempotents in SN such that p, > p, whenever o < 7 < \.)
In Section 7 we will present the result from [79] that there are increasing
< g chains of idempotents in SN of length w;.

One of the oldest questions about the algebra of the Stone-Cech com-
pactification was whether every point of SZ\ Z = Z* is a member of some
maximal orbit closure of the shift function. This question was asked to
Mary Ellen Rudin by some now anonymous analysts in the late 1970’s or
early 1980’s before it was widely known that 5Z had an algebraic struc-
ture. The shift function o : Z — Z is defined by o(n) = n + 1. Letting
0 : BZ — BZ be its continuous extension, one has for p € Z* that the
orbit closure of p is cl{c™(p) : n € Z} = PZ + p. So the question was
whether every point of Z* is a member of a maximal principal left ideal
of BZ. This question was finally answered in the affirmative recently by
Yevhen Zelenyuk who showed [133] that there does not exist a strictly
increasing sequence of principal left ideals of 5Z. We present this result
in Section 8. Notice that as an immediate consequence, there does not
exist a sequence of idempotents (p, )52, such that p, <r pn41 for each
n.

Part 2. Sums, Products, Exponents, and Polynomials
1. z, zy, x+y IN N

In this section we present Moreira’s proof [108] that if » € N and
N = {J._, C;, then there exist ¢ € {1,2,...,r} and infinitely many y such
that {z € N : {z,zy,x + y} C C;} is piecewise syndetic in (N,+). We
also derive the result of Bergelson and Moreira [16, Theorem 4.1] that a
similar result holds in any infinite field.



4 NEIL HINDMAN AND DONA STRAUSS

Lemma 1.1. Let (S,+) be an infinite semigroup, let L be a minimal left
ideal of (BS,+), and let A be a subset of S such that ANL # (). There
exists E, a syndetic subset of S, such that for all F' € Ps(E) there exists
X CS suchthat XNL#0 and F+ X C A.

Proof. Pickq € ANLandlet E={x € S:—2+A € q}. By [72, Theorem
4.39], E is syndetic in S. Let F' € Py(E) and let X = (\;cp(—f + A).

Then F + X C A and since X € ¢, X N L # 0. O

Definition 1.2. A semiring is a triple (S,+,:) such that (S,+) is a
commutative semigroup, (S,-) is a semigroup, and for all a,b,c € S,
a(b+ c¢) = ab+ ac and (b+ ¢)a = ba + ca.

The following result is due to John H. Johnson, Jr. in a personal com-
munication. In the case S = N, it provides a simplified proof of a special
case of [58, Corollary 3.8] which was in turn a simplification of a special
case of [11, Theorem C].

Theorem 1.3. Let (S,+,:) be an infinite semiring, let L be a minimal
left ideal of (BS,+), let A be a subset of S such that AN L # 0, let v be
an idempotent in (8S,+), and let M € Py(S). Then

fneS:AnLnN,cp(—mn+A)#0}cv.
In particular, If A is piecewise syndetic in (S,+) and M € Py¢(S), then
{neS:ANN,,crp(=mn + A) is piecewise syndetic in (S, +)}
is an IP*-set in (S, +).

Proof. Let C = {n € S : ANLNN,,cp(—mn+A) # 0}. To show
that C € v it suffices to show that for every B € v, C N B # (J, so let
B € v. Since v is an idempotent, pick a sequence (z,)52; in S such that
FS((zn)521) € B.

We claim that
(¥) if n € S and there exists X C A such that X N L # ()

and {mn:me M} + X C A, thenn € C.

To establish (x), let n € S and assume we have X C A such that
XNL#0Qand {mn:me M}+ X C A. Pick r € XN L. Since X C A,
we have that r € AN L. To see that n € C' we show that for m € M,
(—mn+A) € r. Given m € M, we have mn+X C Aso X C (—mn+ A)
so (mn+ A) er.

Pick by Lemma 1.1 a syndetic set E C S such that for all F' € P;(FE)
there exists X C S such that X N L # 0 and F+ X C A.

For m € M, define f,, € Ng by fm(t) = ma;. By [72, Theorem 14.8.3]
E is a J-set so pick by [61, Theorem 4.1] some a € E and H € P¢(N) such
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that for m € M, a+ > ,cpy fm(t) € E. Let F ={a} U {a+ > ,cpy fm(t):
m € M}. Pick X C Nsuch that XNL # 0 and F+ X C A.

We claim that 3, x; € C, so that BN C # () as required. We have
that a + X € Aand {m ) ,. ;2 :m e M} + (a+ X) C A so by (x) it
suffices to show that a + X N L # (). By the continuity of Ay, a + X =
a+X.Pickre XNL. Thena+r€Landa+rca+X=a+X. O

Lemma 1.4. Let (S,+,-) be an infinite semiring. For all x € S and all
p,q € BS, x(p+q) =xp+xq and (p+ q)x = px + qz.

Proof. For p € 35, let l,, vy, \p, and p, be functions from BS to BS
defined by, for ¢ € 58S, 1,(¢9) = pq, rp(q) = qp, X\p(q) = p + ¢, and
pp(q) = g + p. Recall that for each p € 55, r, and p, are continuous and
for each z € S, [, and )\, are continuous.

Let x € S and let p,q € BS. To see that x(p + q) = xp + xq, it suffices
that [, o p, and pgq o [, agree on S, so let y € S. We need to show that
x(y + q) = xy + xq which is true because [, o A, and A,y o [, agree on S.

To see that (p+ ¢)x = px + gz it suffices that r, 0 py and pg, o7, agree
on S, so let y € S. We need to show that (y + ¢q)x = yx + gx which is
true because r, o Ay and Ay, o, agree on S. O

In the proofs of Lemmas 1.5, 1.6, and 1.7 we use the fact that, by [72,
Theorem 1.67], a point = € £S5 is in K(8S) if and only if for each ¢ € 8S
there exists u € 35S such that x = u+ g + =.

Lemma 1.5. Let A C N be piecewise syndetic in (N,+) and let y € N.
Then Ay is piecewise syndetic in (N, +).

Proof. Pick * € AN K(BN). Pick an idempotent ¢ € K(8N). By |72,
Lemma 5.19.2], % -q € BN, where % - q is the product in (8Qy,-). Pick
u € SN such that z = u—i—iq—&—x. By Lemma 1.4, y distributes over SN and
it is easy to verify that y - % q=gqsoxy=uy+q+ry € K(AN)NAy. O
Lemma 1.6. Let (S,+,-) be a field, let y € S\ {0}, and let A C S be
piecewise syndetic in (S,+). Then Ay is piecewise syndetic in (S,+).
Proof. Pick x € AN K(BS,+) and pick an idempotent ¢ in K (8N, +).
Then gy~! € B8S. Pick u € 3S such that x = u + qy~! + 2. By Lemma

1.4, y distributes over S so xy = uy + qy 'y + Yy = uy +q+ Yy €
K(BS)nN Ay. |

Lemma 1.7. Let y € N and let A be a piecewise syndetic subset of N
such that A C Ny. Then A/y is piecewise syndetic.

Proof. Pick z € AN K(BN). Then x € yN = yAN so pick z € BN such
that « = yz. Pick ¢ € K(ON). Then yq € BN so pick u € SN such
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that yz = u + yq + yz. Then v € yN so u = yw for some w € ABN.
Then yz = y(w + ¢ + z) by [72, Lemma 13.1] so by [72, Lemma 8.1],
z=w+q+ze K(BEN)NA/y. O

Definition 1.8. Let (5,-) be a semigroup, let m € N, and let (y:)7™,
be a sequence in S. The sequence satisfies uniqueness of finite products
if and only if, whenever H, K € Pf({1,2,...,m}) and H # K, then
[Licnye # Ilickye- If (ye)2, is an infinite sequence in S, then the
sequence satisfies uniqueness of finite products if and only if, whenever
H,K € P¢(N) and H # K, then [],.; 4+ # [L,c i ve-

Lemma 1.9. Let (S,-) be a group with identiy 1, let m € N, let (y)72,
be a sequence with FP((y:)™1) C S\ {1} satifying uniqlueness of finite
products, and let A be an infinite subset of S. There exists ym4+1 € A
such that FP((y,)™4") € S\ {1} and (y:)7" satifies uniqueness of finite
products.

Proof. Let B = FP({y:),). Pick
Ymi1 €A\ ({1JUBU{b ™ :be ByU{btc:bcc B}).

Then y,,+1 is as required. O
Theorem 1.10. Let S be N or an infinite field, let r € N, and let S =
Ui_, Ci. There ezist i € {1,2,...,7} an injective sequence (z,)°; in

S, and a sequence (F,)>° | of piecewise syndetic subsets of (S,+) such
that for each n € N, E, C Sz, and if w € E, and v = wz, ', then
{x,xzn,x + Zn} c G

Proof. All references in this proof to piecewise syndetic sets refer to sets
piecewise syndetic in (S, +). Choose ty € {1,2,...,r} such that C;, is
piecewise syndetic and let By = Cy,. By Lemma 1.3 with M = {1}, pick
y1 € S\ {0,1} such that By N (By — y1) is piecewise syndetic and let
Dy = BoN(By —y1). By Lemma 1.5 or 1.6, y1 D; is piecewise syndetic.
Since lel = UZ:l(lel ﬁCi), piCk tl (S {1, 2, . ,r} such that lel ﬂC’tl
is piecewise syndetic and let By = (y1.D1 N Cy,).
Let k € N and assume we have chosen <yj)§:1, (Bj>§:(), <tj>§:(), and
<Dj>§:1 satisfying the following induction hypotheses.
(1) For j €{1,2,...,k}, y; € S and
(a) if S=Nand j>1,y; >yj_1;
(b) if S'is a field, then FP({y;)¥_;) € S\ {0,1} and FP({y:)¥_,)
satifies uniqueness of finite products.
(2) For j € {1,2,...,k}, Dj is a piecewise syndetic subset of S.
(3) For j €{0,1,...,k}, t; € {1,2,...,r}.
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(4) For j €{0,1,...,k}, B, is a piecewise syndetic subset of S.

(5) For j € {0,1,...,k}, B; C Cy,.

(6) For j € {1,2,...,]{}, Bj - ijj.

(7) For j <min {0,1,...,k}, By C Ym¥Ym—1- - Yj+1.B;.

(8) Form € {1,2,.. -ak}a Dy, € Brio1 N (Bm—1 — Ym) and, if m > 1,

-1
then Dm g m;nZI (Bm—l - (ym—lym—2 te y])2ym)

All hypotheses hold for & = 1.
For j € {1,2,...,k}, let uj = ypyp—1---y; and let M =
{1,u},u3,...,u?}. By Lemma 1.3,

A={ye S: BN (B, —y)N ﬂf:l(Bk — u3y) is piecewise syndetic}

is an TP*-set in (S,4). If S = N, pick yxr1 € A with yp11 >y If Sisa
field, then by Lemma 1.9 applied to the group (S \ {0},-) pick yx4+1 € A
such that FP((y,)"*) € S\ {0,1} and FP({y;)**!) satifies uniqueness
of finite products. Let Dyy1 = Bi N (Bk — Yk41) N ﬂle(Bk — u?ykﬂ).
Note that hypotheses (1), (2), and (8) hold at k + 1.

By Lemma 1.5 or 1.6, yg11Dg41 is piecewise syndetic and

Yk+1Dr1 = Ui (We+1Dier1 N Cy)

so pick tx41 € {1,2,...,r} such that yx1Dxy1 N Cy,,, is piecewise syn-
detic and let Byy1 = yx41Drq1 N Cy,,. Note that hypotheses (3), (4),
(5), and (6) hold for k + 1.

We need to verify hypothesis (7) so let j < m in {0,1,...,k+ 1} be
given. If m < k, then (7) holds by assumption so assume that m = k+ 1.
We have Bii1 C yr+1Dk+1 C yk+1 Bk If j = k, we are done, so assume
that j < k in which case by (7) at k we have By C yryr—1---y;+18; so
Bri1 C Yr+1Yk - - - yj+18; as required.

The construction is complete. Pick i € {1,2,...,7} such that {k € N:
ty = i} is infinite and let G = {k € N : t;, = i}. We then choose a sequence
(k(n))sLo in G so that, letting 2, = Yr(n)Yk(n)—1 " Ye(n—1)+1 for n € N,
we have (z,)22 is an injective sequence. (This is either because (y,)52
is increasing in N or satisfies uniqueness of finite products in the field S.)

For n € N, let E,, = By(,). Then each E, is piecewise syndetic. Also,

Ey = Brn) € Yr(m)Uk(n)—1 " Ye(n—1)+1Br(n—1) = 2nBrn—-1) € 2a5 .
Let w € E,, and let z = wz,, . We need to show that {z, 22,,2+2,} C

Ci. Now 2z, = w € E, = Byy) C Cy,, = Ci. Also zz, € E, C
ZnBi(n-1) 80 @ € Byn-1) € Cy,_,) = C;. It remains to show that
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r+ z, € C;. Now

zn(x + 2p)
=w+ 25 € Bin) + 25 C Yk(n)Dr(n) + 22
€ Yne(n) (Br(n)—1 = Yr()Yir(m)— 1Y (n)—2 " Yir(n—1)11) T 21
C Yk(n) Wk(n)—1Yk(n)=2 ** Yk(n—1)+1Br(n-1)
2 2 7
“Yk(n)Yk(n)—1Yk(n)—2 """ yk(n71)+1) + 2,
= yk(ngyk(nQ)—lyk(n g yk(n2—1)+1Bk(n—12)
- yk(n)yk(n)—lyk(n)—2 T yk(n—l)+l + 2
= Zan(nfl) .
Soz+z, € Bk(nfl) - Ctk(n—l) = C;. |

Corollary 1.11. Let S be N or an infinite field, let r € N, and let S =
Ui_, Ci. There exist i € {1,2,...,7} and infinitely many y such that
{r e N: {z,zy,x+y} C C;} is piecewise syndetic.

Proof. Pick i, (2,)22,, and (E,)52, as guaranteed by Theorem 1.10.
Given n € N, if y = z,, then E,y~! C {x € N: {z,2y,2 + y} C C;}

and by Lemma 1.7 or 1.6, E,y~ ! is piecewise syndetic. O

2. x, Yy, x+y AND zy IN Q

In this section we present the proof by Bowen and Sabok [25] that if
r € Nand Q = J,_, C;, there exist i € {1,2,...,7} and infinitely many
y such that {z € Q\ {0} : {z,y,z + y,xy} C C;} is infinite.

Throughout this section we let S =Q\ {0} and for n € N, we will let
[n] = {1,2,...,n}. We denote the characteristic function of a set A by
X4.

We will use the density Hales-Jewett Theorem, which we will not prove.
See [72, Section 14.2] for the terminology surrounding the Hales-Jewett
Theorem.

Theorem 2.1 (Density Hales-Jewett). Let n € N and n € (0,1). There
exists 1 € N such that whenever C C [n]” and |C| > nn", there is a length
r variable word w over the alphabet [n] such that {w(t) : t € [n]} C C.

Proof. This is due to Furstenberg and Katznelson in [53]. For a simplified
elementary proof see [113] which is an anonymous collaborative effort. [

The next two lemmas are consequences of [7, Theorems 3.2 and 7.5]
respectively.

Lemma 2.2. Let F € P;y(Q), let F: F - N, let 0 <n<d <1, let A be
a left invariant mean on (Q,+), let A C Q such that \(X4) > 0, and let

o —
R = {t € Q : ZIGFQ(Aft) ]:(.’1?) Z anGF f(.’l?)} Then )\<XR) Z ﬁ
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Flx
Proof. Define g : Q — [0,1] by g(t) = ZnseFﬁ(Aft) ()

. Then for t € Q,

ZxEF‘F(x)
1
g(t) = m > wer F () - X(a—p(x)
Y @ > wer F(@) - X(—ara(t),
Ag) = Zze;]:(w) (Xoer Fl@) - AMX(—zta)))
TS F (e P A0)
since \ is invariant. Therefore \(g) = Z)\(X;-')(m) Yower F(x) = AXa).
Since A is additive, A(X4) = A(g) < Ag;)?R) + A(gXq\r)- Since gXgr <

XR, )\(gXR) < )\(XR). Fort € Q \ R, ZweFﬂ(A—t) .F(:E) < UerF ]:(x)
s0 g(t) = Za;an(A—t) F(x)
! S ver F (@)
AMXg) +n(1=A(Xg)). Therefore A(X4) —n < MXg) - (1—1n) so A(Xg) >
d-n
1-n

IN

< nand A(Xg\r) = 1 — AM(XRr) so A(Xa)

O

Lemma 2.3. Letn € N and 0 < § < 1. Let A be an invariant mean on
(Q,+) and for A C Q, let d(A) = A\(X4). There exist r € N and 3 > 0
such that for any A C S with d(A) > ¢ and any q1,q2,...,q, € Q,

{zeS:d(N_ (A—quz)) >} is IP;.

Proof. Pick n such that 0 < n < §. Pick by Theorem 2.1, » € N such
that whenever C' C [n]” and |C| > nn", there is a length r variable word
w over the alphabet [n] such that {w(t) : t € [n]} C C. Let A C S with
d(A) > ¢ and let q1,92,...,q, € Q.
N

A (PR
there exists € F'S((s;)7_;) such that d((/_,(A — ¢;z)) > B.

Define ¢ : [n]” — Q by, for w = lily -1, € [n]", Y(w) = >\, @, si.
Let F = {¢(w) : w € [n]"} and define F : F — N by

Flz) = {w e [n]": ¢(w) = =}

Let R = {t € Q: X, cpna_nF (@) = n),cpF(z)}. Notice that
YperF(@)=n"so R={t€Q:3 pna_yF(z) =nn"}. By Lemma

0—mn
2.2 >
, d(R) = =

. Let s1,89,...,8- € Q. We need to show that
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Now
cheFm(A—t) F(z) = erFm(A—t) {w € [n]" : ¢Y(w) = z}|
=[{wen]":p(w) e A—t}|
=[H{we " t+y(w) € A},
soR={teQ:|{wen]" :t+¢(w)e A} >nn"}.
For a length r variable word w over [n], let

By,={te R:{t+¢(w(k)):ke[n]} CA}.

We claim that R C |J{B, : w is a length r variable word over [n]}.
To see this, let ¢ € R and let C' = {w € [n]” : t + ¢¥(w) € A}. Then
|C| > nn" so by the choice of r, there is a length r variable word w such
that {w(k) : k € [n]} C C. That is, t € B,,.

Now we claim that there is a length r variable word w over [n] such
that d(By) > . There are (n +1)" —n" < (n+ 1)" variable words over
[n]. If for each variable word w one had d(B,,) < 3, then we would have

d(R)<6~(n+1)T:(1S:

word w = l1ly - - - I, over [n] such that d(B,,) > 3.

Let « = {i € [r] : l; = v}, where v is the variable. For k € [n],
w(w(k)) = Zie[r]\a Q;Si + D ieq GkSi- Let u = Zie[r]\a qi,5; and let
=3, 5i- Then (w(k)) = u+qux so for each t € By, t+u-+qpz € A
$0 By +u C Ny (A — qrx) and d(B,, + u) = d(By,) > 8 so
d(Mp1 (A = qrz) > B. 0

Notice that one may change the conclusion of Lemma 2.3 to
{reS:d(ANN(A—qz)) > B}is I[P},
by replacing n by n + 1 and letting g,,+1 = 0.

77, a contradiction. So pick a length r variable

Lemma 2.4. Let k,r, N € N and let Ty, Ts,. .., Ty be subsets of S that
are thick in (S,-). Then there exist <<Sl,i>f=1>£\;1 such that
(1) forle{1,2,...,k} andi€ {1,2,...,N — 1}
(a) Sii is a finite IP, set in (Q,+) and
(b) S C Ti: and
(2) for1<i<j< N and Ziali+17~-~7lj S {1,2,...,]{;},
St Stiyit1 S, €T,

Proof. Note that if F'is TP, in (Q,+) and ¢t € S, then Ftis IP, in (Q, +).
Consequently, if V' is thick in (S, -), then V contains an IP, set.

We claim that if V' is thick in (S,-), F' € Ps(S),and R={t € S: Ft C
V'}, then R is thick in (S,-). To see this, let G € Ps(S) be given. Let
H = FG. Pick a € S such that Ha CT. Then FGa C T so Ga C R.
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Now we construct <<Sz,i>f:1>ji_11 by downward induction on i. To
begin, for [ € {1,2,...,k} pick a finite TP, set S; n—1 C T;.
Now let m € {2,3,...,N — 1} and assume we have <<Slz>le>j\;ﬂ1
satisfying (1) and (2). Let

R={1} VU { St Styprmer St
lm,lm+1,...,lj € {1,2,,k}}

For | € {1,2,...,k} pick a finite IP, set S;,,—1 C {z € S : 2R C T;}.
Since 1 € R, each S),,—1 C T;. To verify (2), let m —1 < j < N and
bn—1,lm, ..., l; € {1,2,...,k} be given. If j = m — 1 there is nothing
to show, so assume j > m. Then Si, m - S, m+1--S,5 S R so
Stp—1,m—=1"Stm 51, €T O

m—1"

Lemma 2.5. Let n € N and let S = J;_, C;. There exist k € N, subsets
Y1.Ys,...,Y, of {1,2,...,n}, and F € P;(S) such that

(i) for alll € {1,2,....k}, U,.cy, Om is thick in (S,-) and

(i) (Vz e S)3l € {1,2,...,k})(Vm e V))(3f € F)(fx € Cp).

Proof. For Y C {1,2,...,n}, let Cy = J,,cy Cm. Let
T={Y C{1,2,...,n}: Cy is thick in (S,-)} and let
S={Y C{1,2,...,n}: Cy is syndetic in (S, -)}.

Note that 7 # 0 and S # 0 since S is both thick and syndetic in
(S,-). For Y € S, pick Fy € P(S) such that S = J,cp, t~'Cy and let
F= UYeS Fy.

Forx € S, let A, ={m e {1,2,...,n}: (3f € F)(fx € Cp,)}. Given
x € Sand Y € S, one may pick f € Fy such that foz € Cy so there is
some m € Y such that fz € Cp, so we have A, NY # ().

We claim that for all z € S, A, € T. So let z € S and suppose that
Cy, is not thick in (S,-). Let V ={1,2,...,n}\ A,. We have S\ Cy, is
syndetic and S\C4, C Cy so V € S and thus A, NV # @, a contradiction.

Let R = {4, : ® € S}. Since T C P({1,2,...,n}), R is finite.
Enumerate R as Y1, Ys, ..., Y. Since R C T, conclusion (i) is immediate.
To verify (ii), let © € S. Pick [ € {1,2,...,k} such that A, = Y;. By
the definition of A,, we have for all m € Y}, there is some f € F with
fr e Cy,. a

Theorem 2.6. Let n € N and let S = |J!_, C;. There ezist y € S and
m € {1,2,...,n} such that {x € S: {z,y,z +y,zy} C Cp,} is infinite.

Proof. Pick k,Y7,Ys,..., Yy, and F as guaranteed by Lemma 2.5. As
before, for Y C {1,2,...,n}, let Cy = U,,cy Cm. Pick an invariant

mean A on (Q,+) and pick z € F. For A C Q, let d(A) = A\(X4). We
claim that



12 NEIL HINDMAN AND DONA STRAUSS

(*) (VIB € S)(Ell € {1727 . 7k})(3(f13 f27 e ’fn) € Fn)
(Ym e Y))(fmz € Cp) .

To see this, let 2 € S. Pick by Lemma 2.5(ii), [ € {1,2,...,k} such
that (Vvm € Y;)(3f € F)(fz € Cy,). So given m € Y}, pick f,,, € F such
that fp,x € Cp. fme {1,2,...,n}\ Y}, let f, = 2.

Define ¥ : S — {1,2,...,k} x F™ by choosing ¥ (z) = (I, f1, fo, - -, fn)
where (Ym € Y))(fmz € Cp). (This is a choice, since for m € Y there
may be many possible choices for f,,.) Let K = k-|F|" + 1 and note that
K > |U[s]],.

Pick N € N large enough so that, given any sequence <17j>§-\7:1 in
{1,2,...,k} x F™, there exist ¢ and j with 1 < i < j—1 < N —2

L N
such that ¢; = ¥;. Let s = 9 ) |F|.
We now choose inductively ()7, ()i, and (r;)7L, with each

a; > 0, each a;- > 0, and each r; € N. Let oy = % By Lemma 2.3 pick
r1 € N and o > 0 such that for any R € P;(S) with |[R| <sand AC S
such that d(A) > aq, one has

{zeS:d(ANN,ep(A—qr)) > }is [P .

Given j € {1,2,..., N — 1} and having chosen «a;, o}, and 75, let a1 =

Q—Ig. Again using Lemma 2.3 pick r;41 € N and o/, > 0 such that for

any R € Py(S) with |R| < s and A C S such that d(A) > a;41, one has

{xeS:d(AﬁﬂqeR(A—qx))>oc;-+1}is IP: .
Let r = max{rj 1] € {1,2,...,N}}. If j € {1,2,...,N} and a set is
TP}, then it is [P},

By Lemma 2.4, pick <<Sl7i>f:1>£\:11 such that
(1) for 1€ {1,2,... .k} and i € {1,2,...,N — 1}
(a) Sy is a finite TP, set in (Q,+) and
(b) Slfi g Cyl; and
(2) for 1 <i<j<Nandl;liq1,...,0[; €{1,2,...,k},
Stivi  Stipriv1 8,5 C Cyli-

Let Q1 = {% : f € F}. We define
(I) Ay, As, ..., Ay, subsets of S,

(I1) @1,Q2,...QnN, finite nonempty subsets of S,

(III) tuples (llafl,lan,la'"7fn,1)7"'7(ZN7f1,Naf2,Na"'7fn,N)
in {1,2,...,k} x F", and

(IV) y1,vy2,...,yn—1 in S such that for j € {1,2,...,N — 1},
(1) Ajir € 45N Nyeq, (A5 — ay5),
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(2) Aj C{z e Aj: V(zyryz---y;) =
(J+l>fl,j+1af2,j+la"'7fn,j+1)})

(3) ESZJ 2

(4) ( ;) > aj, and

(5) if j > 1, then Q; = {¥¥t¥izt .1 <j < jand f € F}.

fyiy2yi—1

Now [¥[S]] < K so a; = = < Wls”. If for each 7 € {1,2,...,k} x F"
we had d(U~'[{7}]) < a1 we would have d(S) < % < 1, so we can
pick (I1, f11, fo1s-- -5 fu1) € {1,2,...,k} x F™ such that
d(O{(l, fi1, fo0s- -+ fn)}]) > a; and let

A = \I’_l[{(llafl717f27l7'"af’ﬂ,l)}} .

Since |@Q1] < s and d(A4;) > a1, we have that

{zesS:d(Ain Nyeq, (A1 — qz)) > oy} is IP},
hence is I P}. Since S;, 1 is an I P, set, we can pick y; € S, 1 such that
d(A1 N Nyeq, (A1 —aqy1)) > af and let A} = A1 N0, (A1 — qy1).
We claim that there is some ¥ € {1,2,...,k} x F™ such that
!

d{z € A} : U(zy;) = T}) > ag = %.

If instead for each ¢ € {1,2,...,k} X F™ one has
d({x € U(zy;) =0}) < ag,

A
then d(A}]) < aq - |T[Y]] < %,1 - K = o), a contradiction. So pick
(12, fLQ, f2’2, ceey fnyg) S {1, 2, . k} x F'™ such that

(

d({fE < A/l Y xyl) = (l27f1,2af2,27 .. '7f7l’2)}> > Qo

and let A2 = All N {J} S S : \I/(Iyl) = (l2,f172,f2,2,...,fmg)}). Let
Q2 = {y71 1 feF}.

Let j € {2,3,...,N — 1} and assume we have constructed Aj, Ao, ...,
Aj, Q1,Q2,...,Qj, and y1,y2,...,y;—1 as required. Now |Q;| < s and
d(Aj) > ajso {z e S:d(4;N Naeo, (45 — qr)) > of} is IP sois IP}.
Since Sy, ; is IPT, we may pick yj € Sy;,j such that

d(A; ﬂﬂqu (A; —qy;)) > o and let A = A ﬂﬂqu (Aj —qy;). Let
Qj+1 = {fyylyy:l ylyﬂl 1<i<j+1landfeF}.

We claim that there is some ¥ € {1,2,...,k} x F™ such that d({z €
Afpy 2 Wy vyy) = 01 > ajp = L. If instead for each ¥ €
{1,2,...,k} x F™ one has d({z € A}, : V(zyi---y;) = U}) < ajpa,
then d(AJ+1) < ajpc [PS) < B K = o, a contradiction. So pick
(i1 frgets fagatseeos fge1) € {1,2,...,k} x F™ such that d({z €
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Afpy s W(ayr-yy) = s frjens fogets -0 fage1)}) > @1 and let
Ajr =A5 N {z €S W(ayr - y;) = (s frjs frgens - fagen) D)

The construction is complete. By our choice of N, we may pick 4
and J such that 1 < 7 < j—1 < N-2 and (li7f1,i7f2,i7'-'7fn,i) =
(lj’ fl,j’f27j7 s 7fn,j) and let (l’f17f27 s 7fn) = (livfl,iv.fQ,iv s 7fn,i)'
Let y = y;yit1---yj—1. We have for each ¢ € {i,i+1,...,j — 1} that
Y¢ € Sy, SO

Y €Sy Sttt S, 1,5-1 € Oy, = Cy; = Upey, Om

so pick m € Y] such that y € Cp,.

We will show now that for any =’ € A;, if z = f,2'y1 -+ y;—1, then
{z,y,z+y,zy} C Cp,. Solet 2’ € A; and let x = f,,x'y1 - - - y;—1. Since
z' € Aj, by (IV)(2), W(2'y1 - yj—1) = (L f1, fos oo, o) 80 frn@'yn -+ -y
€ Cpsoxy = (fm@'y1- vi—1)Wi - yj—1) € Cp. Also 2’ € A; so by
(IV)(2), U(2"y1---yi1) = (I, f1, fo, .-, fn) 80 & = fraa'yr - yi1 € Oy
Finally,

'€ A; C AN Nyeq, ,(Aj-1 — qyj-1) € AiNNyeq, ,(Ai — qyj-1).

_ Yi-Yj—2 . / i A YiYj—1 .
Let ¢ = Foorwis € Qj-1. Then 2’ +qy;—1 = 2’ + Formi € A;

so by (IV)(2), \Il.((x’.—k qyi-1) - y1--Yi—1) = (L fi,... fa). That is,
(zyy - 'yi—1+‘%'}$) = (1, fn) 80 fm@'yr i1ty Y1 €
Cn. That is, z +y € C),. ]

3. EXPONENTIAL TRIPLES

In this section we present the very simple proof by Mauro Di Nasso
and Mariaclara Ragosta [44] of the result of Sahasrabudhe [114] that for
any finite coloring of N\ {1}, there exist a and b such that {a,b,b"} is
monochromatic. We also present their infinitary extension showing that
for any finite coloring of N\ {1} there exists a sequence (b,,)22 ; such that
{bp, :n €N} U {bfﬁu :n € N} is monochromatic. (The infinitary result is
new in [44].)

The proofs use the operation * on N defined by n *x m = 2™m. That
operation is not associative, but by [72, Theorem 4.1], there is a unique
binary operation on SN, which we also denote by *, such that for each
n € N, A, : BN — BN is continuous and for each p € SN, p,, : BN — SN is
continuous. (Here as usual, A,,(¢) = n*q and p,(¢) = g*p.) Given n € N,
qg € ON, and A C N, if A € n * ¢, then there is some B € ¢ such that
M[B]C Aso{m e N:nxm € A} € ¢; that is (2") "1 A4 € q. Then, given
p,q € SN and A C N, if A € p*q, then there is some C € p such that
pglCl1CAso{n € N:nxqge A} e pand thus {n e N: (2")*A € ¢} € p.
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Lemma 3.1. There exists p € BN such that for all A € p and every
I € N, there exist b,c € N such that {b,c,b+ ¢, b+ 2¢,...,b+lc} C A.

Proof. Let [ € N and let

—_ = O
N == O

11
Then M satisfies the first entries condition so by [72, Theorem 15.24] has

images in any central set. Thus one my let p be any minimal idempotent
in (KN, +). O

Alternatively, one can prove Lemma 3.1 by invoking Rado’s Theorem
[72, Theorem 15.20] with an appropriately chosen matrix and [72, Theo-
rem 3.11].

The existence of monochromatic exponential triples is a special case of
the infinitary theorem that we will prove (Corollary 3.5), but the proof
for triples is very simple, so we present it first.

Theorem 3.2. Let p € SN be as guaranteed by Lemma 3.1. For each
A € pxp, there exist x and y in N\ {1} such that {z,y,2%y} C A.

Proof. Let A€ p*pandlet A ={neN:(2")"1A € p}. Then A’ € p.
Pick a € A’. Pick (with { = 2*) b and ¢ in N such that {b,¢,b+ 2%} C
(29)"YAN A’. Then (2°)71A N (2272°¢)~1 4 € p so pick d € (2°)71AN
(2b12°¢)~1 A, Let x = 2% and y = 2%d. Since ¢ € (2%)"'A, we have
x € A. Since d € (2°)7'A, we have y € A. Since d € (2"72°¢)"1 A, we
have 27y = 22°¢2bqd = 20+2%¢q ¢ A, O

Corollary 3.3. Let 1 € N and let N = |J._, C;. There emist i €
{1,2,...,r} and a,b € N\ {1} such that {a,b,b*} C C;.

Proof. Pick p € N as guaranteed by Lemma 3.1. For i € {1,2,...,r}
let D, = {n : 2™ € C;} and pick i € {1,2,...,7} such that D; € p*p.
Pick z,y € N such that {x,y,2%y} C D,. Let a = 2* and b = 2¥. Then
immediately a € C; and b € C;. Also b® = (2¢)*" =22V € C;. O

Now we turn our attention to the infinitary result of Di Nasso and
Ragosta.

Theorem 3.4. Let p € SN be as guaranteed by Lemma 3.1. For each
A € pxp, there exists an increasing sequence {(a,)>>, in N with the
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property that for all i,5,k in N with 1 < 2j and 2j + 1 < k, if x = a9;2%
and y = a2+ then {z,y,2%y} C A.

Proof. Let A€ p*pandlet A ={neN:(2")"1A € p}. Then A’ € p.
Pick a; € A’ and let A; = A’ N (2%1)7'A. Pick ay and a3z such that
{as,az,a3 +2%az} C A;. Consequently, 291ay,2% a3 € A and (2%2)~ 1A,
(223)71 A, and (a3 + 2%'az) "' A are in p.

Let Ay = A'N(29)7 AN (292)71AN (2%)7tA N (a3 + 2%1az) L A.
Then As € p so pick a4 and a5 in Ay such that as +tay € Ao for each t €
{291,292 293} Then 2%ay and 2%as are in A fori € {1,2,3}, a 20372 o2
and a52%72"'% are in A, and all of (2%4)71A, (2%5)71 A, (205+2 " aa) =1 4,
(205+2"204) =1 A "and (29512"°24)~1 4 are in p.

Now let n > 3 and assume that ai,aso,...,a2,_1 have been chosen
satisfying the following induction hypotheses.

(1) a; € A’ for every i < 2n — 1;
(2) agjt1 +2%ag; € A for all i < 2j < 2n—1;
(3) 2%ay € Aforall i <k < 2n —1 except when k =i+ 1 is odd;

and
(4) ap2%2i+112% a2 ¢ Afor all i, j, k € N such that i < 2j and 2j+1 <
k<2n—1.

Let A, = A'N ﬂf:;l@‘“)*l/lﬁ N{(2025+112%a2) =14 . ] < j < 2j <
2n — 1}. By hypotheses (1) and (2), A,, € p. Pick ag, and ag, 41 in A,
such that agy41 + tas, € A, for each t € {291,292 ... 2%2»-1} Then, all
hypotheses are satified for aq,aq, ..., a2,+1. Indeed,

(1) agn,asn+1 € A’, and hence a; € A’ for every i < 2n + 1;

(2) azny1+2%asg, € A forevery i < 2n—1, and hence agj1+2%ag; €
A’ for all i <25 < 2n+1;

(3) ag, € (2%)71A for every i < 2n — 1 and ag,41 € (2%)" 1A for
every i < 2n — 1 (but in general 2%2may,11 ¢ A), and hence
2%qr € Afor all i < k < 2n + 1 except when & = i + 1 is odd;
and

(4) ag, € (202541127 02;) =1 A whenever i < 2j < 2n — 1 and ag,41 €
(2023+1F2%a2;) =1 A whenever i < 2j < 2n — 1, and hence
ap2%i+1 12 a2 ¢ A for all i,j, k such that i < 2j and 2j + 1 <
k<2n+1.

Given 7,7,k € N with ¢ < 2j and 25 +1 < k, let x = a9;2% and
y = ap2%%+1. By (3), = and y are in A. And 2%y = q;2%2+112" 02 ¢ A
by (4). O

Corollary 3.5. Let r € N and let N = |J;_, Ci. There exist t €
{1,2,...,7r} and an infinite sequence {(a,)52 ;1 in N with the property that
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for all i,j,k in N with i < 2j and 2j +1 < k, if a = 2%2" and
b= 202" “then {a,b,b%} C C,.

In particular, if for each n € N, b, = 2922°""' then for each n,
{bm bn+17 (anrl)b"} - Ct-

Proof. Pick p € QN as guaranteed by Lemma 3.1. For ¢t € {1,2,...,r} let
Dy ={n:2" € C;} and pick t € {1,2,...,r} such that D; € p x p. Pick
a sequence (a,)$ ; as guaranteed by Theorem 3.4 for D;. Let i,j,k in
N be given with ¢ < 2j and 25 + 1 < k, let x = a;2%, let y = q;29%7+1,
let @ = 2%, and let b = 2Y. Then {z,y,2%y} C D; and b® = 22"V so

{a,b,b%} C C}.

Now let n € N, let ¢ = 2n — 1, let 5 = n, and let £k = 2n + 2.
Then 202:2% = 202022771 — | and 20s2"9F = gaanp22nHl oy
50 {bnabn+1a (bn+1)bn} c Ct- 0

4. POLYNOMIALS

In recent years there have been important advances in the study of
the Ramsey theoretic properties of polynonials. We are grateful to Vitaly
Bergelson for providing us with several references for this section.

Perhaps the earliest Ramsey theoretic result involving polynomials is
the following result of Sarkdzy and Furstenberg.

Theorem 4.1. Let p be a polynomial taking on integer values at the
integers with p(0) = 0 and let A C Z have positive upper Banach density.
Then there exist distinct © and y in A and z € Z such that x —y = p(z).

Proof. [52, Proposition 3.19(b)]. (In that proof, Furstenberg says that it
was proved independently by Sarkozy, without citing a reference. It is
probably in [116].) O

See Bergelson’s survey [6] for substantial information on early polyno-
mial theorems in Ramsey theory. Another early result involving polyno-
mials is the following theorem due to Bergelson and McCutcheon.

Theorem 4.2. Let j € N, let p : ZJ — Z be a polynomial such that

p(0) =0, let A be a subset of N with positive upper Banach density, let
F € P#(Z7), and for each i € {1,2,...,j}, let (xf?)ff’:l be a sequence
in Z. There exist u € Z and o € Py(N) such that for each Z € F,

u—|—p(z1w&1),zQx((f),...,zjxg)) € A, where fori € {1,2,...,j}, 2 =

ZtEa xgl) ‘
Proof. [15, Theorem 0.10]. O
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In this section we prove a recent result of Bergelson, Johnson, and
Moriera [10] involving multi-variable polynomials and some simple conse-
quences thereof. We will present this result as Corollary 4.8 below.

Definition 4.3. Let j € N and let f : Z/ — Z. Then f is an integral
polynomial provided f is a polynomial with zero constant term. (Equiv-
alently, f(0)=0.)

We begin with a self contained proof of Theorem 4.4, a version of [12,
Corollary 8.8], which was derived in [12] as a consequence of the difficult
Polynomial Hales-Jewett Theorem. The proof of Theorem 4.4 is based on
the proof of [58, Theorem 3.6], which was the j = 1 case.

Theorem 4.4. Let j € N and let u=u+u € B(N/). If R is a finite set
of integral polynomials from 77 to Z, A is a piecewise syndetic subset of
N, and L is a minimal left ideal of AN such that ANL # (), then

{(TeN :ANLNN,cr—pE)+A#0} cu.

Proof. For each n € N, let T,, = {# € w’ such that Z{Zl v, = n}.
Given p, an integral polynomial of degree [ > 0 from Z’ — Z, for each
n € {1,2,...,l} there is a umque Ypn + T, — Z such that wp, [Tl} # {0}

and for each Tel,p)= Zn 1 2ger, Ypn(U )Hz L 7

Let R = {R : R is a finite set of integral polynomlals from Z7 to
Z}. Recall that ;- w is the set of all sequences in w with finitely many
nonzero coordinates. Order @;- | w lexicographically based on the largest
coordinate on which elements differ, denoting this order by <. Define
©: R — Py, wasfollows. For Re Randl € N, let Jp; = {¢p,:pER
and degp = l}. Let ¢(R) = (w1, ws,ws,...) where for each I € N,
w; = ‘JR,1|.

For | € N and p € R with degree [, Let p* denote the polynomial
obtained from p be deleting all the terms of degree less than [. Notice
that w; = |{p* : p € R and degp = [}|.

As an example, let j = 3 and let R = {p, q,r, s}, where for ¥ € Z7,

p(%) = 23wy — v11073 + 303,

q(7T) = 2229 — 117003 + 227 — 323,
r(¥) = —4x3 + 222, and

s(Z) = —Txdxs.

Since j = 3, we have, for instance, that T, = {(2,0,0), (0, 2,0), (0,0, 2),
(13 17 0)7 (1a O; 1)7 (Oa 13 1)} Also 1/1574(07 3a 1) = 77 and 'l/)s 4[T4\{(0’ 37 1)}]
= {0} so Jr4 = {54} and thus wy = 1. And ¢, 3(2,1,0) = 3(2, 1,0)
= 17 ’(/}p,?)(]wlal) = ’(/Jq,?)(]w]-al) = _17 ¢p,3[T3 \ {(271a0) ( 7 )}] =

GslTs V(2. 1,0), (1,1, 1)}] = {0}, ,5(3.0,0) = —4, and
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wr,S[Té \ {(37070)}} = {O}a S0 JR,B = {%,37%,3,%,3} = {%,3,%,3} 50

U)3:2.

We now claim that

(*) IfFRER, R#0,0¢ R, f € R of smallest degree, F € Ps(Z7),
for # € Fandp € R, g(p,T) : Z2 — Z is defined by g(p,Z)(y) =
p(@+4) —p@) = f(¥), and S = {g(p,Z) : p € R and & € F}, then
S eR and p(S) < ¢(R).

To verify (*), assume R, f, F, and S are as specified. Trivially
S € R. Let m = degf, let ¢(R) = (w1, wa,ws,...), and let p(S) =
(wh, wh, ws, ...). We claim that for [ > m, w] = w; and that w),, = w,, —1.
So assume first that [ > m. Let p € R of degree [, let © € F, and let
r = g(p,&). Then degr = [ and corresponding degree [ coefficients of p
and r are equal. That is, ¥, ; = ¥, , so Jg; = Jg,; and so wl’ = wj.

Now assume that | = m. Let p € R of degree m, let ¥ € F, and
let r = g(p,@). Then for each & € Ty, Yy (T) = Vpm(T) — Ypm (7).
Let ¢ = ¢ . If p = f, then all degree m coefficients of r are 0. So
Jsm ={Z—C: Z € Jpm \ {¢}} and thus |Jgm| = [Jrm| — 1 so (¥) is
established.

We continue with the example above, in which case m = 3 and f could
be any one of p, ¢, or r. Say f = r. Then the degree 3 terms in g(p, Z)(¥)
are (v1+y1)* (22 +y2) — (w1 +y1) (w2 +y2) (w3 +ys) —aizs +ara205 +4yf =
y3y2 — y192y3 + 4y$ + h() where h is a polynomial of degree 2 in ¥ with
coefficients in Z involving the constants z1, x2, and z3.

Suppose the theorem is false and pick R such that ¢(R) is minimal
among all counterexamples. Notice that R # () and R # {0} because the
statement is trivially true for both of these sets. We may in fact assume
that 0 ¢ R because R\{0} is also a counterexample and p(R\{0}) = ¢(R).

Pick a piecewise syndetic subset A of N and a minimal left ideal L of
BN such that AN L # § and

{(TeN ANLNN,er—pE)+A#0} ¢u.

(We know there is a minimal left ideal L of BN such that AN L # 0
because AN K(BN) # () and K (BN) is the union of all of the minimal left
ideals of ON.)

Let D =N \{Z e N : ANLN(,cp—p(%)+ A # 0} and note that
D ewu. Let D ={§€ D: -4+ D € u} so that by [72, Lemma 4.14],
whenever ¢ € D*, —¢ + D* € u. Notice also that L is in fact a left ideal
of BZ. (It is an easy exercise, which is [72, Exercise 4.3.5], that N* is a
left ideal of BZ so [72, Lemma 1.43(c)] applies.)
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Pick f € R of smallest degree. For ¥ € Z7 and p € R, let g(p, ) be as
in (*). Pick gqo € ANLandlet B={x € N: —x+A € qo}. By [72, Lemma
4.39] B is syndetic, so pick H € Pf(N) such that N = (J,.y(~t + B).
Pick tg € H such that —tg+ B € g and let Cy = —tg + B. Since Cy € qq,
CoNL#0.

Let So = {g(p,0) : p € R} and let By = {f € NV : ConL N
MNpes, —P(@) +Co # 0}. By (*), So € R and ¢(Sy) < ¢(R) so Ey € u.
Pick yi € Ey N D* and pick r, € Co N LN MNpes, —PWi) + Co. Let
¢1 = —f(y1) + 71 and note that, since L is a left ideal of 8Z, ¢; € L. Pick
ty € H such that —t; + B € ¢;.

Inductively, assume that we have m € N and have chosen (g;)7", in L,
(t;)™, in H, and (g; )™, in N7 such that

(1) for j € {0,1,...,m}, —t; + B € qj,
(2) forl e {1,2,...,m}, gi +yi51+ ...+ ym € D*, and
(3) fori €{0,1,...,m—1} and p € R,

—(ti+ P +yiz+ .-+ Ym)) + B E g

Hypotheses (1) and (2) trivially hold for m = 1. To verify hypothesis
(3), let p € R. We need to show that —(to + p(yi)) + B € ¢1. Now

-,

1
r1+9(p,0)(4i) € Co and so —to + B € r1+ g(p,0)(4i ) = r1 + p(yi ) —
f(yi) =a +p(yi) as required.

Now let G, = {{yiF1+yFe+...+ym}: L€ {0,17...,m—1}}U{6}
and let S, = {g(p,Z) : p € R and ¥ € Gp,}. Let C,, = (—tm +
B) N Myer Nitot (= (i + p(yids + yide + .. + ym)) + B). Then by
hypotheses (1) and (3), Cy,, € ¢, and so Cp, NL # (). Let E,, = {7 € N/ :
CnNLNNyes,, —P(F) + Cp # 0}. By (¥), S € Rand ¢(S,) < ¢(R) so
E,, € u. By hypothesis (2), for each [ € {1,2,...,m}, —(gi+wi1+...+
Ym )+D* € u. Pick y,i1 € BNy —(i+yiT1+. . .+ym )+D* and pick
Tmt1 € Cu NLNNyes, —PWmr1) + Cme Let i1 = —f (Y1) +rm1
and note that ¢, 11 € L. Pick ¢,,11 € H such that —¢,,11 + B € ¢pn+t1-

Hypotheses (1) and (2) hold directly. To verify hypothesis (3), let
1e€{0,1,...,m} and let p € R. Assume first that [ = m. Then r,, 11 +
9(P,0)(ymt1) € Cry and 50 —ty, + B € rii1 + 9(p,0) (Ym't1 ) = Pmy1 +
PYmr1) — f(Umi1) = @Gm1 + P(Ym’1) so that _(tm +p(ym_'+1 )) +Be
Gm+1 as required.

Now assume that | < m, let © = y;51 +yi72+- ..+ Ym, and notice that
Z € Gy Then rpy1 + 9(p, @) (Ymy1) € Cn € —(ti + p(&)) + B and so
—(t1+p(Z)) +B € i1 + 90, ) (Ym+1) = T +P(F+ Y1) —p(F) —
fYmi ) = ¢m+1 + (T + Ymi1 ) —p(f). Thus —(tl +p(Z+ ym_’+1)) + B €
Gm+1 as required.
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The induction being complete we may choose [ < m such that ¢; = t,,,
because H is finite. Let §¥ = y 31 + yiS2 + ... + ym. By hypothesis (2),
y € D*. We have that (~t,, + B) N(,cp (= (tm +p(7)) + B) € g so
pick a € (=t + B)Nyer (= (tm +p(¥)) + B). Let r = a+tm + qo
and notice that r € ANLN () cp —p(¥) + A, contradicting the fact that
ye D. O

Corollary 4.5. Let j € N, let R be a finite set of integral polynomials
from Z7 to Z, let A be a piecewise syndetic subset of N, and let (y,)5 4
be a sequence in N7. There exist a € N and o € P¢(N) such that for every

FER, a+ f(Q,cqtn) €A
Proof. By [72, Lemma 5.11] pick an idempotent u € () +_; FS({yn)3%,,)-

Pick a minimal left ideal L of AN such that LN A # (. Let B = {79? €
N ANLNNjep—f(@)+A # 0} Then FS((yn)7L,,) € u and by

n=m

Theorem 4.4, B € u, so pick a € Py(N) such that > . v, € B. Pick
aEAﬂLﬂmfeR_f(Zneay_;’b)—FA. O

The proof of the following theorem is adapted from the proof of [10,
Proposition 4.10].

Theorem 4.6. Let j € N, let R be a finite set of integral polynomials
from 77 to Z, let p be an idempotent in c{K(SN), let A € p, and let
(Yn)o2 1 be a sequence in N7. There exist sequences (H,)2, in P(N)
and ()22, in N such that for each n € N, max H, < minH,y; and
letting z;, = Y ,cpy Y, for each f € R and each B € Py(N), we have

Sonepn+ F (X nepin) € A

Proof. Let A* ={n € A: —n+ A € p}. By [72, Lemma 4.14], for all
n € A*, —n+ A* € p. By Corollary 4.5 pick 1 € N and H; € P;(N) such
that for all f € R, 1 + f(3,cpy, 9t) € A" and let 21 = 3,y Ui

Let n € N, and assume we have chosen x1,x2,...,2, in N, Hy, Hs, ...,
H, in P¢(N), and 71,73, ..., 2, in N’ such that

(1) if ke {1,2,...,n — 1}, then max Hy < min Hy1;
(2) if k€{1,2,...,n}, then 2, = >,y ¥i; and
(3) if 0 #3C{1,2,...,n} and f € R, then

Zteﬁ Ty + f(zteﬁ z) € A",

Let D = {Y,cpm + [(X,e57) : 0 # B C {1,2,...,n}} and let
C=A"NNyep(—w+A*). For fe Rand 0 # § C {1,2,...,n} define a
polynomial g(f, ) : ZJ — Zby g(f,8)(0) = f( s 2t +T) = F(Ciep 2t)-
Let ® = RU{g(f,8): f € Rand 0 # 8 C {1,2,...,n}}. Let d = max H,,.

By Corollary 4.5 applied to the sequence (y;)§2,, |, pick 41 € N
and H,41 € Ps(N) with min H,+1 > d such that for all g € ®, 41 +
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g(Ztele ;) € C and let 2,11 = ZteHnJrl y:. We claim that z,1,
H, 1, and z,}1 are as required.

Conclusions (1) and (2) hold directly. So let f € R and nonempty 8 C
{1,2,...,n+ 1} be given. If max 8 < n, then conclusion (3) holds by as-
sumption. So assume max § = n+1. If § = {n+1}, then (3) holds because
R C ®. So assume {n+1} C Sand let v = 3\ {n+1}. Then g(f,7) € ®
s0 Tpy1 +9(f, 'Y)(Z:teHnJrl yi) € C C 7(Ztefy Ty + f(zt@ Z )) + A* so
Zte»y T+ f(Ztev Z ) + Tp41 + f(Etew zt+ Z:teH"+1 Ui ) - f(ZtEfy Z ) €
A*. That is >, gt + f(D ;e 1) € A" O

Theorem 4.7. Let m € N, for j € {1,2,...,m} let T'; be the set of inte-
gral polynomials from 77 to 7. Let p be an idempotent in (K (3N). For
je{1,2,...,m}, let F; € P¢(I';) and for j € {0,1,...,m}, let ¢; € N.
For any A € p, there exists a sequence (s;,)°°_; in N1 such that for each
a € Pr(N), if Too = (Ta,0,Tasls -+ Taym) = D pcalst,0, 5615+ St,m), then
cora,0 € Aand forj € {1,2,...,m} and f € F}, f(ra,0.Ta1s---sTaj—1)+
CjTa,j € A.

Proof. We proceed by induction on m, so assume first that m = 1. We
may presume that 0 € Fy. Since p is an idempotent, by |72, Lemma 6.6],
coN € p. Pick a sequence (1,)72; in N such that F.S({l,)52 ;) € ANcN
and for each n let y, = f:—j) Then given a € Pr(N), co ), ¥t € A

Now pick sequences () ; and (H,)$2 ; as guaranteed by Theorem
4.6 for j = 1, the set AN ciN € p, the set Fy of polynomials, and the
sequence (Y, )nq. Letting z, = >,y i, we have for each 8 € Py(N)
and each f € I7, Zne/sfn + f(zneﬁ zn) € ANeN. Since 0 € Fy,
each z, is in ¢N. For n € N, let 5,0 = 2, and s, = % For
a € Pr(N), let 7 = > c0(8n,08n,1)- Then cora0 = 0D ,cn?n =
0D nca ZtGH” Y = Co Zteﬂ yr € A where 8 = J,, Hn- Also fo
f S F1 and o € Pf(N), f(ra,O) + CiTa,1 = f(znea Zn) + Znea Tn € A.
So the theorem holds for m = 1.

Now let m € N and assume the theorem has been proved for m. For
je{1,2,...,m+ 1} let I'; be the set of integral polynomials from Z’ to
Z. Let p be an idempotent in ¢/K(SN). For j € {1,2,...,m + 1}, let
F; € P¢(I';) and for j € {0,1,...,m + 1}, let ¢; € N. We may presume
that 0 € F, 41 and we note that ¢, 1N € p.

By assumption we have a sequence (b,,)%° ; in N™*! such that for each
o€ Pf(N), if da = <aa70, Ao, 1y - - - ,aa7m> = Zt6a<bt707 bt71, ey bt,m>, then
Colq,0 € A and fOI‘j S {1, 2,... ,m} and f € Fj, f(aa707aa71, ey an_l)Jr
CjQq,; € A.

Now pick sequences (z,,) ; and (H,)52 ; as guaranteed by Theorem
4.6 for j = m+1, the set ANc,,,+1N € p, the set F,,, 1 of polynomials, and
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the sequence (bjl);l'ozl. For n € N, let z,, = ZteH” b_,;. Then for f € Fi 41
and o € Pr(N), > co2n+ fOoca?n) € ANcppN. For n € N,

let Spmt1 = C:;:l and (S5,0,5n,15---550,m) = Zn. For a € P¢(N) let

To = (Ta,0yTa,1s -« > Tamtl) = Zt6a<stvo’ St1,- .-, St,m+1). We shall show
that (r3)aep, v is as required. So let a € Py(N) and let 3 =, ¢, Hn-
Then cora,0 = €0 peca 510 = €0 D nea #n.0 = €0 nea dutem, Vt0 =
Co Zteﬁ bt70 = €C0ag,0 S A.

Now let j € {1,2,...,m + 1} and let f € F;. We need that c;jr, ; +
f(ra,0,Ta1s---s7a,j—1) € A. Assume first that j = m + 1. Then
C7rL+17’(x,m+1 + f(ra,Oa Ta,l; .o aTa,m) = Znea Lp + f(znea Z;’l ) S A

Finally, assume that j < m. Then ¢;jra; + f(T0,0,Ta1s- - Taj—1) =
Cj Znéa Sn,j + f(2n6a<sn,07 Sn,lye - sn,j71>) =
cjag, j +f(a570,a5’1,...,a5’j,1) € A. O

The following is the main Ramsey theoretic result of this section.

Corollary 4.8. Let m € N, for j € {1,2,...,m} let F; be a finite set of
integral polynomials from Z7 to Z, and for j € {0,1,...,m}, let ¢; € N.
If N is finitely colored, there ezist a color class A and a sequence (Sp,)02 ¢
in N1 such that for each o € Pr(N), if Fo = (Pa,0sTals---sTam) =
Y tcalst,00561, -y Stm), then corao € A and for j € {1,2,...,m} and
feF;, f(raorais---sTaj—1)+¢jTa,; € A.

Proof. Given an idempotent p € ¢/K(SN) and a finite coloring of N, pick
a color class A in p and apply Theorem 4.7. (Members of idempotents in

clK(BN) are known as quasicentral sets — a weaker notion than central.
See [68].) O

The following corollary is probably easier to understand. In the au-
thors” words from [10], it involves a “chain of configurations” of the form
{z,y,x + f(y)}. This corollary is [10, Corollary 1.11].

Corollary 4.9. Let m € N and let f1, fa,..., fm be integral polynomials
from Z to Z. For any finite coloring of N there exist yo,y1,---,Ym and
X1,%2, ..., Ty all of the same color such that for each j € {1,2,...,m},

z; =y; + fi(yj-1)-

Proof. For j € {1,2,...,m} let ¢; = 1 and let F; = {0,g;} where
9 (Yo, Y1, ---,yj—1) = fj(yj—1) and apply Corollary 4.8. The conclusion
follows when « is a singleton. O

We conclude this section with the statements of two recent Ramsey
theoretic results about more general polynomials. (We will not prove
these results, and they will not be used later in this paper.) The first,
due to Bergelson and Robertson, extends the definition of polynomials
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to apply to functions into finite dimensional vector spaces over countable
fields.

Definition 4.10. Let F' be a countable field, let W be a finite dimensional
vector space over F', and let n € N.

(a) A function ¢ : F™ — F is a monomial if and only if there exist
a € F and (dy,ds,...,d,) € w™\ {0} such that for # € F™,
o(F) = azta oo

(b) A function p : F™ — W is a polynomial if and only if for & € F",
p(Z) is a linear combination of vectors with monomial coefficients.

Definition 4.11. Let (G, +) be an abelian group and let r» € N.

(a) A subset A of G is IP? if and only if whenever 1,29, ...,2, € G,
there exists () # o € {1,2,...,r} such that > _ =, € A.

(b) A subset A of G is AIP} if and only if there exist subsets B and
C of G such that B is IP}, C' has zero upper Banach density, and
A=B\C.

Any AIP} set is quite large. For example, if G = Z, and A is AIP},
then A is a member of any minimal idempotent in SZ.

Theorem 4.12. Let F be a countable field, let W be a finite dimensional
vector space over F, let (X, B, ) be a probability space, let T be an action
of the additive group of W on (X,B,pn), letn € N, let p: F™* — W be a
polynomial, let B € B, and let ¢ > 0. Then there is some r € N such that
{@e F": w(BNTPE)B) > u(B)? — €} is AIP}.

Proof. [19, Theorem 1.2]. O

As noted in [19], Theorem 4.12 is a strengthening of [105, Corollary 5],
a result of McCutcheon and Windsor.

The last result that we will state is another result from [10]. It uses
an extension of the notion of polynomial to apply to functions from one
countable commutative group to another.

Definition 4.13. Let H and G be countable abelian groups and let f :
H — G. Then f is of polynomial type of degree 0 if and only if it is
constant. For d € N, f is of polynomial type of degree d if and only if
f is not of polynomial type of degree d — 1 and for every h € H, the
function defined by = — f(x + h) — f(x) is of polynomial type of degree
c for some ¢ < d. The function f is of polynomial type if and only if it is
of polynomial type of degree d for some d € w.

Notice that the trivial homomorphism from H to G is of polynomial
type of degree 0 and any other homomorphism from H to G is of polyno-
mial type of degree 1. In particular, the following theorem applies if F' is
any finite set of homomorphisms.
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Theorem 4.14. Let j € N, let G be a countable abelian group, let F' be
a finite family of functions of polynomial type from G’ to G such that
f(0) =0 for each f € F, let A be a piecewise syndetic subset of G, and
let (yr, )2, be a sequence in G?. There exist a € A and o € P¢(N) such

that for each f € F, a+ f(3_,c,¥t) € A.
Proof. [10, Corollary 2.12]. |

Part 3. Structure of 35S

5. ELEMENTS OF FINITE ORDER IN SN
AND CONTINUOUS HOMOMORPHISMS INTO N*

In this section we present Zelenyuk’s proof [132] that for each n € N,
there exists an element of order n in N*, and consequently there is a
continuous homomorphism ¢ : SN — N* such that |¢[SN]| = n.

We start with the simpler proof of the n = 2 version.

For x € N, we denote the binary support of by supp(z). That is,

T = Ztesupp(z) 2",

Theorem 5.1. There ezxist p € c{K(SN) \ K(pN) and q¢ € K(SN) such
thatp+p=q=q+q=q+p=p+g.

Proof. Let I be an infinite subset of w such that w\ I is also infinite. Let
Y = {z € N:supp(z) C I} and let T =Y NH. It is routine to verify
that T is a compact subsemigroup of H and that H\ T is an ideal of H so
that 7N K(H) = (. By [72, Theorem 1.65], K(H) = HnN K(ON), so we
have that TN K(BN) = 0.

Let X = {z € N :supp(z) NI # 0}, define 7 : X — I by 7(z) =
max(supp(x)N1T), and let 7 : BX — Sw be the continuous extension of 7.
The restriction of 7 to {2% : k € I} is a bijection onto I so the restriction
of 7 to {2 : k € I} is a homeomorphism onto 1. We claim that

(%) if u € BN and v € X NH, then u +v € X and 7(u + v) = 7(v).

To verify (x), let u € BN and v € X NH. We claim that N C {z € N :
—z+ X € v} solet z € N. Let m = maxsupp(z) + 1. Then 2"NNX € v
and 2"NNX C —z+ X, s0 X € u+v. To see that 7(u + v) = 7(v) we
show that 7 o p, is constantly equal to 7(v) on N. So let z € N and let
m = maxsupp(z) + 1. Then 7o A\, and 7 agree on 2N so agree at v.

Pick a minimal right ideal R of T. By [72, Exercise 3.4.3(b)] we may
pick an injective strongly discrete sequence (r;)32 in {2% . k € I'}*. For
j € w pick a minimal left ideal L; of T" with L; C T+ r;. Let e; be the
identity of RN L;. By |72, Theorem 1.60| pick an idempotent f € K (H)
such that f < ep. Let D= {f+e;:j € w}.
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Now 7 is a homeomorphism on {2¥ : k € I} so (7(r;))$2 is an injective
strongly discrete sequence in I. By (x), for each j € w, 7[L;] = {7(r;)}
so T(f +e;) = 7(ej) = 7(r;), so (T(f + ¢€;))52, is an injective strongly
discrete sequence in I. In particular, D is infinite.

Pick w € ¢f(D)\ D. We claim that w is right cancelable in SN. So
suppose not. Then by [72, Theorem 8.18] we may pick v € N* such that
w=v+w. Let D' ={ue D:7(u) # 7(w)}. Since 7 is injective on D,
|ID\D'| <1. Then w € cf(D")Ncl(N+w) so by [72, Theorem 3.40] either

(i) there exists k € N such that k + w € ¢/(D’) or
(ii) there exists u € D’ such that u € SN + w.

Case (i) is out since w € H and ¢f(D’) C H while for any ¥ € N,
(k+H)NH = 0. So pick u € D’ such that v € SN + w. Then by (x),
T(u) =7(w),sou ¢ D'.

Let p = eg +w. Now D C K(H) C K(BN) so w € ¢/(K(8N)) and by
[72, Theorem 4.44], ¢/(K(BN)) is an ideal of BN so p € ¢/(K(8N)). To
see that p ¢ K(ON), suppose instead that p € K(SN). Pick a minimal
right ideal V' of BN such that p € V. Pick an idempotent u € V. Then
V =u+ BN so by [72, Lemma 1.30], p=u+p so eg + w = u + ey + w.
Since w is right cancelable, eg = u + ey so ey € K(SN), while ¢y € T, a
contradiction.

Given x € R = ¢g + T, we claim that p, is constantly equal to f + x
on D so that w + z = f + «. To see this, note that for j € w, x = ¢y +
soej+r=ejt+e+r=e+xr=x50 f+ej+x=f+zasclaimed. In
particular w + ey = f +eg = f. Let ¢ = f + w.

Then p+p=cotw+e+w=e+f+w=Ff+w=¢q And
gtg=f+w+f+w=Ff+wte+frtw=Ff+f+f+tw=Ff+w=q
Alsog+p=f+wt+e+tw=f+f+w=f4+w=qand p+q =
p+tp+p=q+p=gq U

In [72] immediately after Corollary 8.31 we noted that we did not know
whether it was possible for the sum of two elements of SN\ K(5N) to be
in K(BN). This question is answered by Theorem 5.1 since p ¢ K(SN)
and p +p € K(BN).

Ordinarily if n € N and p € SN, by np we would mean n - p, that is
multiplication in the semigroup (SN, -). However, in the statement and
proof of the next theorem, by np we mean the sum of p with itself n times.
Recall that for m,n € N, m V n = max{m,n}.

Theorem 5.2. Let n € N\ {1}. There ezists p € /K (SN)\ K(5N) such
that p, 2p, ..., np are all distinct, (n+ 1)p = np, and np € K(ON).

Proof. The case n = 2 is Theorem 5.1. We will assume that n > 3. For
1 €{0,1,...,n} pick aset I; with ) = Iy CI; C... C I, = w such that
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for each @ € {1,2,...,n}, |I; \ I;—1| = w. Define h : N — {1,2,...,n}
by, for x € N, h(z) = min{i € {1,2,...,n} : supp(z) C I} and note
that h(z) = max{i € {1,2,...,n} : supp(z) N (I; \ I—1) # 0}. Let
h: BN — {1,2,...,n} be the continuous extension of h. We claim that

(%) if w € AN and v € H, then h(u + v) = h(u) V h(v).

To verify (x), let u € SN and v € H be given. We will show that ho P

and Phiw) © h agree on N so let € N and let m = maxsupp(x) + 1. We

show that h o Az and Ap(y) © h agree on 2N, so let y € 2"N. Then
supp(z + y) = supp(x) Usupp(y) so h(z +y) = max{i € {1,2,...,n}:
supp(z +y) N (I; \ Ii—1) # 0} = h(z) V h(y).

For i € {1,2,...,n}, let T; = h=1[{1,2,...,i}] N H. By (x), the re-
striction of A to H is a homomorphism onto ({1,2,...,n},V) and each
T; is a compact subsemigroup of H. Further, for each i € {1,2,...,n},
h[K(T})] = {i} by [72, Exercaise 1.7.3]. Thus, if i € {1,2,...,n — 1},
then T; N K (T;+1) = (. Note that T,, = H and by [72, Lemma 6.8 and
Theorem 1.65], K (H) = K(5N) N H.

Forie {1,2,...,n}, let X; = {x € N:supp(z) N (I; \ I;_1) # 0}, and
define 7; : X; — w by for x € X;, 7;(x) = max (supp(m N (I; \ I,»,l)). Let
T;  X; — Bw be the continuous extension of ;.

For k € I; \ I,_1, 2" € X; and 7,(2%) = k, so the restriction of 7; to
{2k .k € I;\ I,_1} is a homeomorphism onto I; \ [;_1.

We now claim that for ¢ € {1,2,...,n},

(1) if u € AN and v € X; NH, then v +v € X; and 7;(u + v) = 7;(v)
and
(2) if v e X; and w € H\ X;, then v +w € X; and 7;(v + w) = 73 (v).

To verify (1), let v € BN and v € X; NH. To see that X; € u + v,
we show that N C {x € N: —z + X; € v}. Solet z € N and let
m = maxsupp(z) + 1. Then X; N2™N C —z + X.

To see that 7;(u + v) = 7;(v) we show that 7; o p, is contstantly equal
to 7;(v) on N. So let x € N and let m = maxsupp(x) + 1. Then 7; 0 A,
and 7; agree on 2NN X;.

To verify (2), let v € X; and w € H\ X;. To see that X; € u + v,
we show that X; C {# € N: —x 4+ X; € w} so let x € X; and let
m = maxsupp(z) + 1. Then 2N C —z + X;.

To see that 7;(v +w) = 7;(v), we show that 7; o p,, and 7; agree on X;.
So let « € X; and let m = maxsupp(z) + 1. Then 7; o A, is constantly
equal to 7 (x) on 2N\ X;.
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We note that for i € {1,2,...,n}, K(T;) € X; NH. To see this, let
i€{1,2,...,n} and let v € K(T;). Then E(v) = i so pick B € v such that
ﬁ[?] C {i}. Then B C X;. Note also that if i > 2, then T;,_; C H\ Xj.

We now construct idempotents e; > e3 > ... > e, with each e; € K(T})
and for i € {1,2,...,n— 1} aright zero semigroup {e; ; : j € w} C K(T3)
with e; o = e; such that for each i € {1,2,...,n — 1},

(i) if 4 > 2, then for each j € w, e; ; < e;—1 and
(ii) for j < kin w, T(e; ;) # Ti(eir) and 7;(e;) ¢ cl{7;(e; ;) : j € N}

Pick a minimal right ideal R; of 71 By [72, Exercise 3.4.3(b)], pick an
injective strongly discrete sequence (r1 ;)52 in {2k ke I,}*. For j € w,
choose a minimal left ideal L ; of 17 such that L; ; C 11 + 7 j, let eq ;
be the identity of Ry N L; ;, and let e; = e .

Given j € w, e1; € AN+ and 71 ; € X3 NH so by (1) above,
71(e1,;) = 7Ti(r1,;). Since 71 is a homeomorphism on {2*: k€ I}, we
have 71(r1,0) ¢ cl{71(r1;) : j € N} so Ti(e1) ¢ ct{7i(e1 ;) : j € N}.

Now let i € {2,3,...,n—1} and assume we have done the construction
for ¢ — 1. Pick a minimal right ideal R; of T; with R; C e;_ + T;. Pick
an injective strongly discrete sequence (r; ;)52 in {2 i ke I\ I,_1}*.
For j € w pick a minimal left ideal L; ; of T; with L; ; CT; + 15 ; + ej—1
and let e; ; be the identity of R; N L; ;.

Now for j € w, r;; € X; and ;-1 € T;_1 C H\ X; so by (2) above,
ﬂ'(’/‘i,j + 6,'_1) = ﬁ(rm) and by (1) above, 771‘(61'7]') = ﬁ'(’/‘i,j + 61'_1) and
thus ﬁ-(ei,j) = ﬁ(T’iJ).

Since 7; is a homeomorphism from {2¥:k € I;\ I,_1} onto I; \ I;_1
we have (7;(e; ;)32 is an injective strongly discrete sequence in/; \ I;—;
and 7;(e;0) = Ti(rio) ¢ ct{7i(ri;) 7 € N} = cl{7Ti(e;;) : 7 € N}. Let
e; =e,0. For j € w, e;; € (6,1 + BN) N (BN + e;_1), so we have that
€ij < €i—1.

Pick a minimal right ideal R,, of T,, = H with R, C e,_1 + T,, and
pick a minimal left ideal L,, of T, with L,, C T,, + e,_1. Let e, be the
identity of R,, N L,, and note that e, < e,_1.

Let D,_1 ={en +en_1;:j €N} Given j €N, 7,,71(ep + €n_1,) =
ﬁ\:(en,u), so D,,_1 is infinite. Pick ¢,—1 € D;,—1\ D,—1. Note that for
jeN, en1,; € K(Th-1) € X,,—1NH so by (1) above, D,,_; € X,,_1 NH.

Now let i € {1,2,...,n — 2} and assume that ¢;1; has been chosen.
Let D; = {e;+1 + gi+1 + €;,j : j € N} and note that D; € X; NH. Given
J € w, Ti(eix1 + qiv1 + €ij) = Ti(eij), so 7; is injective on D; and D; is
infinite. Pick ¢; € D; \ D;.

We can show that for each i € {1,2,...,n — 1}, ¢; is right cancelable
in AN exactly as in the proof of Theorem 5.1. Note that e, € K(T,) =
K(H) C K(pN) so D,—1 C K(pN) and thus ¢,—1 € /K (SN). By [72,
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Theorem 14.44], /K (ON) is an ideal of SN and given i € {1,2,...,n—2},
D; C BN+ gi1+1 + BN so ¢; € clK(BN).

Let p = e1 + 1. Then p € ¢«/K(BN). To see that p ¢ K(SN) supose
that p € K(GN). Then as in the proof of Theorem 5.1, we have p = u+p
for some u € K(BN) so e; +¢1 = u + e1 + ¢ so by right cancellation,
e1 =u+e; € K(AN) while e; € T} C N\ K(pN).

We note that for each j € N, ep—1j + ep—1 = €n—1, 50 ey +€p_1,j +
én—1 =€n+en_1 =ey,. Thus p., , is constantly equal to e, on D,_1 so
Gn—1+en—1=en. Alsoforie {1,2,...,n—2} and j €N, ;41 + gi+1 +
€i; + € = eitr1 + gi+1 + €; S0 pe, is constantly equal to e; 1 + giy1 + €
on D; and thus ¢; +e; = e;41 + qit1 + €.

Now we verify that for k € {1,2,....,n —2}, e1 + 1 + ex = ex11 +
qx+1 +er and e; +q1 +e,—1 = e,. First let k =1. Then e; +q1 + €1 =
e1t+es+qa+er =es+qa+er. Now assume that k € {2,3,...,n—2} and
we know that e; +q1 +ex—1 = ex +qr +ex—1. Then ey +qi+ep =e1+q1+
ep—1tex =ep+qrtep—1tex=ep+qptex =ep+eptr1 +qrr1t+ex =
€k+1 + qr+1 +er. Now we have that e; +q1 +en—2 =€p—1+gn_1+€n_2
soei+q+ep—1=e1+qtesoten1=¢€p1+qn-1ten2o2te,1=
en—1+qn-1+€n_1=¢€n_1+e€n=én.

Now we show that for k € {1,2,...,.n — 1}, kp = e + qr + ex—1 +
Gh-1+...+er+qgandnp=e, +qp_1+en2+qu2+...+e1+aq.
In particular this will show that kp € ¢/K(8N) and np € K(ON). For
k=1 kp=p=e +q. Let k € {2,3,...,n — 1} and assume that
(k—1p=ep—1+qu-1+ex—2+qe—-2+...+e1+q. Thenkp=-e; +q1 +
€k—1+qr—1+...+te1+q =ex+qp+ek—1+q—1+...+e1+q.

In particular, (n—1)p = en—1+qn—1+en—2+Gn_2+...+e1+q1 sonp =
ert+tqgiten—1+gnat+...teat+qg =eptgn-1t+en—2+qno+...+e1+aq.

Also(n+1l)p=er+qat+es+gu-1+en—2+t+guot...+e1+aq =
eitqates—1t+entgn1ten2o2t+gno2+...ter1+q =eptep+qp1+
en—2+qn-2+...te1+q =e€n+gn1+e€n2+qp_2+...+€1+q =np.

To complete the proof, we need to show that p, 2p, ....np are all
distinct. We have shown that (n+1)p = np, so to show that p, 2p, ... ,np
are all distinct, it suffices to show that (n — 1)p # np.

We now claim that for each ¢ € {2,3,...,n — 1}, ¢; + ¢,_1 = ¢;. For
i = n — 1 we have that for each j € N, (e, + €p_1;) + €n—2 = €, +
(en—1,j + €n—2) = en + €n_1,j SO pe, , is the identity on D,,_; and thus
Gn—1+ €n—2 = gn—1. Fori € {2,3,...,n — 2} we have for each j € N,
(€it1+qit1+eij)teim1 =eip1 +qir1+(eij+eim1) =eip1+qiy1+€ij
SO pe,_, is the identity on D; and thus ¢; +e,—1 = ¢;.

Now suppose that (n —1)p = np. Thatis e,— 1+ ¢n-1+e€n—2+Gn_o+
o.tert+qgr=en+gn_1+eno+qu_o+...+e1+q . Then, using the fact
just established that for each i € {2,3,...,n—1}, ¢; + €;-1 = g;, we have
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that e,—1 +qn-1+gn2+...+q@1 =€n +qn-1+qu_2+...+q1. Then
cancelling ¢,—1 + gn—2 + ...+ ¢1 on the right, we have that e,,_; =€,, a
contradiction. O

6. SUBSETS OF 35S THAT ARE NOT BOREL

We take as is usual (but not, unfortunately, universal) that the Borel
subsets of a topological space X are the members of the smallest o-algebra
of subsets of X that contains the open subsets.

Given a discrete semigroup (S, -), there are many algebraically interest-
ing subsets of 5S. Included are the set of idempotents in 55, the smallest
ideal of 85, S§*, S*S*, any semiprincipal right ideal of the form p3S with
p € S*, any semiprincipal left ideal, minimal right ideals, minimal left
ideals, maximal groups in the smallest ideal, the closure of the smallest
ideal, and so on. Some of these are automatically compact such as the
semiprincipal left ideals (including the mimimal left ideals) and S*. And,
of course, the closure of any one of these algebraically interesting subsets
is compact.

We present here results from [80] showing that if S is countable and
cancellative, then none of the set of idempotents of S, the smallest
ideal of S, §*S*, or pBS for any p € S* is Borel. In fact hypotheses
weaker than cancellation suffice, though not much weaker. The hypothe-
ses cannot be weakened to left cancellative or right cancellative. If S
is a right zero semigroup, then S is left cancellative, 55 is a right zero
semigroup, and E(8S) = K(8S5) = 85, S*S* = S* and if r € S*, then
rS* = §*. If S is a left zero semigroup, then S is right cancellative, 8.5
is a left zero semigroup, and E(8S) = K(B8S) = 8S, S*S* = S* and
if r € §*, then 7S* = {r}. Nor can they be weakened to weakly right
cancellative and weakly left cancellative as shown by the example (N, V),
where z V y = max{x,y}. In this case, for p,q € PN, if ¢ € N*, then
pV q = q, while if ¢ € N and p € N*, then pV ¢ = p so E(SN) = BN,
N* v N* = K(ON) = N*, and if » € N*, then r V N* = N*,

Throughout this section we will assume that (.5,) is a countably infi-
nite weakly left cancellative semigroup. We will assume that S has been
ordered in order type w and write s < ¢ if s precedes ¢ in this ordering.

Lemma 6.1. Every Borel subset of 3S is the union of at most ¢ compact
subsets of BS.

Proof. One may construct the Borel subsets of 55 as follows. Let Ay =
{A C BS : Ais open or closed in S}. Inductively let 0 < o < w; and
assume A, has been defined for all 0 < a. If a is a limit ordinal let
Aov=Uycq Ao Ta=0+1, let

A ={UC:CC Asand [C| Sw}U{NC:0#CC As and [C] < w} .
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Then it is routine to verify that | J,.,, A« is the set of Borel subsets of
BS.

Let D = {A C S : Ais compact} and let F = {4 C 35 : (3C C
D)(IC] < cand A =JC). It suffices to show that for all & < wy, A, C F.
Since the topology of 55 has a basis consisting of ¢ clopen sets, Ay C F.
Let 0 < a < w; and assume that for all 0 < a, A, C F. If ais a
limit ordinal, then trivially A, C F. So assume that o = § + 1 and let
C C A such that 0 < |C| < w. Trivially |JC € F. To see that (C € F,
for each A € C, pick €4 C D such that |€4] < cand A = (JE4. Tt
is routine to verify that (YC = (J{(N ec F(A) : F € X acc€a}. Since
| X acc€al < ¢ = ¢, we are finished. O

Lemma 6.2. There is a sequence (s,)5 1 in S such that for each n € N,
(1) sp < Spt1;
(2) if a = s, and b =< s, then ab < s,41; and
(3) if a < s, and ab =< s, then b < s,41.

Proof. Pick s; € S. Let n € N and assume s,, has been chosen. Let A =
{ab:a < spand b < s,}U{be S: (Ta=s,)(Fec=Xsy)(ab=1c)}U{sp}.
Then A is finite. (The second of the three listed sets is finite since S is
weakly left cancellative.) Pick s,,41 such that forallb € A, b < s,41. O

We will assume that we have fixed (s,)5; as guaranteed by Lemma
6.2 and let P = {s, : n € N}. If N has its natural order, we can take
s, = 2" for (N, +) and s,, = 22" for (N, ).

Definition 6.3. We define 7: S — N by 7(t) = min{n € N: ¢ < s,} and
let 7: S — BN be its continuous extension.

Note that if y € S*, then T(y) € N* so -1+ 7(y) € N*.
Lemma 6.4. Let x € S and let y € S*. Then
T(ry) € {=1+7(y),7(y), L +7(y)}-

Proof. We claim that for every a € S, there exists m € N such that if
Sm < b, then 7(ab) € {—1+7(b),7(b),1 4+ 7(b)}. To see this, pick m > 1
such that @ < s,,—1 and assume that s,, < b. Let n = 7(b). Then
Sn—1 <=b=spsom<n—1anda < s,_s. By Lemma 6.2 (2), ab < s,1.
If we had ab < s,,_2, then by Lemma 6.2 (3) we would have b < s,,_1 so
Sp—2 < ab < S$p41 80 T(ab) € {n —1,n,n+ 1}.

For each @« € S and ¢ € {-1,0,1}, let B,; = {b € S : 7(ab) =
i+ 7(b)}. Then UL% By, is cofinite so pick j(a) such that B, ;) € ¥.
For i € {-1,0,1} let C; = {a € S : j(a) = i} and pick ¢ such that
C; € z. We claim that T(zy) = i + 7(y). For this it suffices to show
that 7 o p, is constantly equal to i + 7(y) on Cj, so let a € C;. To see
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that 7(ay) =i+ 7(y), it suffices to show that 7o A\, and \; o 7 agree on
B,,i, where )\; is addition on the left by ¢ in SZ.. So let b € B, ;. Then
7(ab) =i + 7(b) as required. O

Lemma 6.5. Assume that S is left cancellative and k € N\ {1} such
that for any a,b € S, [{x € S : xza = b}| < k. Then for any p,q € BS,
HxeS:xp=q}| <k.

Proof. Let p,q € S and suppose that [{x € S : zp = ¢q}| > k. Pick
distinct z1,z2,..., 2 in S such that x;p = ¢ for each ¢ € {1,2,...,k}.
Define f: S — S as follows.
(1) Ifv € S\ 215, then f(v) = (z1)2.
(2) Assume that v = zyu for some u € S and note that since S' is left
cancellative, there is only one such u. Let f(v) = z;u where ¢ is
the first member of {2,3, ..., k} such that x;u # z1u.

Then f has no fixed points so by [72, Lemma 3.33], pick Ag, A1, A3 such
that S = Ag U A; U Ay and for each i € {0,1,2}, A; N f[4;] = 0. Pick
i € {0,1,2} such that A, € x1p. For j € {2,3,...,k}, let B; = {u €
S ¢ f(ziu) = zju} and pick j € {2,3,...,k} such that B; € p. Let
f: BS — BS denote the continuous extension of f. Then for v € Bj,
f(zi1u) = xju so fo Az, and A, agree on a member of p so f(mlp) = x;p.

Since A; € x1p, flA;] € f(aip) = xjp = x1p while fl[A4;]NA; = 0, a
contradiction. O

Lemma 6.6. Assume that S is left cancellative and k € N\ {1} such that
forany a,be S, |[{x € S:2za =0} <k. Let (x,)52, be a sequence in S*
such that T is injective on (x,)2>, and {7(z,) : n € N} is discrete. If =
is a cluster point of (x,)52 , then x ¢ S*S*.

Proof. We claim that 7 is injective on c/{x,, : n € N}. Suppose instead
we have distinct p and ¢ in ¢l{x, : n € N such that 7(p) = 7(¢). Pick
A€ pand B € ¢gsuch that AN B = (. Then 7(p) € cl{7(z,) : z, € A}
and 7(q) € c/{7(x,) : ¥, € B}. By [72, Theorem 3.40] we can assume
without loss of generality that {7(z,,) : x, € A} Nel{T(xy) iz, € B} £ 0
so pick m such that x,, € A and 7(z,,,) € cl{7(x,) : x, € B}. This
contradicts the fact that {7(z,) : n € N} is discrete.

Now let « be a cluster point of (z,)52; and suppose that z = yz
for some y and z in S*. By Lemma 6.4, 7 takes on at most 3 values
on 7[3Sz]. Let M = {s € S: sz € clgs({z, : n € N})}. Since 7 is
injective on {z, : n € N} and {x, : n € N} is discrete, T is injective
on cl{x, : n € N}. By Lemma 6.4 7 takes on at most three values on
Sz so by Lemma 6.5, M is finite. So z is in c¢lgs((S \ M)z) and in
clgs({xn : T(xn) ¢ {—1+7(2),7(2),1 4+ 7(2)}). Hence, by [72, Theorem
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3.40], there exists v € clgg({z, : n € N}) and s € S\ M such that v = sz,
or else there exists n € N such that 7(z,) ¢ {—1+7(2),7(2),1 4+ 7(2)}
and x, € BSz. The first possibility is ruled out by the definition of M,
and the second possibility is ruled out by Lemma 6.4. |

Lemma 6.7. Assume that S is left cancellative and k € N\ {1} such that
for any a,b € S, |{x € S : za = b}| < k. Let D be a compact subset of
S*S*. Then T[D) is finite. Consequently for any Borel subset B of S*S*,
[7[B]| <«

Proof. Supppose not and pick a sequence (z,)$2; in D such that 7 is
injective on (z,)52 ;. We may assume that {7(x,) : n € N} is discrete.
Pick a cluster point x of (2,)5%,. Then z € D but by Lemma 6.6,
x ¢ S§*S*.

Now let B be a Borel subset of S*S*. By Lemma 6.1, there is a
set £ of compact subsets of S with || < ¢ such that B = [J& so

7[B] = Upee 7D 0

Theorem 6.8. Assume that S is left cancellative and k € N\ {1} such
that for any a,b € S, |{x € S : wa = b}| < k. Let T C S* such that
P* CT. Then TT is not Borel. (In particular S*S* is not Borel.)

Proof. For each n € N, 7(s,,) = n so 7[P] = N and thus 7[P*] = N* so
that |T[P*]| = 2. It will suffice by Lemma 6.7 to show that |7[TT]| = 2°.
Pick = € P*. We will show that |7[zP*]| = 2. For ¢ € {—1,0,1}, let

B, ={ye€ P*:7(xy) =i+ 7(y)}. By Lemma 6.4, P* = U3:71 B; so

7IP*] = U,__, 7[Bi] so pick i € {~1,0,1} such that [F[B;]| = 2¢. Pick a
subset D of B; such that |D| = 2¢ and 7 is injective on D.

Note that, if y and z are distinct members of D, then 7(zy) # 7(xz).
(Otherwise one has i +7(y) = T(zy) = T(vz) = i +7(%) so by [72, Lemma
8.1], 7(y) = 7(2).) Thus |7[TT]| > |F[xzP*]| > |T]xD]| = 2. O

Recall that H = ()2, ¢/sn2"N and that we are assuming that for
(N, 4), s, = 2™.
Corollary 6.9. The sets N* + N* and H + H are not Borel in SN.
Recall that for T C S we let E(T') be the set of idempotents in 7.

Corollary 6.10. Assume that S is left cancellative and k € N\ {1} such
that for any a,b € S, |{x € S : za = b}| < k. Then the following sets are
not Borel: E(BS), K(B8S), p8S for any p € S*, and E(R) for any right
ideal R of S*.

Proof. We define an equvalence relation = on 85 by x = y if and only if
T(z) € Z+ 7(y). Since 7T is injective on P*, each equivalence class of =
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meets P* in at most countably many points so we may pick D C P* such
that |D| = 2¢ and if z and y are distinct members of D, then x # y.

Note that E(S*) C S*S* and, since S*S* is an ideal of 35, K(8S) C
5*S*. We will show that |7[E(K(8S))]| = 2° so that neither K(3S) nor
E(S*) is Borel by Lemma 6.7. Since E(8S) = E(S)U E(S*) and E(S) is
countable, this will also show that E(8S) is not Borel. For each p € D,
there is an idempotent e, in K(8S) N BSp. Then 7(e,) = ¢ + 7(p) for
some i € {—1,0,1} so e, = p and thus |F[E(K(BS))]| = 2° as required.

Now let p € §*. Then pD C S§*S* and for ¢ € D, 7(pq) =i + 7(q)
for some 7 € {—1,0,1} so pg = q and thus |T[pD]| = 2¢. Thus |[T[pBS N
S5*S*]| = 2¢ so that p8SNS*S* is not Borel. Since p3S\S*S* is countable,
pf3S is not Borel.

Let R be a right ideal of S*. For every p € P*, we can choose an
idempotent e, € RN BSp. Then 7(e,) € {—1+ 7(p),7(p),1 + 7(p)} by
Lemma 6.4. So 7[P*] C (—1+7[E(R)])UTIE(R)|U (1 +7T[(E(R)]). Since
7 is injective on P*, |T[P*]| = 2¢. It follows that |[T[E(R)]| > ¢. If E(R)
were the union of ¢ or fewer compact sets, there would be a compact subset
C of E(R) for which 7[C] is infinite. This contradicts Lemma 6.7. O

Corollary 6.11. Let T be an infinite semigroup. Assume that T is left
cancellative and k € N\ {1} such that for any a,b € T, |{x € T : xa =
b}| < k. Then E(BT) is not Borel.

Proof. Let S be an infinite countable subsemigroup of 7. By Corollary
6.10, E(B8S) is not Borel. Since E(8S) can be identified with c¢fgr(S) and
E(clar(S)) = clpr(S) N E(BT), E(BT) is not Borel. O

Theorem 6.12. Let L be a minimal left ideal of SN. Then E(L) is not
Borel.

Proof. For n € N, define supp(n) by n = 3 ;cionm) 2" and let O(n) =

min (supp(n)). Let 0 : BN — Bw be the continuous extension of 6. By
[72, Theorem 6.15.1], if (g,)5; is any sequence of idempotents in SN
such that {6(q,) : n € N} is discrete and 6(qm) # 0(qn) if m and n are
distinct positive integers, then no cluster point of {g, : n € N} can be
idempotent.

Assume that E(L) is Borel, so that E(L) is the union of ¢ or fewer
compact sets by Lemma 6.1. We claim that |§[E(L)]| = 2°. Let B = {2 :
n € N}*. By [72, Exercise 3.4.1], 6 is injective on B and so |0[B]| = 2°.
So to establish the claim it suffices to show that 6[B] C 6[E(L)]. Let
2 € B. Pick an idempotent e € (x + SN) N L. Then e = x + y for some
y € BN. Since e € H and = € H we have that y € H. By [72, Lemma 6.8],

0(e) = 0(z + y) = 6(x) and so |A[F(L)]| = 2¢ as required.
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Hence there is a compact subset C' of E(L) for which 6]C] is infinite.
Then C contains a sequence {(g)nen for which <§(qn)>neN is an injec-
tive discrete sequence. This is a contradiction because by Lemma 6.6 no
cluster point of {g,)nen can be in E(L). O

Corollary 6.13. Let G be a countable group which can be algebraically
embedded in a compact metrizable topological group. If L is a minimal
left ideal of BG, E(L) is not Borel.

Proof. This follows immedately from Theorem 6.12 and the fact that SG
contains a subset which is topologically isomorphic to H and contains all
the idempotents of SG, by [72, Theorem 7.28]. O

Corollary 6.14. Let (S, +) be a countably infinite commutative cancella-
tive semigroup with an identity 0. If L is a minimal left ideal of 8S, E(L)
is not Borel.

Proof. Let G denote the group of differences of S. By [72, Lemma 7.29],
for every @ # 0 in G there is a homomorphism h, : G — T, where T
denotes the circle group written additively, such that h,(a) # 0. Let H =
{hg : a € G\ {0}}. Then T# is a compact metrizable toplogical group,
and the natural mapping of G into T¥ is an injective homomrphism.
Hence, by Corollary 6.13, F(L) is not Borel if L denotes any minimal left
ideal of G. Now S can be regarded as a subset of G by identifying each
s € S with s — 0. Then S is a thick subset of G because, if n € N and
a; —by,a3—ba,...an—b, € G, where a;,b; € S forevery i € {1,2,...,n},
then a; —b; +b1 + b2+ ...+ b, € S for every i € {1,2,...,n}. So BS
contains a minimal left ideal of SG, by [72, Theorem 4.48|, and hence
K(BS) C K(BG), by [72, Theorem 1.65].

We claim that every minimal left ideal of 55 is also a minimal left ideal
of G. It will then follow from Corollary 6.13 that E(L) is not Borel.

Let L be a minimal left ideal of 8S and pick p € E(L). We claim
that G +p C L = BS + p for which it suffices that G +p C L. So let
g € G and pick s,t € S such that ¢ = s —t. Let = denote the inverse of
t+p=p+t+pin the group p+ S +p. Thent+z=t+p+x=pso
s+p=s+t+zxrxandsog+p=s—t+p=s+axe€l. ]

7. LONG INCREASING < pg-CHAINS IN SN

In this section we will establish the result from [79] that there is a
sequence (Py)y<w, Of idempotents in SN such that p, <r pr whenever
0 < 7 < wi. This result contrasts strongly with the result of Zelenyuk
which we will present in Section 8 that there does not exist a sequence
(pr )52, of idempotents in SN such that p,, <p, pp+1 for each n € N. (If p
and ¢ are idempotents in SN, then p <, ¢ if and only if SZ+p C BZ+q.)
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The results of this section through Lemma 7.8 consist of a presentation
of some of the details of [72, Exercise 8.5.1].

Lemma 7.1. Let p € BN such that p is right cancelable in (6N, +).
There is a sequence (b,)5>; in N such that for each k € N, {b, : n €
N and b, + k < bp41} € p.

Proof. This is [72, Lemma 8.27]. O

Definition 7.2. Let p be a right cancelable element of SN and let (b,,)22 ;
be as guaranteed by Lemma 7.1.
(a) T, = {by, +bn,+...+by, if k> 1, then n; < ny and for each i €
{2,3,.. .k}, b1 > (1+24+ ...+ by, ) + b, |
(b) For n ¢ N, Tp,,, = {bny +bpy + ... +bp, : 11 > 10, by >
14+2+...4+b,+0b,, and if k£ > 1, then ny < ng and for each i €
{2,3,...,k}, bp1 > 1424+ ...+ by, , +bn, )
(¢) Tpoo =Ny clanTpn.

An expression of the form b,,, +b,, +...4+0by, as in the definition of T,
will be called a p-sum. As an example, the requirements for by + b5 + bg to
be a p-sum are that bg > 14+2+...+by+bs and byg > 1+2+...4bs+ by.

Lemma 7.3. Let p be a right cancelable element of SN and let (b,)>2 ,
be as guaranteed by Lemma 7.1. Let a,k,l € N and assume that b,,, +
oot b, and by, + ...+ by, are p-sums, by, 11 >14+24+ ... +a+ by,
by, >a, and a4+ by, + ...+ by, =bn, +...+by,. Thenl > k and, if

i=1—k, thena=by, +...+by, and for j € {1,2,...,k}, byn; = by, 45

Proof. Suppose the conclusion fails and pick a counterexample with k41 a
minimum among all counterexamples. Assume first that £ > 1 and [ > 1.
We cannot have my = n;, for then the equation a + b,,, + ... + by, =
bp, + ...+ by, , would provide a smaller counterexample.

If mp < ny, then my +1 < ny, so

by, > bps1 > 1424 oAb, +bmy. > atby, +. oAby, = by, 4. Aby,

a contradiction. If n; < myg, then n; +1 < my so
by, = bpy41 > 1424 . 4by,_ +by, > by +.. by, = a+byy, +. .+,

again a contradiction.

Thus we must have k =1 or [ = 1.

Case 1. k=1and [ =1. Then a + by, = by, 50 by, > by, and thus
my1 + 1 < ny. Therefore b,, > by, 41 >1+2+...+a+ by, > by, a
contradiction.

Case2. I =1and k > 1. Then a+b,, +...+bp, = by, song > my+1.
Therefore by, > bpy+1 > 14+24+...+bp, , +bm, > a+bp, +...+bp, =
by, , a contradiction.
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Case 3. [ >1and k=1. Then a+b,,, = by, +...+by,. fmg >ny,
then by, >bp41 > 1424+ ... 4+by—1+bp, 2by, +...+ by, =a+ by,
a contradiction. If n; > my, then b,, > by, 11 >14+2+ ... +a+ by, >
a+ by, =0bn, +...+ by,, a contradiction.

So my = n; and thus the conclusion of the lemma holds, and we did
not have a counterexample. O

oo

Lemma 7.4. Let p be a right cancelable element of SN and let (b,)72
be as guaranteed by Lemma 7.1. The expression of an element of T), as a
P-SUM 1S unique.

Proof. Suppose that we have p-sums b,,, + ...+ by, and by, + ...+ by,
such that b, + ... 4+ bm, = bpy + ... + by, but (mq,ma,...,mg) #
(nq1,n2,...,n;) and pick such an example with k + [ a minimum among
all examples.

Case 1. k> 1 and [ > 1. Then my # n; or else the equation b,,, +
ceot+bm,, =bp, + ...+ by,_, provides a smaller example. So assume
without loss of generality that mi +1 < n;. Then b,, > byppp1 > 1+2+
coiF by + 0, 2 by, + ...+ by, =bn, +...+ by, a contradiction.

Case 2. k = 1or !l = 1. Assume without loss of generality that
k=1. If [ = 1 also, then there was not a counterexample, so [ > 1.
Then m; > ny+180 by, > b1 > 142+ ... 4by, | +by, > by, 2
contradiction. O

Definition 7.5. Let p be a right cancelable element of SN and let (b,,)3° ;

be as guaranteed by Lemma 7.1. Define ¢, : T, — N by ¢, (by, + by, +
..+ by,) =k and let ¢, : ¢lgnT, — BN be its continuous extension.

Definition 7.6. Let p € SN. Then C), is the smallest compact subsemi-
group of (AN, +) with p as a member.

Theorem 7.7. Let p be a right cancelable elment of fN. T), o is a com-
pact subsemigroup of N*, C), C T}, «, the restriction of 1, to T}, 15 a
homomorphism, ¥,(p) = 1, and ¢,[Cy] = SN.

Proof. Let (b,)>2, be as guaranteed for p by Lemma 7.1. For k € N, let
P, ={b,:neNand b, +k < bpi1}. We first claim that for each n € N,
itk=142+...4+b,, then {b,, € P, : m > n} C T, ,. To see this let
by € Py such that m > n. Then by, 11 > 1+2+...4by+ by, 50 by, € Ty .
Thus, given n, since {b,, € Py : m > n} € p, we have that p € clgnT)p ».
Consequently, p € T} o, and @;(p) =1.

To see that T}, o is a subsemigroup of SN, let m € N and let x € T}, ,,.
Pick K € N and mq,mg,...,my in N such that * = by, + ... + b,
where mq > m, by, 41 > 1424+ ...+ by, + by, and if k£ > 1, then m; <
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mq and for each i € {2,3,...,k}, b,41 > 14+ 2+ ...+ by, , +bm,. By
[72, Theorem 4.20], it suffices to show that « + T}, m, € Tpam. So let
y € Tpm,- Pickl € Nand ny,ng,...,n;in Nsuch that y = b,,, +...+ by,
where ny > myg, bp,41 > 1+2+ ...+ by, + by, and if [ > 1, then ng <
ng and for each i € {2,3,...,1},bp,41 > 1+2+ ...+ by, , +by,. To
see that x +y € T, ., we need that by, + ...+ by, + by, + ...+ by,
is as in the definition of 7} ,,. If & > 1, we only need to note that
bpyy1 > 142+ ...+ by, +by,. If k=1, we also need to note that
ny > mg.

Further, with x = b, +... + by, and y = by, + ... + by, as in the
preceeding paragraph, we have that ¢¥,(z+y) = k+1 = ¢p(x) + ¥, (y), so
by [72, Theorem 4.21], the restriction of ¥, to T}, o is a homomorphism.

Since p € T}, , we have C}, C T}, . Since D = {p, p+p, p+p+p,...} C
C, and 9, [D] = N, we have ¢,[C},] = SN. O

Lemma 7.8. Let x € N, let y € T}, o, and assume that z +y € T} .
Then x € T .-

Proof. Suppose that @ ¢ T}, o and pick r € N such that @ ¢ clgnT), ;. Let
X=N\T,,andlet Z={a+by, +...+bp, :a € X, by, +...+bp, isa
p-sum, by, +1 > 1424 . . +a+by,,, and m; > a}. We claim that Z € z+y
for which it suffices that X C {a e N: —a+ Z € y}. Solet a € X. We
claim that T, , € —a + Z. To see this, let b,,, + ...+ by, be a p-sum in
Tpa- Thenmy > aand by 11 > 142+ . +bg+bmpy > 142+ . +a+bpy,.
50 @+ by, + ...+ by, € Z as claimed.

Now z+y € T oo C clpnTy,» so pick w € ZNT, . Since w € Z, pick
a € X and a p-sum b,,, +...+by,, such that by, 41 > 14+2+...+a+by,,
my > a, and w = a + by, + ... + by,. Since w € T),,, pick a p-sum
by, +bp, + ...+ by, such that w =0b,, +by, +...+by,, N1 > 7, by, 41 >
1+2+...4+b+by and if & > 1, then n; < ng. By Lemma 7.3,
there is some ¢ < [ such that a = b,, + ...+ by,, so that a € T},,, a
contradiction. O

Definition 7.9. (a) For n € N, supp(n) is the finite set F' C w such
that n =3, 2"
(b) Define ¢ : N — w by ¢(n) = maxsupp(n) and let ¢ : SN — SBw
be its continuous extension.

We write H = (2, ¢/sn2"N. Given any p € N, C, is a compact
right topological semigroup, so it has a smallest ideal and idempotents
minimal in C,,.

Lemma 7.10. Assume that p € N*, p is right cancelable in SN, and q is
an idempotent which is minimal in C,. There ezist p' € C, NH and an
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idempotent ¢’ which is minimal in Cp such that p’ is right cancelable in
BN, ¢ <rd, andp' +q=q.

Proof. By Theorem 7.7, {/}vp is a homomorphism on T}, o, Cp C T} oo,
and ,[Cp] = BN. By |72, Lemma 6.8] if » € SN and s € H, then

o(r + ) = (s).

Pick a sequence (D,,)2; of pairwise disjoint infinite subsets of N and
for n € N, pick z, € N* such that {2 : t € D, } € x,. Then for each
n, D, € ¢(x,) so {¢(xn) : n € N} is discrete. For each n € N pick
yn € Cp such that ¢, (y,) = z,. Then C), + y, is a left ideal of C},, which
therefore contains a minimal left ideal of C}, and ¢+ C}, is a minimal right
ideal of Cp. Recalling that in any compact Hausdorff right topological
semigroup, the intersection of a minimal left ideal and a minimal right
ideal is a group, we may pick an idempotent ¢, € (Cp, + yn) N (¢ + Cp)
and pick s,, € Cp such that ¢, = s, + y». Let p’ be a cluster point of the
sequence (g,)52 . Since by [72, Lemma 6.6] all idempotents of SN are in
H, we have that p’ € C, N H.

Let r = %(p’) and note that r is a cluster point of <121;(qn)>%°=1. Note
that ¢[N] = w; for all n < w, {m € N : ¢ < n} is finite; and for all n
and k in N, if ¢(n) + 1 < ¢(k), then ¢p(n + k) € {p(k), p(k) + 1}. Also,
given n € N, ¥p(qn) = ¥p(sn + Yn) = ¥p(sn) + ¥p(Yn) = ¥p(sn) + 2n and
since z, € H, ¢(¢(sy) + zn) = ¢(xy). That is ¢(¢p(qn)) = ¢(xy)- Since
{¢(zn) : n € N} is discrete and  is a cluster point of <1Z(qn)>;”:1, we have
by [72, Theorem 6.54.4] with S =T =N, f = ¢, and p, = @/bvp(qn), that
(N+7)n(N* +N*) = 0.

We claim that r is right cancelable in SN. By (9) = (3) of [72, Theorem
8.11] with S = T' = N, it suffices to show that for a € N and s € N\ {a},
a+r#s+r. If seN, this holds by [72, Corollary 8.2]. If s € N*, this
holds because (N + ) N (N* + N*) = .

Next we claim that p’ is right cancelable in SN. Suppose not and by
[72, Theorem 8.18] pick an idempotent e € N* such that p’ = e+ p’. Now
p' € Cp C Tp o0 s0 by Lemma 7.8, e € T}, o and thus by Theorem 7.7,
r=1Y,(p') = Yple) + ¥p(p') = p(e) + 7 so by [72, Theorem 8.18], r is
not right cancelable in SN, a contradiction.

For each n € N, ¢, € ¢+C) s0 ¢, +C, C ¢+ C,, and, since ¢ is minimal
in Cp, ¢ + Cp is a minimal right ideal of Cp, so ¢, + Cp = ¢ + Cp and
therefore g, + ¢ = ¢. That is p, is constantly equal to ¢ on {g¢, : n € N},
sop' +q=gq.

Since p’ € {y € BN : y+q = q} = p; ' [{q}] we have {y € AN : y+q = ¢}
is a compact subsemigroup of SN with p’ as a member and thus Cp C
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{y € /N : y+q = ¢q}. Let ¢’ be a minimal idempotent in C,/. Then
q +q = qsoq<pgq'. It remains only to show that the inequality is strict.

We show now that C,.NK(SN) = (). To this end, we first establish that
we may pick a minimal right ideal R of 8N such that r € ¢/E(R), where
E(R) is the set of idempotents in R. By Theorem 7.7, the restriction of Q/ZJ\;
to Cj is a homomorphism onto SN so by [72, Exercise 1.7.3], ¥, [K(Cp)] =
K (BN). Pick a minimal right ideal R of SN such that v, (¢) € R. By [72,
Exercise 1.7.3] again, v,[¢ + C,] = R. Each ¢, € ¢+ C, and p’ € cl{q, :
n € N} sor=1,(p') € cl{yp(¢n) : n € N} C lE(R).

Let G = {v € fN: (Vu € R)(v +u = u)}. By [72, Lemma 1.30(b)],
E(R) C G, so G is a compact subsemigroup of SN. We claim that C,. C G
for which it suffices that r € G. To see this, let v € R. We show that
r+uCu,solet Ae (r+u)andlet B={zreN:—-z+ A¢cu}. Then
Berandr e c/E(R) so pickw € E(R)NB. Then w+u=uso A€u
and thus r + u = u as required.

Now suppose that C, N K(BN) # (. We claim that C,. N K(8N) C R.
To see this, let w € C, N K(BN). Pick a minimal right ideal R’ of SN
such that w € R'. Pick u € R. Since C, C G, w+u=uso RNR' #(
and thus R’ = R. .

Now fix v € C,NK(BN). By Theorem 7.7, the restriction of ¢, to C, is
a homomorphism onto SN so by [72, Exercise 1.7.3], ¥, [K(C,)] = K(ON).
Also C,. N K(BN) = K(C,) by [72, Theorem 1.65]. We claim that @;(fu) is
a left identity for K (ON) so let w € K(SN) and pick v € K(C,) such that

¥r(u) = w. Then ¢, (v) + w = ¥ (v) + ¢r(v) = Yp(v + u) = ¥ (v) = w.
We thus have that 1, (v) € K(8N) and ¢, (v) + K(N) = K(BN) so N
has only one minimal right ideal, while by [72, Theorem 6.9] SN has 2¢
minimal right ideals. This contradiction establishes that C,. N K (8N) = ().

To finish the proof of the lemma, we will show that C},y N K (C)) = 0.
This will suffice since then if ¢ = ¢ + ¢’ we have ¢’ € Cpy C C, and
ge K(Cp)soqd =qg+q € Cpy NK(Cp).

So suppose we have s € Cpy N K(C,). Then ,(s) € K(SN). Also,
1,/)\; 1[Cr] is a compact semigroup and p’ € 1,/)\; 1[Cr] so Cp C 1,/)\; 1[CT]
and thus {/)\;(s) € C, N K(PN), a contradiction. O

In the proof of the following theorem we shall inductively construct two
w1 sequences, (Py)o<w, and {Gy)o<w, Where each p, is right cancelable in
BN and (¢,)o<w, i8S a <pg-increasing chain of idempotents, with each ¢,
being a minimal idempotent in Cp,_ .
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Theorem 7.11. Let p be a right cancelable element of SN and let q
be a minimal idempotent in C,. There exists a sequence (¢o)o<w, Of
idempotents in BN such that g9 = q and q, <gr qs5 whenever o < 6 < w1.

Proof. Let po = p and g9 = ¢q. Let 0 < a < w; and assume we have
chosen (py)o<a and (¢s)s<q such that
(1) if 0 < ¢ < «, then ps € Hj
2) if § < «, then p;s is right cancelable in SN;
3) if § < «, then ¢s is a minimal idempotent in C),;
4) if § < 0 < a, then ¢5s <g qo;
5) if 6 < o < a, then p, € C,,; and
(6) if § < 0 < a, then p, + g5 = ¢s-

The hypotheses hold for a = 1, all but (2) amd (3), vacuously.

Case 1. a =y + 1 for some ~. By hypotheses (2) and (3) and Lemma
7.10 we may pick p, € Cp, NH which is right cancelable in SN and an
idempotent g, which is minimal in Cp,_ such that ¢y <g g« and po +¢, =
¢y- One sees immediately that hypotheses (1) through (4) hold at o+ 1.
To verify hypothesis (5), let § < a. If § = 7, we have p, € C,, directly.
Otherwise, p, € C); by assumption so p, € Cp,, C Cp;.

To verify hypothesis (6), again if § = v we have p, + g5 = g5 directly,
so assume § < 7. Then p, + ¢, = ¢, and, since g5 <gr ¢, ¢y + g5 = g5 S0
Do+ 45 = Pa + Gy + 45 = ¢y + 45 = gs5-

Case 2. « is a limit ordinal. Choose a cofinal sequence (6(n))n<, in
a such that 6(0) > 0 and 6(n) < §(n + 1) for each n < w. Let p, be a
cluster point of the sequence (ps(n))n<w- Let go be a minimal idempotent
in Cp, . Since ps(,) € H for each n < w, we have p,, € H.

We claim that p, is right cancelable in SN. Suppose not and by [72,
Theorem 8.18] pick an idempotent e € N* such that p, = e + po. Then
Pa € BN+ po = clgn(N + po) and po € clpn{psn) : n < w} so by [72,
Theorem 3.40], either there is some n € N such that n+p, € clgn{psm) :
n < w} or there is some n < w such that ps;,) € AN 4 p,. The first
alternative is impossible because p, € H and {ps,) : n < w} € H. So
pick n < w and = € SN such that psi,) = @ + pa. Since psim) € Cpy,,
for all m > n by hypothesis (5), we have p, € C C Tps(ny,00- Since

Ps(n)
also psn) € Tp we have by Lemma 7.8 that z € T, . But

5(n) 00
now, by Theorem 7.7, 1 = ¢p; . (P5(n)) = Yps(ny (T) + Ups(y (Pa) Which is
impossible. Thus hypothesis (2) holds.

Hypothesis (3) holds directly. To verify hypotheses (4), (5), and (6), let
o < aand pick n < wsuch tht 0 < §(n) < a. Foreach m withn < m < w,
we have by hypothesis (6) that ps(m) + @s(n) = @5(n) SO Pa + 5(n) = Q5(n)-
Therefore {y € BN : ¥ + ¢s5(n) = G5(n)} i8 @ compact subsemigroup of SN
with p, as a member so Cp,, € {y € BN : y + g5(n) = q5(n)}- Therefore
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do + 45(n) = G5(n) S0 Go <R q5(n) <R o and we have verified hypothesis
(4). Also, for each m > n we have ps(m) € Cp, 80 po € Cp, as required by
hypothesis (5). Since for all m > n, ps(m) +4¢o = Go, We have po +qo = ¢
as required by hypothesis (6). |

8. INCREASING PRINCIPAL LEFT IDEALS IN SZ

In this section we present Yevhen Zelenyuk’s proof [133] that there
does not exist a sequence of increasing principal left ideals of (5Z,+).
We begin with some notation that will be used throughout the section.

Definition 8.1. (a) W is the set of finite nonempty words over the
alphabet N. That is, w € W if and only if there exists n € N such
that w: {1,2,...,n} - N.
(b) Given w € W, if the domain of w is {1,2,...,n}, then ¢(w) = n.
(c) Given an infinite sequence (w;)$2, in W, we say that the sequence
is increasing if and only if for each j € N, {(w;) > j and the
sequence (wy ()32, is strictly increasing.

(d) Given a finite sequence (w;)_; in W, we say that the sequence is
increasing if and only if for each j € {1,2,...,n}, {(w;) > j and
the sequence (wy(j))j_; is strictly increasing.

(e) If n € N and (w;)?_; is an increasing sequence in W, then
[w1,wa, ..., wy] is the word v € W with ¢(v) = ¢(w,,) such that for
Jje{L2,...,n=1},v(j) = w;(j) and for j € {n,n+1,...,¢(wy)},

v(f) = wn(j)-
Notice that if w € W, then [w] = w. Also, if (w;)$2, is an increasing
sequence in W, then whenever j <k in N, wi(j) >k —j + 1.

We will write w = ajas---ay, when m = ¢(w) and for each i €
{1,2,...,m}, a; = w(i).

Lemma 8.2. There is a 2-coloring of W such that there does not exist
an increasing sequence (w;)3<, in W such that
{{lwjy, Wiy, -, wj.] k€N and j1 < jo <...<ji}
s monochromatic.
Proof. Given w € W with ¢(w) = m > 1, we define inductively r(w) €
N and a sequence s(w) = (io,%1,...,ir(w)) such that m = ig > iy >
- > ) = 1. Let w = ajag- -y, and let ig = m. Assume that

t € {0,1,...,m — 1} and i; has been defined. If i; = 1, let r(w) = t.
Otherwise, let

it+1 :mln{ze {172,...7’it—1} : (VJ c {Z,l+1,,lt—1})(lt—] SCK])}
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Notice that if j = i; — 1, then 4, — j = 1 < a; so such a choice is always
possible.

Let di(w) = ip@w)—1 — 1 and, if r(w) > 2, let da(w) = 4y (p)y—2 — 1. We
claim that if ¢(w) > dqi(w) + 1, then r(w) > 2 so that da(w) is defined.
To see this, note that if r(w) = 1, then dy(w) = ipg — 1 = {(w) — 1 so
l(w) = di(w) + 1.

Define X : W — {0,1} by

1 if r(w)is odd
X(w) = { 0 if {(w) =1 or r(w) is even.

Suppose we have an increasing sequence (w;)32, in W such that X is
constant on {[w;,,wj,,...,w;,] : k¥ € Nand j1 < jo < ... < jg}. The
sequence (wj>;?';2 is also an increasing sequence, so we may assume that
each f(w;) > 1.

We claim that {d; (w,) : j € N} is finite. Suppose instead that {d; (w;) :
j € N} is infinite. Pick j such that di(w;) > w1(1) and let o = wq(1).
Let ﬂlﬂgﬂm = wy, let w = [wl,wj], and let 61625m = w. Then
01 =« and for t € {2,3,...,m}, 6 = Si.

Let s(w;) = (0,01, -+, dp(w,)) Where m =g > iy > ... > dpy,) = 1
and if t € {0,1,...,7(wj) — 1}, then

ipr =min{i € {1,2,..ig—1}: (Vj € {iyi+1,...,ic— 1) (i —j < B;)}.
Let s(w) = (10,1, - ., ip(,) Where m =g >4y > ... >4, =1and if
te€{0,1,...,r(w) — 1}, then

iy =min{i € {1,2,...,5; =1} : (Vi e {i,i+1,..., 5, —1})(i; —j < 9;)}.

Let r = r(w;). We claim that for t € {0,1,...,r — 1}, ¢4 = ¢;. This
is true for t = 0. The claim holds if 7 = 1, so assume that r > 2, let
t€{0,1,...,r — 2} and assume that i; = 4;. Then

i1 =min{i € {1,2,.. i —1}: (V5 € {ii+1,... ip—11)(i—3j < B;)}
Also

i =min{i € {1,2,... i —1}: (Vf € {i,i+1,... iy —1})(is—j < 5;)} .
Now t+1 < r—180 441 > %p—1 = di(w;) +1 > wi(1) > 2. So for
all ] S {it+17it+1 + 1,...,it - 1}, it —] S ﬂ] and lf_] = it+1 — ]., then
iy —j > B and j > 1. So for j € {iz41 — 1,4¢41,...,0 — 1}, §; = B; so
Z';+1 = Tt41-

Now we claim that i/, = 2. Since ¢, = 1, i, —j < §; for all j €
{1,2,...,4,—1 — 1} and therefore i/, _, <¢; for all j € {2,3,...,i _; —1}
so that 4/, < 2. Since also 4,1 — 1 = di(w;) > o = 61, we have i, = 2 as
claimed. Consequently r(w) = r(w;) + 1 and thus X([w;]) # X([w1, w;]).
We have established that {d;(w;) : j € N} is finite. Consequently only
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finitely many j have ¢(w;) < di(w;) + 1 so da(wj) is defined for all by
finitely many values of j. So we may assume that do(w;) is defined for all
j.

Now we claim that {d2(w,) : j € N} is infinite. Suppose instead that
{d2(wj) : j € N} is finite. Recall that whenever j < k in N, wy(j) >
k—j+1. Let k = max{da(w;):j € N} +1. Let w = wy, = 182 .
Let s(w) = (io,%1,...,0p(w)) Where m = ig > iy > ... > iy, = 1 and if
te{0,1,...,r(w) — 1}, then

i =min{i € {1,2,..., i, —1} - (Vj € {i,i+1, ... ,i—1}) (i —5 < B;)}-

We claim that ¢,(,)—1 = 1, which is a contradiction. We need to show
that for each j € {1,2,...,ir(w)—2 — 1}, ir(w)—2 — J < Bj = wi(j). So let
JeA{1,2,.. ipy—2 —1}. Then wi(j) > k—j+1>da(wp) +1—-j+1=
Z.7“(11})—2 —Jj+1so Z‘7”(w)—2 —J<wi(j) = Bj-

So now we have that {di(w;) : j € N} is finite and {d2(w;) : j € N} is
infinite. Pick j; such that w;, (1) > max{d;(w;) : j € N}. Let a1 = wjy, (1)
and note that a; > j;. Let k = a3+ 1 so that k—14+1 > a;. Pick jo > j;
such that w;,(2) > k—2+ 1. Given ¢t € {2,3,...,k — 1} pick ji41 > J;
such that wj,,, (t+1) >k —(t+1)+ 1. If t = k — 1, require also that
wj, ., (t+1) > 3. For t € {1,2,...,k}, let oy = wj,(t). Pick jri1 > ji
such that do(wj,,,) > ax +k — 1.

Let 5152 e 'Bm = Wiy yq- Let r = r(wj,c+1). Let s(wjk+1) = <i07i1, ey
ir) where m =g > i3 > ... >i,=1andift € {0,1,...,r — 1}, then

irpr =min{i € {1,2,... i, —1}: (Vj € {iyi+1,...,i,— 1) (i —7 < B;)} .

Now k-1 = o = wjl(l) Z dl(wjk+1) = ir—l — 1 so ir—l S k. Also
ap + k-1 < dy(wj,,,) = ir—2 =180 i3 > o +k > 2+ k and
fp_o — k> ap.

Let w = [wj,,wj,,...,wj | = 0102+ 6m. Then w = - - - Py
- B (Since L(wj, ) > jr41 > k, we have that m > k.) Let s(w) =
(i, 8, - i) Where m =g > i} > ... >, = Land if t €

{0,1,...,r(w) — 1}, then
i =min{i € {1,2,..., i, =1} (Vj € {6,i+1,...,8—1}) (i, —j < 6;)}.
We claim that
(1) fort € {0,1,...,r — 2}, i} =iy,
(2) i._y=k+1, and
(3) i. =2
so that r(w) = r(wj,,,) + 1. This will complete the proof.
To establish (1), note that if, = m = ig. Let t € {0,1,...,r — 3}
and assume that ¢y = 4;. Then t +1 < r — 2. Let ¢ = izy1. Then
for j € {ii+1,....0p—1}, i —j < B; and i, — (i — 1) > Bi_;. Since



ALGEBRA IN 8S - AN UPDATE 45

i—1=14d411—1>14._9—1> k+2 wehave that for j € {i,i+1,...,i,—1},
iy —j < d;and i — (1 — 1) > §_1. 80 i}, | =441 as required.

For (2), we have seen that i,y < ksoforj € {k+1,k+2,...,i,_2—1},
ir—o—j < pB; =0; and thus i _; < k+1. But also i,_2 —k > a; = i, so
i, =k+1

To verify (3), let ¢t € {2,3,...,k}. Then oy = w;,(t) > k—t+1s0
i_1—t=k+l—t <apsoi, <2 Butwechosek >ar;soi,_;—1=k>a
so i, = 2. O

Proposition 8.3. Assume that there is an increasing sequence of prin-
cipal left ideals of BZ. Then for every finite coloring of W, there is an
infinite sequence wy < wg < ... such that the set

{lwj,,wj,,...,wj] :keNand 1 <j; <...<ji}
is monochromatic.

Proof. Let (p,)$2, be a sequence in 7 such that the sequence (8Z +
D)5 is strictly increasing. If p € Z, then 8Z + p = BZ so each p,, € Z*.
Since {p, : n € w} is an infinite Hausdorff space, it contains an infinite
strongly discrete subspace, so we may presume that {p, : n € w} is
strongly discrete. For each n € w, pick A,, € p, such that all A, are
pairwise disjoint and A, 1 N (B8Z + p,) = 0. Then x + p, ¢ A, 41 for all
r €Zand all n € w.

Forn€w,let X,,, ={z€Z:2+p, €Ay} and Xpy1, = {2 €Z:
2+ pni1 € Ay}, We note that for each n € w, p, € cl{x +ppy1: @ €
Xn+1,n}- To see this, let B € p,. Since p,, € BZ + ppi1 = cl(Z + pry1)
and BN A, € p,, pick x € Z such that z + p,y1 € A, N B. Then
€ Xpyi1nand x4 ppiq € B.

We shall construct inductively for each n € N a sequence (A, ;)32 of
members of p, and a sequence (z,;)32; of members of Z. For n € w,
let A, 0 = A,. (We do not define z¢ ; for any j.) Let £ = {(z,n) : n €
wand z € X,11,} and let A =J;~ ;) A,. Let (en,)5°_ enumerate E and
let (am, )0, enumerate A.

For m € w we inductively choose k' and Z* for each n € w and

sequences <An]>f'£1 and <xn]>fgl for each n € N satisfying the following
induction hypotheses, where

C(T)n = U{xl,j + ALJ 1 j € {172, .. 7/61”} and 1,5 € Xl’()}
and if n € N,

Crr= UH{an; +An;:je{l,2,...,k} and zp, ; € X 0} U
Hznsr + Anprg g € {12, kb and @405 € X}
(i) ForneNand j € {1,2,...,k"}, A, ; €Epn and A, ; C A, 1.
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(i)

(ix)
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The sets {an +A,;:neNandje{l,2,..., kf{”}} are pairwise
disjoint and forn € Nand j € {1,2,...,k"}, (zn,j+An ;) )NAn; =
0.

ForneNand j € {1,2,...,k'}, 2 € Xpn—1 U Xy .

Forn € wand j € {1,2,...,k" 1}, if pq15 € Xpg1ng1, then
Tn+1,5 +An+1,j - An+1,k—1 \An+1,k for some k S {1, 2, ey k:Ln—i-l}

or Tp41,j + Ant1, C An+1,k;y+1-
For n € wand j € {1,2,..., k" }, if 11 € Xpy1n, then
Tnt1,; + Any1,; € Ap g1 \ An i for some k € {1,2,...,k"} or
Tpi1,j + Any1j © Apgm.
For n € w, Z™ is a finite subset of A,, Z" N C™ = (), and
Co' ¢ pn-
If m > 0, then for each n € N, A, jm NC~1 = ().
If m > 0 and a,, € A, there exist [ € w, finite Jo, J1,...,J; CN
with J; # 0 if ¢ > 0, and 2, € Z;}, such that a, = 2z, +
im0 X jes, Ttri;
(a) Jo =0 if and only if
Am ¢ U{xw- + At,j 1 j € {1,27 .. .,k;nil} and Tt € Xt,t};
(b) I =0 if and only if — ZjGJo T+ am & H{zer1; + Ay
j S {1, 2,..., kjﬂ_}l} and Tt41,5 € Xt+1,t};
(c) foreach k € Jy, if any, x4 € X, and — ZJ09j<k T j+am €
ek + A ks
(d) for each i € {1,2,...,1}, if any, and each k € J;,

— (X sizjcn Teriy + Zz::lo jE€Tn mtﬂw‘) +am €
Teti ks + Atgik;
(e) for ¢ € {1,2,...,1}, if any, if j = minJ;, then =44, , €
Xivitri—1 and if j € J; \ {min J;}, then x4y, ; € Xipi 1145
(f) fori € {1,2,...,0—1},if any, =3, oY i) Tugm + am €
U{xt+i+1,j + At+i+1,j 1 j € {1, 2,..., k?j—;—il-l} and Titit+1,j €
Xitit1,t+i};
(g) if 1 >0, then — 321 o> ic ) Tupnj +am & Cpi's
(h) — ZjeJO Tt + am &
W{wey +Aej e {1,2,... k" '} and 24 € X141}
(j) for each i € {0,1,...,1}, J; C{1,2,..., kt”j_;l}; and
If e, = (x,7), then there exist finite Ko with Ko = @ if r = 0
orm=0and Ky C {1,2,..., k™ 1} if r > 1 and m > 1 and
finite nonempty K1 C {1,2,..., k7 } such that o = 3. @+
Z]‘eKl Tr41,55
(a) Ko =0 if and only if x + p,1 ¢
Harj + A, :5€{1,2,...,k"} and 2, ; € X, };
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(b) for each k € Ky, if any, =, € X, , and 72K09j<k Zrj +
T+ Drg1 € Tyg + Ar s
(©) = Xjer, Tri tT+Pr1 ¢
U{zr; + A i e{l,2,...,km Y and 2, € X, }s
(d) for each k € K1, —(X e, Trj + 2ok, 5j<k Trilj) T T+
Pr41 € Tr41,k + Ar+1,k;
(e) if s = min Ky, then z,415 € Xyq1,, and if Ky # 0 and
v = max Ko, then z,41 s + Ary1,6 € A5 and
(f) if pe Ky \ {min K1}, then 2,41, € Xpj1 541
(x) For each m € w there is at most one n € N such that k7+! > km
and if k7 > k™ then k7 = k™ 4 1.

(Of course, if k' = 0, then the sequences <Anj>f:1 and <xn,j>§;1 are
empty.)

First let m = 0. We may assume that ap € Ag and that ey = (z0,0)
for some z¢ € X1 9. We have that xo +p1 # po since if 29 4+ p1 = po, then
Z+p1 = 7Z+ po and thus BZ + py = BZ + po. Pick D € pg \ (zo + p1)-
Pick B € p; such that B C Ay, ag ¢ o+ B, and o+ B C Ap \ D. (One
may make the latter two choices since xg + p1 € Z* and so ag # xo + p1
and zo 4+ p1 € Ap \ D and addition on the left by x is continuous.) Let
A1 =B, 1,1 = o,

0 __ 1 ifn=1 0 _ {ao} ifn=0
for n € w, let K, = { 0 otherwise 04 %n= 0 otherwise.

m

Hypotheses (i) — (v) and (x) can be routinely checked, (iv) being vacu-
ous. For hypothesis (vi) note that Z0 = () unless n = 0 and C? = () unless
n=0.If n=0, then C° = 29 + B and Z2 = {ag}. Further, C§ N D = 0,
so C§ ¢ po.

Hypotheses (vii) and (viii) are vacuous.

For hypothesis (ix) let Ko = @ and K7 = {1}. All statements can be
routinely checked, (b) and (f) vacuosly.

Now let m € w and assume that the construction has proceeded through
m. Pick t € w such that a,,.1 € A;. We shall construct I, Jo, J1,...,J;
as required by hypothesis (viii) for m + 1.

Note for later reference that by hypotheses (i), (iv), and (v), for each
n €w, C" C A,. We will regularly use the following fact:

(T) Ift,’l’LEw,i,jE{l,Q,...7k7T},and
(zej+ Asj) N Ay #0, then i < j.
To verify (}), assume that t,n € w, 4,5 € {1,2,...,k'}, and (x4 ;+ A ;)N

Ay # 0. By hypothesis (i), (z¢; + A¢,j) N Ay; = 0 so we cannot have
Ay € A j so by hypothesis (i), we must have i < j.
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If a1 & C let 1 =0, let Jo =0, and for n € N, let

gmtl _ ZrU{ams1} ifn=t
n zm otherwise.

Then hypothesis (viii) holds with z = a11. (Even though ¢ ; is not
defined for any j, we take ., 2o, to be 0.) Statements (a), (b), (h),
and (j) of hypothesis (viii) hold directly and (c), (d), (e), (f), and (g) are

vacuous.

If Am41 € U{xt+1,j+At+1,j 1 j € {17 2,..., kﬁl} and Tet1,5 € XtJr]’t},
let JO = (Z)

Now assume that amq1 € T' = (J{zy; + A 07 € {1,2,...,k"} and
x1; € Xi1}. We show that there exist v and j1, jo, ..., Ju € {1,2,...,k"}
such that

(1) if pe{1,2,...,u}l, =X 24, + Gmy1 € Ay, and

(2) =X 1@, tampr €1
By hypothesis (ii), there is a unique j; € {1,2,...,k]"} such that a,,11 €
T, + Ay I —xe 5, +a ¢, let u=1.

Assume now that —z; j, +am+1 € I' in which case there is a unique j; €
{1, 2,..., kln} such that T j, € X,«,r and —T¢ 5 + Amt1 € Tt 4, +At,j2, SO
that p = 2 satisfies (1). Let p > 1 and assume we have chosen j1, ja, ..., jp
satisfying (1). Since — Zg;} Tij, + @my1 € (e, + Arj,) N Ay, by
(f), Jp > Jp-1-

If—Y" 2. +amyr ¢ T, let u=p. Otherwise, let j,4+1 be the unique
member of {1,2,...,k{"} such that z,;,,, € X, and —> " @z ; +
my1 € Ty, + Arj,,- Since ji < j2 < ... < jp, < k", this process
must terminate and we have v and j1, ja,. .., ju € {1,2,..., k" } satisfying
(1) and (2). Let Jo = {41,742, - - -, Jju} and note that Jy satisfies statements
(c) and (j) of hypothesis (viii) and that — >, ; @t + ams1 € Az

If =3 e Ttitamsr ¢ CMlet I =0,let 2 = — > ., ¢ j+am+1, and

m M —
Z Z%{Z} 0= Statements (a), (b), (), (h), and
(j) of hypothesis (viii) hold directly and (d), (e), (f) and (g) are vacuous.

let Zm+! =

Now assume that — ZjeJo Z¢j +am41 € C{". Notice that this holds in
particular if an,41 € U{@ir1; + Aerr 07 € {1,2,.. . k% } and @ €
X114}, in which case we have let Jy = (). Then — EjEJo T+ Qmy1 €

Tt+41,k + At+1’}€ for some k € {1,2, .. '7k?}|>1} such that Tt+41,k S Xt+1,t-
Then —(3_ ¢y, @tj + Te41,6) + Amy1 € Aty k-
Assume now that we have s € N and for i € {1,2,...,s — 1}, if any,

we have J; C {1,2,...,k},} such that 72571 jed, Tt4n,g T amy1 €

n=0
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Aits—1,, where v = max Js_1 and have j(s,1) < j(s,2) < ... < j(s,k)
-1 k
such that —(37070 3¢ j, @i, + 21 Tets j(s,p) + Omt1 € Apssj(sb)-
1 k
If _(Z;:O GETn Tt4n,j + Zp:1 xt+s,j(s,p)) tamy1 €
U{‘rt+8,j + At+s,j . J € {1,2,. . .,kms} and xt+5’j € Xt+s,t+s}; then
ple j(S7 k + 1) c {1, 2, ey k?is} Such that xt+s?j(s’k+1) c Xt+s,t+s and
—1 k
_(ZZ:O jETn Lt4n,j + Zp:l xt+87j(57p)) +tami1 €
Tiqs,j(s,k+1) T Atss j(s,k+1)- Note that
—1 k+1
_(Ei:o jET, Lt4n,j + Ep:l xt+s,j(s,p)) tam41 € At+s,j(s’k+1)'
. Z1 k
Since —(32020 2 je s, Trang T 2pm1 Titaj(sp) T amt1 €
(xt-l-s,j(s,k-‘rl) + At+s,j(s,k+1)) N At+s,j(s,k)7 by (T)a j(S,k} + 1) > ](Sa k)
Since j(s,1) < j(s,2) < ... < j(s,k+ 1) <k}, we eventually arrive
. -1
at j(s,u) < kit such that —(32) 20> e Totng + Dpey Titsj(sp) +
am+1 € At+s,j(s,u) \
U{xt_‘_s’j + At—‘,—s,j N ] c {1,2, .. '7k;§’T—Li-s} and xt—&-s,j c Xt+s,t+s}~ Let
. . . S
Js = {j(s,1),4(s,2),...,j(s,u)} and note that —> _, Zjeln Tiqn,j +
Am+1 € AtJrs,j(s,u) \U{$t+s,j + AtJrs,j : J € {17 2a SRR kﬂs} and Lt+s,j €
Xt+s,t+s}-
If =3 02 jes, Ttnj + amt1 € CfL,, then since
S
=2 n=0 ZjeJn Titn,j + Gmy1 ¢
U{Zts + Atgsy 0 J € {12, k7 } and @445 5 € Xiys 45}, We may
ple ](8+ 1, 1) S {1, 2, fany kﬁ-s-‘rl} such that Ttgs+1,5(s+1,1) S Xt+s+1,t+s
and =" ZjeJn Tipng + Gmt1 € Tipsi1(s+1,1) T Atpsiij(s+1,1) 5O
S
that —(32,,_0 2o jes, Tt4ng + Tetst1i(s+1,1)) T Amt1 € Apysin js+1,1)-
By hypothesis (x) and the definition of k for n € N we have that
|Upeo Unzo{1,2, .., k3| < m 4 1 so this construction must halt. So
we have some s € N so that —>2)_ (3" ; @ipnj + ami1 ¢ Cft,. We
then let [ = s, let 2 = 72220 ZjeJi Tiyij + am+1 and, for n € w, let
Zn Uz ifn=t+41
zm otherwise.
(viii) can be routinely verified.
Notice that in any event, Z7 1 N C™ = ().

Zmtl = All of the statements of hypothesis

Now let e, 41 = (x,r). We shall construct K, and K; as required by
hypothesis (ix) for m + 1. For the construction of Ky, let

=Wz +A,;:5€{1,2,...,k}and 2, ; € X, }.

We have that @ + p,41 € A,.. If 2+ p.1 ¢ T, in particular if r = 0,
let Ko = 0. Notice that in this event, statements (a), (b), and (c) of
hypothesis (ix) are satisfied.
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Now assume that = + p,+1 € I'. We show that there exist u and
J1sd2s -5 Ju € {1,2,...,k™} such that

(1) ifp € {17 2,... 7u}7 - Zg:l Trj, T+ Pry1 € AT’,jp and
(2) - Z:=1 Trj, + T+ Dry1 ¢ I.

We have that « + p,41 € 2, j, + A, ;, for some (necessarily unique) j; €
{1,2,...,k"} such that z, ; € X,,. Since z,;, + A, ;, = xrj, + 4rj,
we have that —z, j, + x4+ pr1 € A . I~z +24+prg1 ¢ T, let u=1
and note that (1) and (2) are satisfied.

Assume now that —x, j, + « + p,4+1 € I' in which case there is a unique
jo €{1,2,...,k"} such that —x, j, +&+pry1 € &y j, + Ay j,, sothat p =2

satisfies (1). Let p > 1 and assume we have chosen ji, jo, . . ., jp satisfying

(1). Since —YP_ @, + @+ pry1 € A, j,, we have that — 3P  z,. ;. +

T+ pryr € 2y, + A, VA, s0 by (1), Jp > Jp-1-

It —>" 2, +x+py1 ¢ T, let w=p Otherwise, let j,11 be
the unique member of {1,2,...,k"} such that — > 7_ x; ;. + T+ pr11 €
Trjpn T Arj,i- Since j1 < jo < ... < jp < k', this process must
terminate and we have u and ji, ja, ..., ju, € {1,2,...,k"} satisfying (1)
and (2). Let Ko = {j1,j2,---Ju}-

Statements (a), (b), and (c) of hypothesis (ix) hold.

To complete the construction, we consider two cases for the construc-
tion of K; for hypothesis (ix). If Ko = 0, let v = 0. If Ky # 0, let
v = max K.

Case 1: — ZjeKO Trj+T+Dry1 ¢

U{x7'+1,j + Ar—i—l,j 1 j € {1, 2,..., k:ﬁ-l} and Tr41,5 € X7-+1,7.}.

Let 2’/ = — ) c, rj + . We have established that

' +prp1 & Harj +Ar,; 1 5€{1,2,...,k} and z, ; € X,,} so we have
' +pri1 ¢ O If Ko = 0, then 2’ +p,1 = 2+prq1 € A, = Apg. f Ko #
(), then by statement (b) of hypothesis (ix), ' + p,4+1 € A, ,. Therefore,
x/+pr+1 € Ar,v \ C;n Since x/+pr+1 7& Pr, piCk D e pr\(l'/"_pﬂrl)' Note
that by hypothesis (i), A,, C A, = Ar,k;ﬂUU?%(AT,jfl\Ar,j)- Therefore
either A, pm € 2’ 4 p,41 or there is some j € {1,2,...,k"} such that
(Arj—1\Ar;) € 2’ +pri1. We have that Z:fll is finite and by hypothesis
(), CPLy & proty 50 (Z5UCI) & proa. Also D ¢ af + poya,
Cm ¢ o' +p,41, and Z% 4" is finite so (DUCTUZMH) ¢ 2/ +p,y1. Pick
B € pyy1 such that B C A1 g BN(Cm vzt =0, (2'+B)n(DU
cruzmtl)y =0,2'+B C A, ,, and either 2’4+ B C Ay gm or there is some
J€{L1,2,...,k"} such that 2’ + B C A, ; 1\ A, ;. Let A | mi1 = B,

P41
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m .

, 1 1+1 ifn=r+1
x m+1 = 2’ and for n € w, let kM1 = T+ .
Lk ’ ’ n k' otherwise,

and let Ky = {k"1'}.
We verify that all hypotheses hold for m + 1. If n # r + 1, then
hypothesis (i) holds by assumption. It holds for n = 741 by construction.

To verify hypothesis (ii) we need to show that (xr+1,k;’f11 +AT+1,k:‘rzﬁl)ﬂ
AT,+1,k:n+Jr11 = (), that is that (z’ + B) N B = {), and that for each j €
{L,2,.. k%), (g1 + Argaj) N (@’ + B) = 0. We have that (z/ +
B) NB = (Z) since z’ + B - A'r,'u - Ar and B - ATJFI”"?EH - Ar+1- For
the other conclusion, let j € {1,2,...,k,;} be given. By hypothesis
(iii), either @y41,; € Xpq1,r OF Tpp1; € Xpp1.041- In the former case,
Trg1j + Arg1; € CF and (2 + B)NC = (. In the latter case, by
hypothesis (iV), Tr41,5 + Ar-i—l,j - Ar+1 while z’ + B - Ar,v - AT.

Hypothesis (iii) holds because z’ + p, 1 € A, so Ty st € X1,

Hypothesis (iv) holds because it holds at m and hypothesis (v) holds
directly.
For hypothesis (vi), we have already noted that Z™+1 N C™ = (). Also

cmtl _ CrU(z'+B) ifn=r
" C" otherwise.

Since (z' + B) N Z™t = () we have Z™+1 N CmH = (). Since C™ ¢ p,
and (z' + B) N D = (), we have C™*! ¢ p,..

The new part of hypothesis (vii) says that AT+17k:rril NC ., =0, which
is true.

We have already verified hypothesis (viii).

We have noted that statements (a), (b), and (c) of hypothesis (ix) hold.

We have that

— 2/ / n _
— ZjEKo +x +pr+1 =T +pr+1 cx'+B= l',,‘+17k;n++11 + ATJrLk;anll

so statement (d) holds.
We have already noted that R € X, 41, 80, since '+ B C A, ,,
statement (e) holds. Statement (f) holds directly.

Hypothesis (x) holds directly.

Case 2: — ZjeKo Trj + T+ Pry1 € Tyy1 ke, + Arp1k, for some ky €
{1, 2,..., kﬁl} with Tryl,k; € XTJFLT.

We note that, as long as k1 = min K7, then statement (e) of hypothesis
(ix) holds. To see this, let v = max K. we have directly that x, 41, €
X,+1,- and that — ZjeKo ZTrj+ T+ Pry1 € Trya ke, + Arg1k, - By state-
ment (b) of hypothesis (ix), —>_,cx, @rj + T+ pri1 € A,,. Therefore




52 NEIL HINDMAN AND DONA STRAUSS

(xr+1,k1 + Ar+1,k1) NAru # 0 so by hypothesis (v), Tri1ky + Arg1k C
Ay

We show that there exist w and ki, k2, ...,k in {1,2,..., k" } such
that

(1) if pe{1,2,...,w}, then
_(ZjeKo Trj+ Yo Trgik,) T2+ Pry1 € Ari1k, and
(2) _(ZjeKo Trj+ quﬂ:l Tri1k,) T+ Pry1 ¢ Clia

Note that (1) holds for p = 1. Assume we have p and k1,ks,...,kp
satisfying (1). If (2) holds for w = p, let w = p. Now assume that

—(Xjer, Tyt > Trgak,) TP €O

Notice that —(3_;cx, Tr,j + S Tryik) FT AP €

U{xTJrQ)j + Ar+27]’ 1 j € {1, 2,..., k;?fFQ} and Try2,5 € Xr+2,r+1}- (If it
were, we would have some v € {1,2,... k" ,} such that

_(ZjGKo Ly 5 + 218121 Lr41,k, + xr+2,u) +z+ Pr+1 € Ar+2,u

while for all y € Z, y + pr4+1 ¢ A,42.) Thus it must be that
_(ZjGKo Tp i+ 0 Trgt k) FTFDrg1 € Trgt kyey T Argik,., fOr some
kprr €{1,2,... K%} with 20 5, € Xpgr 1

Since (41,5, + Arg1kypr) NV Ari1k, 7 0 we have by (1) that ky 1 >
k/’p. Let Ki = {kh ]{72, ey kw}

If =23 ek, Trj + 2jek; Tri1y, let Ky = K7 and for each n € N,
let km+1 = g,

Hypotheses (i) — (v) and (vii) hold because they held at m. Givenn € N
we have noted that Z71 N C™ = () and we have that C™" ™! = C™ so
hypothesis (vi) holds. We have verified hypothesis (viii). We have noted
that statements (a), (b), and (c) of hypothesis (ix) hold, and statement
(d) follows from (1). Since k; = min K3 we have shown that statement
(e) holds. Statement (f) holds directly as does hypothesis (x).

Finally, assume that ' = 2 — (3_;c g, Trj + X ek Tre15) # 0. We

have 2’ +p,11 € Ary1 \ C . Since 2’ # 0, &' + ppy1 # pr41 s0 pick D €
kT
pr+1\ (@' +pr41). Note that A1 = Arprem  UUZT (Arg -1\ Arga ).

Pick B € py41 such that B C A, m, N D, BNCTY, = 0, '+ B C
A\ (DuCm, Uz, and either (2/ + B) C Apqr g, or there is
some j € {1,2,...,k" } such that (z' + B) C (Ar41,j-1 \ Apy1,j). Let
B, +1 ifn=r+1
k™ otherwise,

2/, and let K1 = K{ U {k"1'}.

m+1 __ — —
kn = , et A7"+1,k:.y:31 = B, let x’f'"rl,k:::rll =
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Hypothesis (i) holds directly. The newly introduced set of the form
T, + Ay is ' + B. Since B C D and (2’ + B) N D = () we have that
(LL'/ + B) N Ar—&-l,kl’fﬁl = 0. Ifj e {1,2, ey k;’ﬁrl} and Try1,5 € Xrg1,r41,
then z,41,; + Arp1,; € CF so, since (z/ + B) ™, =0, we have that
(.’I,'T+1,j+Ar+1’j)ﬂ(£C/+B) = 0. Ifje {1, 2,..., kﬁl} and Try1,j € XrJrl’r,
then by hypothesis (v), zy41,; + Ar41,; € A, s0, since 2’ + B C A, 41, we
have that (2,41, + A,41,5) N (' + B) = (). Thus hypothesis (ii) holds.

Since 2’ +py41 € Ap 11, R € X, 41,041 so hypothesis (iii) holds.
Hypothesis (iv) holds directly and hypothesis (v) holds because it holds
at m.

For hypothesis (vi), we have already noted that Z™+1 N C™ = (). Also

omtl _ Cr,U(@+B) ifn=r+1
" cr otherwise.

Since (2/ + B)NZ" " = 0 we have Z" ' NCmAT = 0. Since C™ ) ¢ pria
and (z/ + B)N D =0, we have C/" 1" ¢ p,.41.

The new part of hypothesis (vii) says that AHLk:Tll NC ., =0, which
is true.

We have already noted that hypothesis (viii) holds.

We have noted that statements (a), (b), and (c) of hypothesis (ix)
hold, and since k; = min K, statement (e) holds. We have verified
that statement (d) holds for k € K|. The assertion for k = k"' is that
=X ek, Tr +ZJEK{ Try1,j)+T+pry1 = &' +pry1 € & + B. Statement
(f) holds directly as does hypothesis (x).

This completes the inductive construction.

We now show that for each n € N, lim k)" = oo. At the same time, we
m—00

show that for eachn € N, {j e N: z, ; € X,, ,_1} is infinite. We proceed
by induction on n. So let n = 1 and let mg be given. We will show that
there exists m such that k7 > k™. If 1 < j < k7™, then 21 ;+ A1 ; ¢ po.
(If T1,5 € X171, then by hypothesis (IV) T1,5; + Al,j CA. If T1,5 € leo,
then z; ; + A1 ; € Cy™ and by hypothesis (vi), Cj™ ¢ po.) Since py €

cl({x+p1:x € X1} pick © € X1 such that x4+ p; ¢ Uflzf x5+ Arje
Pick m such that e, = (x,0). Pick Ko = 0 and K; C {1,2,...,kT"} as
guaranteed by hypothesis (ix). Let ¢t = min K;. Then by statement (d)
of hypothesis (ix),  + p1 € z1, + A1, so t > k"°. By statement (e) of
hypothesis (ix), z,,: € Xy -1

Now assume n > 2 and lim k' ; = co. Let mg be given. We claim
m— o0

that we can pick s such that for 1 < j <k, Ap_q 6N (2n,j + Any) = 0.
Indeed, if z,, ; € X, », then by hypothesis (iv), z, j+An ; € An. If 2, ; €
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Xnn-1, then z,, ; + A, ; C C}"°, and by hypothsis (vii), A pmotr N
1

C"°, = 0. So, letting s = k;”ffl we get that A,_1,s N (2n,; +Ay;) =0
for 1 < j < k™. Now pn—1 € (BZ + pn) = cl(Z + p,) so pick z € Z
such that = + p, € A,_1 s and notice that x € X,, ,—1. Pick m such that
(z,n—1) = ep.

Pick Ky and K7 as guaranteed by hypothesis (ix) for « and let ¢t =
min K. If Ky = 0, then by statement (e) of hypothesis (ix), z,+ € Xy n—1
and by statement (b), x + p, € 1 + Ap i 50t > kDO,

Now assume that Ky # 0. Let i = min K and let v = max Kg. Then
T+ Dn € Tn_1,i+An—1, N Ap_15 50 by (), ¢ > s. Then by statement
(e) of hypothesis (ix), €y ¢ + Ant € Ap—1,, and A, 1, C A,_1 s because
v > 4 > s. Therefore t > k'°. We have completed the proof that

lim k)" = oo.
m— o0

For r € w, let C, = J,-_, C™. By hypotheses (iv) and (v), C, C A,.

Given (z,r) € E, we call the sum = = 37, p Trj + X icp, Tri1
guaranteed by hypothesis (ix) the X,.-decomposition of x. We claim that
each z € X, 41, has a unique X,-decomposition. So let x € X,;1, and
pick m € w such that e,,, = (z,7). Suppose we have (Ko, K1) and (K, K})
as in the statement of hypothesis (ix). We show first that Ky = K. If
r = 0 or m = 0, this is immediate so assume r € N and m € N, suppose
Ky # K|, and let kK = min(Ky A K{). Assume without loss of generality
that k € Ko. Then k € {1,2,..., k™ '}. Let L = {j € Ko : j < k} =
{j € K|, : j < k}. By statement (b)

(*1) - EjeL Lr,j +x +pr+1 S Ty k + Ar,k and Tr.k S XT,T.

Assume first that K{) # L and let ¥’ = min(K}\ L). Then by statement
(b), —ZjeL Trj + & + pry1 € Trp + Ap . This contradicts (*1) by
hypothesis (i) at m — 1.

Now assume that K, = L. By statement (c), =3,y Zrj +T+pri1 &
{z,;j+A; :je{l,2,....k" '} and z,; € X,,}. This contradicts
(*1). Thus we have established that Ky = K.

Suppose K; # K, and let £ = min(K; A K7). Assume without loss
of generality that k € K;. Then k € {1,2,... k" | }. Let
L={je K :j<k}={je K]:j<k}. By statement (d)

(*2) —(Z]’GKO Tyj + Z]EL Tri1,5) + T+ Drg1 € Tk + Argi i

Assume first that K| # L and let ¥’ = min(K7{\ L). Then by statement

(d), *(ZJEKO Trj + ZJEL Ir+1,j) + T+ Pry1 € Tpp ke + Ar—‘,—l,k’- This
contradicts (*2).
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Now assume that K{ = L. Then x = 3, . Zrj+ D ;cp Try1,5 50 by
(*2), pry1 = =T+ 2+ pry1 € Tpg1k + Ay k. But by hypothesis (ii),
(py1k + Arg1k) N Arp1x = 0 and by hypothesis (i), Aqy11 € pry1 50
(Xr41,6 + Art1,k) € pr+1. This completes the proof of the uniqueness of
the X,.-decomposition.

We call the sum a = 2z + 3, >_je; Ti+i,; guaranteed by hypothesis
(viii) the A-decomposition of a.

We show now that the A-dcomposition is unique in the following strong
sense. Given t € N and a € Ay, pick m € w such that a = a,.
We had ag € Ag so m > 0. Assume we have [, Jy,J1,...,J;, and z
satisfying hypothesis (viii). Suppose also that we have I’ € w, finite
subsets Jj,Ji,...,J}, of N, and 2’ such that J/ # 0 if ¢ > 0, a, =
o+ Zé’:o ZjeJ; Ty, and

(&) J§=0if and only if

am & {2t +Arj:j€Nand 2 ; € Xy 4};

(b’) I = 0 if and only if _ZjGJé Tt + am ¢ U{./L'tJrl’j + At+17j :

jeN and Ti+1,5 € Xt-l—l,t};
(c’) for each k € Jj, if any, x;; € X, and _ZJ69J<’€ Tt j + Qm €
Ty g+ Ak

(d’) for each i € {1,2,...,I'}, if any, and each k € J/,
- (ZJ;3j<k Titig + Z;;lo je, $t+n,j) +am €
Topik + Aryik;

(e) forie {1,2,...,U'},if any, if j = min J/, then x4y, ; € Xyqi14i—1
and if j € J/\ {min J}}, then xy; ; € X¢ti 144

(f7) for i € {1,2,...,1' = 1}, if any, =37, (3", Teany + am €
U{ztiq1j + Avpivry s d €Nand qi415 € Xegig1e44)s

(g) if I’ >0, then — Z;:O ZjeJ;, Tyynj + am ¢ Cyy; and

(W) =Y Ty +am
U{z¢,; +Arj i€ Nand 2y ; € X4}

We shall show that [ =1’, 2 = 2/, and for each s € {0,1,...,1}, J; = J..
In the proof we will frequently encounter a situation where we have

some jo > k™! and x, j, and A, j, were constructed at a stage after m.
In that situation, by the fact that lim k' = oo and hypothesis (x) we
m—o0

have some m’ > m — 1 such that jo = k" *! = k™ + 1. Then one had
em/+1 = (x,n — 1) for some = € X,, ,_1 and either

(11) Tnj, € Xpn—1 and (mn,jo + A"»jo) n Zﬁfl =0
or
(12) Tn,jo € an and (xn,jo + An,jo) n 277;)1/+1 =0.
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(Condition (}1) happened under Case 1 for the construction of K; and
(12) happened under Case 2 for the construction of K;.)

In this proof all references to statement (a), (b), and so on refer to the
statements of hypothesis (viii). We show first that Jy = 0 if and only if
J{+0. By statements (a) and (a’) it is immediate that if Jo # () then J| #
0. So suppose that Jy = 0 and Jj # 0. Then we have a,, € xj, + A j,
for some jy > k:;”*l such that x; j, € X¢ . Then we have m’ > m—1 such
that jo = kl"u“l = k‘{”/ +1 and epq1 = (z,t — 1) for some x € X ;1.
Since x4 j, € X+, we have by (12) that (¢, + A¢j,) N Z"W 1 = ). But
since Jo = 0, z = a,, € Z* C Ztm/'|r1 50 (¢, + At jo) N Ztm/'*'1 £ 0, a
contradiction.

Thus we have that Jy = () if and only if J§ = 0. To see that Jy = J|,
suppose instead that we have jo = min(Jy A J}). Let L = {j € Jp :
j<igot =145 € Jy: 7 < jo}. Assume first that jo € Jy. Then by
statement (), — > icy Tty + am € Tyj, + Arjo. U Jy # L, let k =
min Jj \ L. Then by statement (c’), —Z]EL Tej + am € Tpp + Ak,
contradicting hypothesis (ii). So we have J) = L and by statment (h’),
=Y jer Tty +am & Trj, + A4y, a contradiction.

Thus we must have jo, € Jj so by statement (¢’), x,, € X and
— ZJEL Ty + Am € Ty jy + Arjo- If Jo # L, let k =minJy \ L. Then by
statement (c), — EjeL Ty j + am € ek + Ag g, contradicting hypothesis
(ii). So we have Jo = L and by statment (h), — >, @¢j+am ¢ N2+
Ajjed{l,2,.. .,k;nfl} and z;; € X;;}. So we must have that jo >
k"1 and we have m’ > m — 1 such that jo = k" *' = k™ + 1 and
em/+1 = (x,t—1) for some x € X; ;1. Since z; j, € X;;, we have by (12)
that (x5, + A¢j,) N ZW N = (. If I = 0, we have = jer Tty tam =
z € 2ZmMC Ztm/“, a contradiction. So I > 0. Let & = minJ;. Then by
statement (d), we have — ZJEL Tt + Qm € Tyy1 k + A1k, contradicting
hypothesis (ii). So we have shown that Jy = J{.

Now we show that [ = 0 if and only if I’ = 0. By statements (b) and
(b”), it is immediate that if { > 0, then I’ > 0. So suppose that [ = 0
and I" > 0. By statements (b) and (b’) we have *ZjeJ() Tej + am €
et + Aevi,j, and T4 5, € Xyy1,¢ for some jo > kli’_ll. So we have
some m’ >m — 1 such that jo = kI ' = k7 + 1 and ey q1 = (2,t) for
some = € X411 4. Since z441 j, € X414, we have by (1) that (zi41,4, +
Ai15,) N ZMH = . Since [ = 0, we have that z = — Y ied, Ttj T am €
zZm C Z,Z”/H, a contradiction. We have established that ! = 0 if and only
ifI'=0.If1 =0, then 2 = =3 ., ¢ ; +amn = 2’ and we are done.
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Assume that min{l/,!’} > 0. Let 0 < s < min{/,!’} and assume that for
i€{0,1,...,s—1}, J; = J!. Suppose that J; # J, let jo = min(Js AJ}),
andlet L={j e Jy:j<jo}={j€J):j<jo} By statement (d) or

(d),

-1
~(Xjer Ttasg T 2ico 2ojes, Tering) T am € Tigs o + Avts jo -
Assume first that jo € J,. If J, # L, let k = min J,. By statement (d’),

21 .

—(Xjer Trrsit2i20 2o je Titig) T am € Tepsk+Arpsk, contradicting

hypothesis (ii). So we have J, = L. If s < I’, then by statement (f),

7(ZJEL Tits,j +Zf;0 ZjEJi It+i,j) +am € Tiqs41,5 +At+s+1,j for some

j, again contradicting hypothesis (ii). So we must have s = I’. Then

L # 0 so by statement (€’), 445 j, € Xits1+s S0 that by statement (g’),
-1

—(Xjer Ttrs i T2is0 2jes, Tetig) Fam & Cryr. But weps jo+Aris jy €

Ciqs = Cyqyp, a contradiction.

So we must have jy € J.. If J; # L, let k = min J;. By statement (d),

—1 - .

—(XjeL Tigs it io D jes; Titin) Fam € Tips o+ Avysk, contradicting

hypothesis (ii). So we have J, = L. If s < [, then by statement (f),
—1

~(Xjer Ttrsg im0 2ojes Tt+ing) T am € Tepst1j+ Aprsir, for some

4, again contradicting hypothesis (ii). So we must have s = [. Then

L # 0 so by statement (e), Zyts;, € Xitst+s S0 that by statement

—1 —1 .

(8), = er Tedsg T 2ico 2ojes, Tevig) +am & Cfiy . Since s j, +

Aiysjo € Ciys, we must have that jo > kﬂ;l. So we have some m' >

m — 1 such that jy, = k’f}rljl = kzﬂls +1and epr41 = (z,t+s—1) for some

’
: +1 _
x € Xt+1,t- Since Ttts,50 € Xt+s,t+s we have (-rt+s,jo+At+s,jo)ﬂZm_s =

l "+1

0. But @epsjy + Atrsgo = Gm = 2img Djeg, Tttig = 2 € Z{4y € Z7,
a contradiction.

So we have established that for all s < min{l,!'}, J, = J.. It remains

only to show that [ = I’ since then z = 2’ follows. Suppose first that

" < l. Then by statement (g’), — Zé/:o > jes, Titig + am & Crpp while
l/
by statement (£), —> ;o> ey, Tttij + am € Tepr41,jo + Arpr41,5, for
some j and Ty4p41,j, + Airr+1,5o € Citr, a contradiction.
Finally, suppose that [ < I’. By statement (g), — 22:0 > jet; Titig T
am ¢ Cﬁ?l while by statement (f’),

l
=200 2jeg, Titig T m € Tigiv1jo + Avviti o

for some jo such that zy;11, € Xtqi41,641- Then we must have that
jo > k*7l,. So we have some m’ > m — 1 such that jo = k%1 =

ko +1and eprq1 = (o, + 1) for some & € Xy yyq1,041-
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Then by (1), (Zr4141.jo + Arri41,0) N 25T = 0 while

am — Yy Yjer Terig =2 € LN, C Zﬁ/l“, a contradiction.
This completes the proof that the A-decomposition of a satisfies the

strong uniqueness property.

For z € Xpt1p, if x = Z]EKO Tnj+ ZjeKl Tt is its
X,,-decomposition, let 8,,(x) = min K7 and let ¢,,(z) = max K;. Then we
may choose F,(x) € pn41 such that Fy,(z) C A, 41,4, (), for each k € Ko,
if any, —ZK09j<k Znj+x+ Fo(x) C 2y + An i, and for each k € K,
_(ZjEKo Tp,j + ZK19j<k zn—&-l,j) +z+ Fn(x) CTpy1r+ An+1,k-

Next we claim that for n € w and j € N, if 2,41 ; € Xp41 041, then
o1, + Ant1,j € Ang1,k—1 \ Ang1x for some k € N. So let n € w and
j € N be given and assume that x,41,; € Xp41,n+1. Since W}gnoo kX =

00, by hypothesis (x) we may pick the largest m such that k', = j,
so that k7! = k™ + 1. By hypothesis (iv) either z,41; + Ant1,; C
An+1,k71 \ An+1,k for some k € {1,2, .. .,kgb+1} O Tp41,5 + An+1’j -
An+1,k;y+1. In the first case, we are done, so assume the latter. We have
that x,11; + Ant1,; € C) 1. By hypothesis (vii), A”+17k2"f11 ncm ., = 0.

Since k;n_‘:_ll = ’:Ln"rl + 1, we then have that Tnt1,j —|—An+17j - An+1,k;n+1 \
Aptikm 41

Now we show that for n,j € N, if x,,41,; € Xyy1n, then z,p1; +
Apt1; € Ap—1 \ Anp for some k € N. So assume pi1; € Xpt1n.
Pick m such that k7, > j and k"™ = k7 + 1. By hypothesis (v)
either Tpy1,j + An+17j - An,k—l \An,k for some k € {1,2,. . ,k‘;n’} or
Tpt1j + Ant1j © Apgm. In the first case we are done, so assume the
latter. We have that @,,11,;+An41,; C C'. By hypothesis (vii), A, ;m+10

Cm = (). Since k"t = k™ + 1, we then have that z,41; + Apy1,; C
An,k;{" \An,k::L"—i-l-

We now observe that if n € w, z € X,41,0, and a € F,(z), then
lla+x) > 1. to see this, let © = Y . p @nj + D ik, Tnt1,; be the
X,-decomposition of x. Since a € F,,(z) € A1, () @ € Apy1- Let

a=z+Y"_, > jeJ; Tnti+4,; be the A-decomposition of a. I claim that
if Jy # 0, then ¢, (z) = max K; < minJy. So let & = minJy. Then by
statement (c) of hypothesis (viii), a € xp41,% + Ant1,% 50 that (xp41x +

Ang1k) N Apii,6,) # 0 50 by (1), én(z) < k. Thus we have that

— . , I+1 .
T a =243k, Tng T 2jer,ud Tntl T 2izo 2ijes, , Tntiye Let

U'=1+1, J, =Ky, Ji = K1 UJp, and for i € {2,3,...,1+ 1}, if any,
let J/ = J;—1. It is then routine to establish that I’ and Jj,J1,...,J},
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satisfy statements (a’) — (h’) so that by the strong uniqueness of the A-
decomposition, z +a =z + Y \_, >_jeJ: Tntij is the A-decomposition of
x+asothat l(z+a)=1'>1.

Forn € N, let D,, = {a € A, : l(a) > 0}. Let n € N. We claim that
D,, C C, and D, € p,. To see that D,, C C,, note that if a € A, \ C,,
then the A-decomposition of a is a = a, so that I(a) = 0. To see that
D,, € p,, suppose instead that Z\ D,, € p,,. Recall that p,, € cl{x+p,41 :
z € Xpt1,n} o pick ¢ € X419, such that z + p,41 € Z\ D,,. Pick
B € py41 such that z + B C Z\ D,,. We have that F,(x) € p,+1 so pick
a € F,(x) N B. Then as we saw above, l(a+z) >0soa+x € Dy, a
contradiction.

Define f : D; — W as follows. Given a € Dy, let the A-decompo-
sition of a be a = z + Zi:o ZjeJi Z14i,;- Let ag = minJ; for each s €
{1,2,...,1} and let f(a) = ajas--- ;. Assume that W has been finitely
colored, and pick B; € p; such that By C D; and f[Bj] is monochromatic.
We shall show that there is an infinite sequence w; < ws < ... such that
the set {[wj,, wjy,...,w; ] k€Nand 1 <j; <...<ji} C f[B1]. That
will complete the proof of the proposition.

We claim that given any k € N and n > 2, there is some v € N
such that (z,; + A, ;) N A,—1, = 0 for each j € {1,2,...,k}. For
this, it suffices to show that for each j € N, there exists v € N such that
(@nj+An;)NAn_1,=0,50let j eN. Ifz,, ; € X, ,,, then z, j+ A4, ; C
A, and A, N A,—1 = 0. So assume that =, ; € X, ,—1. Then we have
shown that there is some v such that z,, ; + A, ; € Ayp—1.9-1 \ An—1,4 SO
(xn,j + An,j) N An—l,v = @

For each j € N, let By ; = B;. We let i > 2 and assume we have chosen
a sequence <Bi*1’j>?ii—1 of members of p;_; such that B; 1 j41 C B;_1,;
for each j > — 1.

We construct a sequence (y; )32, ; in X;,;—1 and a decreasing se-
quence (Bi7j>;?°;i71 of members of p; such that y;; + B;; C Bi_1,
Bi,j g Fifl(yi’j), and Qi,l(yiyj) < 0i71(yi,j+1) for each j Z i — 1.

Since p;—1 € cl{x +p; : v € X, 1} we may pick y; ,—1 € X, ;1 such
that ;-1 +pi € Bi—1,i—1- Then F;_1(y;i—1) € p;i so pick B;;_1 € p;
such that y; ;1 + Bii—1 € Bi—1,-1 and B;; 1 C Fi_1(yii-1)-

Now assume that (y; ;)5_; ; and (B;;)%_;, | have been chosen. We
have v such that (z; ;+A4; ;)NAi—1,, = 0foreachj € {1,2,...,0;—1(yix)}-
Pick y;ry1 € Xii—1 such that y; x41 +pi € Bi—1pr1 N Ai—1,. Then
Fi_1(Yik+1) € pi so pick B; 1 € p; such that B; py1 C Bik, Yik+1 +
Bigy1 € (Bi—ip41 N Ai—1), and Byt C© Fio1(Yikr1)-
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We need to show that 6;_1(y; k+1) > €i—1(yi k). So let
Yik+1 = ZjEKo Ti—1,5 + ZjeK'j—l Tj 5

be the X-decomposition of y; x+1. Let v = min Ky = 6;_1(yik+1). If
Ko = 0, then y;p41 +pi € @0+ Ajy 50 (250 + Ai) N Ai—1, # 0 50
u > 0;_1(yix) as required. So assume that Ky # 0, let s = min K,
and let t = max Ko. Then y; 41 +pi € @ic1s+Aim1,s 50 (Ti1,s +
Aifl)s) N Aifl,v =+ () while (-’I;ifl,s + Aifl,s) N Aifl’s =0 sos > v
Now — ZK09j<t Tio1j+Yikr1+Di € Tim1 + A1, 50 — ZjeKO Ti—1,5+
Yik+1 0 € Ajmrpand = e @it j + Yikt1 +Pi € Tic1u + Aim1u
SO (.’Eifl,u + Aifl,u) N Aifl’t =+ 0. Andt > s > v so Aifl,t - Aiflm-
Therefore (2;_1,, + Ai—1,u) N Ai—1,0 # 0 80 u > 0;_1(y; 1) as required.

We then have that for all n > 2 and jp < j3 < ... < j, with each
ji >0 — 1; Y255 +.. +yn,jn + Bn,jn, C B;.

We now claim that if n > 2 and jo < j3 < ... < j, with each j; >
i—1,b€ B,,, for each i € {2,3,...,n}, the X-decomposition of y; j, is
Yiji = Djer, , Ti—1,j + 2 ey, Ti,j» and the A-decomposition of b is

1
b=2+3 s, Tnj 2t 2jesn; Tntiy s
then the A-decomposition of d =y2;, + ...+ ynj, +bis

!
d=z+3 e, T1;+ D s Djedon Tig T 2im1 D je, . Tntig
and for each i € {2,3,...,n}, either I; = § or min I; > max J; (so that
min(Ji @] Il) =minJ; = 9i,1(yi,ji).
We show first that

1
Ynj, +0=2+ Zjelnfl Tp-1,5+ Zje]nuln Tn,j + D i1 Eje]n+i Tndi,j

is the A-decomposition of y, j, + b. We claim that either I, = ) or
min I, > maxJ, so that the equation holds. Suppose instead that k =
min [, < maxJ, = ¢n—1(Yn,j,)- Then b € z,,  + A, while b€ B, ;, C
Fn—l(ymjn) - An7¢n71(yn,jn) - An,k and (xmk +An,k) NAy k= (. To see
that

1
Ynj, +b=2+ Zjefn,l Tp-1,5+ ZjeJ,,UIn Tnj+ D imn ZjeJnH Ln+ti,j
is the A-decomposition of ¥y, ;, + b, we need that for k € I,,_1, if any,

o anf13j<k Tn—1,5 + Yn,jn +be Tn—1,k + An—l,k:

and for k € J,, _(Zjeln,l x"*17j+ZJn9j<k Tnj)FYn,jnTb € Tnp+An k.
Both of these statements hold because b € B,, j, C F,_1(yn.j,). For k €
I,,, if any, we need that *(ZjeIn,l Tn—1,j JrzjeJn xn7j+ZIn9j<k Tnj)+
Yn,j, +b € Tpg + Ap i, that is, that — >, . @0 +b € Xpp + Ap,
which holds. Similarly, the remainder of the requirements for y,, ;, + b
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follow from the corresponding requrements for b and the fact that y,, ;, =
djer,, Tn1g+ 2jeu, Tn

Now let 2 < r < n and assume we have shown that the A-decomposition
Ofd:ynjr—i_"'_'_yn,jn +b1S

d=2+Y s Tro1j+ i Yjesion Tig T 2ie1 Sjes,, Tntiy
and for each i € {r,...,n}, either I; = () or min I; > maxJ;. We have
that y,—15,_, = ZjeIT,Q mT*QJ—'—ZjGJT,l zy_1,;. Then exactly as before,
we show that either I,_; = () or minI,_; > maxJ,_; so that the equa-
tion holds. And one shows in the same way as before that the required
conditions to verify that it is the A-decomposition hold.

Having determined the A-decomposition of y2 j, + ...+ yp,j, + b, we
have that f(ya2j, +. .-+ ¥Unj, +0) = 01(y2,5,) - On-1(Yn,j, )ns1 - Oy
where a5 = min J, 4 for s € {1,2,...,1}.

For every n > 2 pick b, € By, p, let ap, = Y2 n+Y3n+. .. +Yn,n+0bn, and
let w, = f(ay). Foreachn > 2,let Jy n, Jnnt1s- - -, Jn,i, bethe finite sets
from the A-decomposition of b, and for s € {1,2,...,1,}, let appnys =
min Jy, p+s. Then w, = 61(Y2,n) - - On—1(Yn.n)n n+1 - - Ononti, . Clearly
wo < wz < ...

Let 2 < jo < ... < ji = n be given and let w = [wj,,...,w,,| and
a = Y25, .t Yk, ji +Yk+in Tt Ynn + b,. Then

w = 01(y2,5,)
ekfl(yk,jk)ek(yk+1,n) e enfl(yn,n)an,nJrl et an,nJrln and
fla) =01(y2,4.) -
ek—l(yk,jk)ek(yk-‘rl,n) e en—l(yn,n)an,n-i-l c Q4
so w = f(a) and since a € By, w € f[By]. O

Theorem 8.4. There does not exist an increasing sequence of principal
left ideals in (BZ,+).

Proof. Lemma 8.2 and Proposition 8.3. ]

In [133, Remark 6], the author notes that if ¢ ¢ N* + N*, for n € w,
pn = —n+¢q, and L, = {p,} U (BN + p,), then (L,)>2, is a strictly
increasing sequence of principal left ideals of SN. We conclude this section
by noting that the same result holds under the weaker assumption that ¢
is right cancelable in SN, and as a consequence of Theorem 8.4, any such
sequence in SN must be generated by infinitely many right cancelable
elements.

Theorem 8.5. Let g be a right cancelable element of BN, for each n € w,
let p, = —n+gq, and let L, = {p,} U (BN + p,). Then (L)%, is a
strictly increasing sequence of principal left ideals of BN.
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Proof. Letn € w. Then p,, = 14+py, 1150 L,, C Lyy1. Suppose L, 11 C Ly,

and pick = € N such that 14+p, 11 = x+p,. Thenl—n—14q¢ =z—n+gq
sol+q=1+z+¢gsol=1+z, acontradiction. |

Lemma 8.6. Let p € N*. Then p is not right cancelable in BN if and
only if BN+ p = BZ + p.

Proof. For the necessity, assume that p is not right cancelable in SN.
By [72, Theorem 8.18]|, pick v € N* such that p = u + p. To see that
BZ+p C fN+p, let g € BZ. Then ¢+ p = q+u+ p and by [72, Exercise
4.3.5], g+ u € N* so ¢+ p € BN+ p.

For the sufficiency assume that fN+p = Z+p. Then —1+p € fN+p
so pick z € BN such that —1+p=xz+p. Then2—1+p=2+4+x+p. If
p were right cancelable, we would have z = —1, a contradiction. O

Corollary 8.7. Let (p,)>2, be a sequence such that (L,)%  is strictly
increasing, where L, = {p,} U (BN + p,). Then {n € w : p, is not right
cancelable in BN} is finite.

Proof. Suppose not. Then by passing to a subsequence we may presume
that each p,, is not right cancelable in SN so that by Lemma 8.6, L, =
BZ + py,. This contradicts Theorem 8.4. (]

We include an extensive bibliography listing all of the papers that
we are aware of dealing with the algebraic structure of the Stone-Cech
compactification of a discrete semigroup or the combinatorial applications
of that structure that were published since the publication of [72]. Except
for papers cited in this current paper we do not duplicate items in the
bibliography of [72].

REFERENCES

[1] Ben Barber, Neil Hindman, and Imre Leader, Partition regularity in the rationals,
J. Comb. Theory (Series A) 120 (2013), 1590-1599.

[2] Ben Barber, Neil Hindman, Imre Leader, and Dona Strauss, Distinguishing sub-
groups of the rationals by their Ramsey properties, J. Comb. Theory (Series A)
129 (2014), 93-104. (MR3275116)

[3] Ben Barber, Neil Hindman, Imre Leader, and Dona Strauss, Partition reqularity
without the columns property, Proc. Amer. Math. Soc. 143 (2015), 3387-3399.
(MR3348781)

[4] Ben Barber and Imre Leader, Partition reqularity with congruence conditions, J.
Comb. 4 (2013), no. 3, 293-297.

[5] E. Bayatmanesh and Mohammad Tootkaboni, Central sets theorem near zero,
Topology Appl. 210 (2016), 70-80.



[6]

[7

B

(9]

[10]

[11]
[12]
[13]

[14]

[15]

[16]

[17]

(18]
[19]

[20]

[21]
[22]
[23]

[24]

ALGEBRA IN 8S - AN UPDATE 63

Vitaly Bergelson, Ergodic Ramsey theory — an update Ergodic theory of Z% actions
(Warwick, 1993-1994), 1-61, London Math. Soc. Lecture Note Ser. 228 Cambridge
University Press, Cambridge, 1996.

Vitaly Bergelson and Daniel Glasscock, On the interplay between additive and
multiplicative largeness and its combinatorial applications J. Combin. Theory
Ser. A 172 (2020), 105203, 60 pp.

Vitaly Bergelson and Neil Hindman, Some new multi-cell Ramsey Theoretic re-
sults, Proc. Amer. Math. Soc. Ser. B 8 (2021), 358-370.

Vitaly Bergelson, Neil Hindman, and Kendall Williams, Polynomial extensions of
the Milliken-Taylor Theorem, Trans. Amer. Math. Soc. 366 (2014), 5727-5748.

Vitaly Bergelson, John Johnson, and Joel Moreira, New polynomial and multidi-
mensional extensions of classical partition results, J. Combin. Theory Ser. A 147
(2017), 119-154.

Vitaly Bergelson and Alexander Leibman, Polynomial extensions of van der
Waerden’s and Szemerédi’s theorems, J. Amer. Math. Soc. 9 (1996), 725-753.

Vitaly Bergelson and Alexander Leibman, Set-polynomials and polynomial exten-
sion of the Hales-Jewett theorem, Ann. of Math. (2) 150 (1999), no.1, 33-75.

Vitaly Bergelson and Alexander Leibman, I P} -recurrence and nilsystems, Adv.
Math. 339 (2018), 642-656.

Vitaly Bergelson and Alexander Leibman, Sets of large values of correlation func-
tions for polynomial cubic configurations, Ergodic Theory Dynam. Systems 38
(2018), no. 2, 499-522.

Vitaly Bergelson and Randall McCutcheon, An ergodic IP polynomial Szemer’edi
theorem, Mem. Amer. Math. Soc. 146 (2000), no. 695, viii+106 pp.

Vitaly Bergelson and Joel Moreira, Ergodic theorem involving additive and mul-
tiplicative groups of a field and {z + y,zy} patterns Ergodic Theory Dynam.
Systems 37 (2017), no. 3, 673-692.

Vitaly Bergelson and Joel Moreira, Measure preserving actions of affine semi-

groups and {z + vy, zy} patterns, Ergodic Theory Dynam. Systems 38 (2018), no.
2, 473-498.

Vitaly Bergelson and Donald Robertson, Polynomial multiple recurrence over
rings of integers, Ergodic Theory Dynam. Systems 36 (2016), no. 5, 1354-1378.

Vitaly Bergelson and Donald Robertson, Polynomial recurrence with large inter-
section over countable fields, Israel J. Math. 214 (2016), no. 1, 109-120.

Vitaly Bergelson and Rigoberto Zelada, Iterated differences sets, Diophantine
approzimations and applications, J. Combin. Theory Ser. A 184 (2021), Paper
No. 105520, 51 pp.

Tanushree Biswas, Dibyendu De, and Ram Paul, Matrices centrally image parti-
tion regular near 0, New York J. Math. 21 (2015), 601-613.

Garith Botha and Yevhen Zelenyuk, On closed left ideal decompositions of G*,
Topology Appl. 160 (2013), no. 1, 133-136.

Garith Botha, Yevhen Zelenyuk, and Yuliya Zelenyuk, Finer closed left ideal
decompositions of G*, Topology Appl. 165 (2014), 58-63.

Ahmed Bouziad and Mahmoud Filali, The Stone-Cech compactification of a topo-

logical group as a semigroup and the SIN property, Houston J. Math. 38 (2012),
no. 4, 1329-1341.



64
[25]
[26]
[27]
[28]
[29]

30]

[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]

[41]

[42]
[43]
[14]
[45]

[46]

NEIL HINDMAN AND DONA STRAUSS

Matt Bowen and Marcin Sabok, Monochromatic products and sums in the ratio-
nals, arXiv:2210.12290.

William Brian, P-sets and minimal right ideals in N* Fund. Math. 229 (2015),
no. 3, 277-293.

William Brian, Ideals and idempotents in the uniform ultrafilters, Topology Appl.
237 (2018), 53-66.

William Brian and Neil Hindman, Factoring a minimal ultrafilter into a thick
part and a syndetic part, Fund. Math. 252 (2021), 121-145.

Tom Brown, Monochromatic solutions of exponential equations, Integers 15A
(2015), Paper No. A2, 9 pp.

Michelangelo Bucci, Svetlana Puzynina, and Luca Zamboni, Central sets gener-
ated by uniformly recurrent words, Ergodic Theory Dynam. Systems 35 (2015),
no. 3, 714-736.

Lorenzo Carlucci and David Fernandez-Breton, An adjacent Hindman’s Theorem
for uncountable groups, Colloq. Math., to appear.

Aninda Chakraborty and Sayan Goswami, Richness of arithmetic progressions in
commutative semigroups, Integers 20 (2020), Paper No. A24, 9 pp.

Aninda Chakraborty and Sayan Goswami, Polynomial central set theorem near
zero, Semigroup Forum 102 (2021), no. 2, 568-574.

Sukrit Chakraborty and Sourav Patra, Infinite image partition regular matrices—
solution in C-sets, Bull. Braz. Math. Soc. (N.S.) 52 (2021), no. 2, 253-265.

Jonathan Chapman, Partition regularity and multiplicatively syndetic sets, Acta
Arith. 196 (2020), no. 2, 109-138.

Cory Christopherson and John Johnson, Algebraic characterizations of some rel-
ative notions of size, Semigroup Forum 104 (2022), no. 1, 28-44.

Garth Dales, Dona Strauss, Yevhen Zelenyuk, and Yuliya Zelenyuk, Radicals of
some semigroup algebras, Semigroup Forum 87 (2013), no. 1, 80-96.

Dennis Davenport, Neil Hindman, Imre Leader, and Dona Strauss, Multiply par-
tition regular matrices, Discrete Math. 322 (2014), 61-68.

Dibyendu De and Subhajit Jana, Image partition regularity over the Gaussian
integers, Integers 17 (2017), Paper No. A59, 20 pp.

Dibyendu De and Ram Paul, Combined additive and multiplicative properties near
zero, New York J. Math. 18 (2012), 353-360.

Pintu Debnath and Sayan Goswami, Abundance of arithmetic progressions in
some combinatorially rich sets by elementary means, Integers 21 (2021), Paper
No. A105, 7 pp.

Pintu Debnath and Sayan Goswami, Dynamical IP*-sets in weak rings, Topology
Appl. 303 (2021), Paper No. 107854, 7 pp.

Mauro Di Nasso, Infinite monochromatic patterns in the integers, J. Combin.
Theory Ser. A 189 (2022), Paper No. 105610, 28 pp.

Mauro Di Nasso and Mariaclara Ragosta, Monochromatic exponential triples: an
ultrafilter proof, Proc. Amer. Math. Soc., to appear.

David Fernandez-Breton, Every strongly summable ultrafilter on € Za is sparse,
New York J. Math. 19 (2013), 117-129.

David Fernandez-Bretéon and Martino Lupini, Strongly productive ultrafilters on
semigroups, Semigroup Forum 92 (2016), no. 1, 242-257.



[47]
[45]
[49]
[50]
[51]
[52]
[53]
[54]
[55]
[56]
[57]
58]
[59]
[60]
[61]
[62]

[63]

[64]

[65]
[66]
[67]

[68]

ALGEBRA IN 8S - AN UPDATE 65

David Fernandez-Bretén, Strongly summable ultrafilters, union ultrafilters, and
the trivial sums property, Canad. J. Math. 68 (2016), no. 1, 44-66.

David Fernandez-Breton, Hindman’s theorem is only a countable phenomenon,
Order 35 (2018), no. 1, 83-91.

David Fernandez-Breton, Stable ordered union ultrafilters and cov(M) < ¢, J.
Symb. Log. 84 (2019), no. 3, 1176-1193.

David Fernandez-Breton, Using ultrafilters to prove Ramsey-type theorems, Amer.
Math. Monthly 129 (2022), no. 2, 116-131.

David Fernandez-Bretéon and Martino Lupini, Strongly productive ultrafilters on
semigroups, Semigroup Forum 92 (2016), no. 1, 242-257.

Hillel Furstenberg, Recurrence in ergodic theory and combinatorical number the-
ory, Princeton University Press, Princeton, 1981.

Hillel Furstenberg and Yitzhak Katznelson, A density version of the Hales-Jewett
theorem, J. Anal. Math. 57 (1991), 64-119.

Arthur Grainger, The cardinality of BA(SJ), Semigroup Forum 85 (2012), no. 2,
213-226.

David Gunderson, Neil Hindman, and Hanno Lefmann, Some partition theorems
for infinite and finite matrices, Integers 14 (2014), Paper # A12, 20pp.

Arpita Ghosh, A generalized central sets theorem in partial semigroups, Semi-
group Forum 100 (2020), no. 1, 169-179.

Neil Hindman, Partitions and sums and products of integers, Trans. Amer. Math.
Soc. 247 (1979), 227-245.

Neil Hindman, Problems and new results in the algebra of BS and Ramsey The-
ory, in Unsolved problems on mathematics for the 215t century, 295-305, 10S,
Amsterdam, 2001.

Neil Hindman, Partition regularity of matrices, Integers 7(2) (2007), A-18.

Neil Hindman, Maria-Romina Ivan, and Imre Leader, Some new results on
monochromatic sums and products in the rationals, New York J. Math. 29 (2023),
301-322.

Neil Hindman and John Johnson, Images of C sets and related large sets under
nonhomogeneous spectra, Integers 12B (2012), Article 2.

Neil Hindman and Lakeshia Jones, Idempotents in BS that are only products
trivially, New York J. Math. 20 (2014), 57-80.

Neil Hindman, Lakeshia Jones, and Monique Peters, Left large subsets of free
semigroups and groups that are not right large, Semigroup Forum 90 (2015),
374-385.

Neil Hindman, Lakeshia Jones, and Dona Strauss, The relationships among many
notions of largeness for subsets of a semigroup, Semigroup Forum 99 (2019),
9-31.

Neil Hindman, Imre Leader, and Dona Strauss, Eztensions of infinite partition
regular systems, Electronic J. Comb. 22(2) (2015), #P2.29.

Neil Hindman, Imre Leader, and Dona Strauss, Duality for image and kernel
partition regularity of infinite matrices, J. Combinatorics 8 (2017), 653-672.
Neil Hindman, Imre Leader, and Dona Strauss, Pairwise sums in colourings of
the reals, Abh. Math. Semin. Univ. Hambg. 87 (2017), 275-287.

Neil Hindman, Amir Maleki, and Dona Strauss, Central sets and their combina-
torial characterization, J. Combin. Theory Ser. A 74 (1996), 188-208.



66
[69]

[70]

[71]
[72]

[73]

[74]

[75]

[76]

[77]
[78]
[79]
[80]
81]

82]

[83]
[84]
[85]
[86]
[87]

(88]

NEIL HINDMAN AND DONA STRAUSS

Neil Hindman and Kendra Pleasant, Central Sets Theorem for arbitrary adequate
partial semigroups, Topology Proc. 58 (2021), 183-206.

Neil Hindman, Juris Steprans, and Dona Strauss, Semigroups in which all
strongly summable ultrafilters are sparse, New York J. Math. 18 (2012), 835-848.
(MR2991425)

Neil Hindman and Dona Strauss, Density and invariant means in left cancellative
left amenable semigroups, Topology Appl. 156 (2009), 2614-2628.

Neil Hindman and Dona Strauss, Algebra in the Stone-Cech compactification:
theory and applications, second edition, de Gruyter, Berlin, 2012.

Neil Hindman and Dona Strauss, The center and extended center of the max-
imal groups in the smallest ideal of BN, Topology Proc. 42 (2013), 107-119.
(MR2979964)

Neil Hindman and Dona Strauss, Separating Milliken-Taylor systems in Q, J.
Combinatorics 5 (2014), 305-333. (MR3274959)

Neil Hindman and Dona Strauss, Separating linear expressions in the Stone- Cech
compactification of direct sums, Topology and its Applications 213 (2016), 199-
211. (MR3563080)

Neil Hindman and Dona Strauss, Topological properties of some algebraically
defined subsets of PN, Topology and its Applications 220 (2017), 43-49.
(MR3619279)

Neil Hindman and Dona Strauss, The scarcity of products in S \ S, Topology
and its Applications 220 (2017), 50-64. (MR3619280)

Neil Hindman and Dona Strauss, Infinite compact sets of idempotents in BS,
Semigroup Forum 95 (2017), 415-417. (MR3715850)

Neil Hindman and Dona Strauss, Long increasing chains of idempotents in BG,
Fund. Math. 240 (2018), 1-13. (MR3720916)

Neil Hindman and Dona Strauss, Sets and mappings in 58S which are not Borel,
New York J. Math. 24 (2018), 689-701.

Neil Hindman and Dona Strauss, Some new examples of infinite image partition
regular matrices, Integers 19 (2019), #A5. (MR3901617)

Neil Hindman and Dona Strauss, Image partition reqularity of matrices over
commutative semigroups, Topology and its Applications 259 (2019), 179-202.
(MR3958267)

Neil Hindman and Dona Strauss, Some new results about the smallest ideal of
BS, New York J. Math. 25 (2019), 897-913. (MR4012572)

Neil Hindman and Dona Strauss, Image partition reqularity of matrices over com-
mutative semigroups, Topology Appl. 259 (2019), 179-202.

Neil Hindman and Dona Strauss, Image partition reqular matrices and concepts
of largeness, New York J. Math. 26 (2020), 230-260.

Neil Hindman and Dona Strauss Some new results about the ubiquitous semigroup
H, Fund. Math. 251 (2020), 87-108. (MR4128473)

Neil Hindman and Dona Strauss, Some properties of Cartesian products and
Stone-Cech compactitications, Topology Proc. B7 (2021), 279-304.

Neil Hindman and Dona Strauss, Minimal left ideals of BS with isolated points,
New York J. Math. 27 (2021), 417-436. (MR4226153)



ALGEBRA IN 8S - AN UPDATE 67

[89] Neil Hindman and Dona Strauss, Algebraic products of tensor products, Semi-
group Forum 103 (2021), 888-898.

[90] Neil Hindman and Dona Strauss, Strongly Image Partition Regular Matrices,
Integers 21A (2021), #A15.

[91] Neil Hindman and Dona Strauss, Some new results about left ideals of BS, New
York J. Math. 28 (2022), 970-992.

[92] Neil Hindman and Dona Strauss, Image partition regular matrices and concepts
of largeness, II, Topology Proc. 61 (2023), 49-76.

[93] Neil Hindman, Dona Strauss, and Luca Zamboni, Recurrence in the dynamical
system (X, (Ts)ses) and ideals of BS, Indagationes Mathematicae 29 (2018),
293-312.

[94] Neil Hindman, Dona Strauss, and Luca Zamboni, Combining extensions of the
Hales-Jewett Theorem with Ramsey Theory, Electronic J. Comb. 26(4) (2019),
#P4.23.

[95] Neil Hindman, Dona Strauss, Yevhen Zelenyuk, Longer chains of idempotents in
BG, Fund. Math. 220 (2013), 243-261.

[96] Bernard Host, A short proof of a conjecture of Erdds proved by Moreira, Richter
and Robertson, Discrete Anal. 2019, Paper No. 19, 10 pp.

[97] John Johnson, A new and simpler noncommutative central sets theorem, Topology
Appl. 189 (2015), 10-24.

[98] John Johnson and Florian Richter, Revisiting the nilpotent polynomial Hales-
Jewett theorem, Adv. Math. 821 (2017), 269-286.

[99] Valentin Keyantuo and Yevhen Zelenyuk, Right ideal decompositions of G*, Topol-
ogy Appl. 210 (2016), 90-96.

[100] Péter Komjath, Imre Leader, Paul Russell, Saharon Shelah, Daniel Soukup, and;
Zoltan Vidnyanszky, Infinite monochromatic sumsets for colourings of the reals,
Proc. Amer. Math. Soc. 147 (2019), no. 6, 2673-2684.

[101] Peter Krautzberger, On rapid idempotent ultrafilters, Semigroup Forum 89
(2014), no. 3, 692-696.

[102] Lorenzo Luperi Baglini, Partition regularity of polynomial systems near zero,
Semigroup Forum 103 (2021), no. 1, 191-208.

[103] Lorenzo Luperi Baglini and Paulo Arruda, Rado equations solved by linear combi-
nations of idempotent ultrafilters, Topology Appl. 305 (2022), Paper No. 107897,
15 pp.

[104] Randall McCutcheon, A combinatorial proof of a stronger dense Hindman the-
orem, Colloq. Math. 162 (2020), no. 2, 303-310.

[105] Randall McCutcheon and Alistair Windsor, D sets and a Sdrkdzy theorem for
countable fields, Israel J. Math. bf 201 (2014), no. 1, 123-146.

[106] Randall McCutcheon and Jee Zhou, D sets and IP rich sets in Z, Fund. Math.
233 (2016), no. 1, 71-82.

[107] Heike Mildenberger, On Milliken-Taylor ultrafilters, Notre Dame J. Form. Log.
52 (2011), no. 4, 381-394.

[108] Joel Moreira, Monochromatic sums and products in N, Ann. of Math. (2) 185
(2017), no. 3, 1069-1090.

[109] Joel Moreira, Florian Richter, and Donald Robertson, A proof of a sumset con-
jecture of Erdds, Ann. of Math. (2) 189 (2019), no. 2, 605-652.



68 NEIL HINDMAN AND DONA STRAUSS

[110] Sourav Patra and Swapan Ghosh, Concerning partition regular matrices, Inte-
gers 17 (2017), Paper No. A63, 16 pp.

[111] Sourav Patra and Md. Moid Shaikh, Monochromatic sums equal to products near
zero, Integers 20 (2020), Paper No. A66, 11 pp.

[112] Dev Phulara, A generalized central sets theorem and applications, Topology
Appl. 196 (2015), part A, 92-105.

[113] D. H. J. Polymath, A new proof of the density Hales-Jewett theorem, Ann. of
Math. (2) 175 (2012), no. 3, 1283-1327.

[114] Julian Sahasrabudhe, Exponential patterns in arithmetic Ramsey theory, Acta
Arith. 182 (2018), no. 1, 13-42.

[115] Julian Sahasrabudhe, Monochromatic solutions to systems of exponential equa-
tions, J. Combin. Theory Ser. A 158 (2018), 548-559.

[116] Andras Sarkézy, On difference sets of sequences of integers. IIT, Acta Math.
Acad. Sci. Hungar. 31 (1978), no.3-4, 355-386.

[117] Alessandro Sisto, Electron. J. Combin. 18 (2011), no. 1, Paper 147, 17 pp.

[118] Boris Sobot, Divisibility in the Stone-Cech compactification, Rep. Math. Logic
No. 50 (2015), 53-66.

[119] Boris éobot,T—dim‘sibility of ultrafilters, Ann. Pure Appl. Logic 172 (2021), no.
1, Paper No. 102857, 13 pp.

[120] Boris Sobot, More about divisibility in SN, MLQ Math. Log. Q. 67 (2021), no.
1, 77-87.

[121] Slawomir Solecki, Monoid actions and ultrafilter methods in Ramsey theory,
Forum Math. Sigma 7 (2019), Paper No. e2, 40 pp.

[122] Dona Strauss, N* does not contain an algebraic and topological copy of BN, J.
London Math. Soc. 46 (1992), 463-470.

[123] Henry Towsner, A simple proof and some difficult ezamples for Hindman’s the-
orem, Notre Dame J. Form. Log. 53 (2012), no. 1, 53-65.

[124] Yevhen Zelenyuk, K(BS) is not closed, Topology Appl. 158 (2011), no. 13,
1721-1723.

[125] Yevhen Zelenyuk, Principal left ideals of BG may be both minimal and mazimal,
Bull. Lond. Math. Soc. 45 (2013), no. 3, 613-617.

[126] Yevhen Zelenyuk, Left mazimal idempotents in G*, Adv. Math. 262 (2014),
593-603.

[127] Yevhen Zelenyuk, Discontinuity of multiplication and left translations in BG,
Proc. Amer. Math. Soc. 148 (2015), no. 2, 877-884.

[128] Yevhen Zelenyuk, Left mazimal and strongly right mazimal idempotents in G*,
J. Symb. Log. 82 (2017), no. 1, 26-34.

[129] Yevhen Zelenyuk, Idempotents in SG\ G with only irivial divisors, Fund. Math.
248 (2020), no. 2, 205-218.

[130] Yevhen Zelenyuk, Elements of order 2 in SN, Fund. Math. 252 (2021), no. 3,
355-359.

[131] Yevhen Zelenyuk, Finite semigroups in BN and Ramsey theory, Bull. Lond.
Math. Soc. 53 (2021), no. 3, 710-722.

[132] Yevhen Zelenyuk, Flements of finite order in SN, Adv. Math. 408 (2022), part
B, Paper No. 108608, 12 pp.



ALGEBRA IN 8S - AN UPDATE 69

[133] Yevhen Zelenyuk, Increasing chains of principal left ideals of BZ are finite, Fund.
Math. 258 (2022), 225-235.

[134] Yevhen Zelenyuk and Yuliya Zelenyuk, Three-element bands in SN, New York
J. Math. 21 (2015), 1263-1267.

[135] Yevhen Zelenyuk and Yuliya Zelenyuk, Dynamical decompositions of X \ X,
Ergodic Theory Dynam. Systems 37 (2017), no. 1, 324-336.

[136] Yevhen Zelenyuk and Yuliya Zelenyuk, Direct products of null semigroups and
rectangular bands in BN, New York J. Math. 28 (2022), 610-616.

DEPARTMENT OF MAaTHEMATICS, HOWARD UNIVERSITY, WasHINGTON, DC 20059,
USA.
Emasil address: nhindman@aol.com

UniversiTY oF Hurn, Hurr HU6 7TRX, UK.
Email address: d.strauss@emeritus.hull.ac.uk



