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Partition Theorems for Left and Right Variable Words

Neil Hindman1

and

Randall McCutcheon2

Abstract. In 1984 T. Carlson and S. Simpson established an infinitary extension of
the Hales-Jewett Theorem in which the leftmost letters of all but one of the words
were required to be variables. (We call such words left variable words.) In this paper
we extend the Carlson-Simpson result for left variable words, prove a corresponding
result about right variable words, and determine precisely the extent to which left and
right variable words can be combined in such extensions. The results mentioned so far
all involve a finite alphabet. We show that the results for left variable words do not
extend to words over an infinite alphabet, but that the results for right variable words
do extend.

1. Introduction

Our story begins with the Hales-Jewett Theorem. Given k ∈ N, let Wk denote the free
semigroup on the alphabet {1, 2, . . . , k}. That is, Wk consists of all “words with letters
from {1, 2, . . . , k}” (i.e. functions whose domain is an initial segment of N and whose range
is contained in {1, 2, . . . , k}) with the operation of concatenation. (We are taking N to be
the set of positive integers. We let ω = N∪{0}.) A variable word over Wk is a word on the
alphabet {1, 2, . . . , k} ∪ {v} in which v occurs, where v is a “variable” not in {1, 2, . . . , k}.
Given a variable word w over Wk, and t ∈ {1, 2, . . . , k}, w(t) has its obvious meaning,
namely the result of replacing all occurrences of v with t.

1.1 Theorem (Hales-Jewett). Let k, r ∈ N and let Wk =
⋃r

i=1 Ai. Then there exist
i ∈ {1, 2, . . . , r} and a variable word w over Wk such that

{
w(t) : t ∈ {1, 2, . . . , k}

}
⊆ Ai.

Proof. [6].

Notice that, in the Hales-Jewett Theorem, one cannot expect that the variable v will
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occur as either the leftmost or rightmost letter of w. Indeed, suppose that k ≥ 2. Let

B1 = {w ∈ Wk : the leftmost letter of w is 1} ,
B2 = {w ∈ Wk : the leftmost letter of w is not 1} ,
C1 = {w ∈ Wk : the rightmost letter of w is 1} , and
C2 = {w ∈ Wk : the rightmost letter of w is not 1} .

Then let A1 = B1∩C1, A2 = B1∩C2, A3 = B2∩C1, and A4 = B2∩C2. Then no variable
word satisfying the conclusion of Theorem 1.1 has the variable v as either its leftmost or
rightmost letter.

1.2 Definition. Let k ∈ N.
(a) A left variable word over Wk is a variable word over Wk whose leftmost letter is

the variable v.
(b) A right variable word over Wk is a variable word over Wk whose rightmost letter

is the variable v.

In 1984, T. Carlson and S. Simpson established an infinitary extension of the Hales-
Jewett Theorem which involved left variable words. (When F is a finite nonempty subset
of N, by

∏
m∈F am, we mean the product in increasing order of indices.)

1.3 Theorem (Carlson-Simpson). Let k, r ∈ N and let Wk =
⋃r

i=1 Ai. Then there
exist i ∈ {1, 2, . . . , r} and a sequence 〈wm〉∞m=1 of variable words over Wk such that for
every m > 1, wm is a left variable word, and for every n ∈ N and every
f : {1, 2, . . . , n} → {1, 2, . . . , k},

∏n
m=1 wm

(
f(m)

)
∈ Ai.

Proof. [3, Theorem 6.3].

Notice that the Carlson-Simpson Theorem easily implies the corresponding result in
which the leftmost letter of each word is required not to be variable.

1.4 Corollary. Let k, r ∈ N and let Wk =
⋃r

i=1 Ai. Then there exist i ∈ {1, 2, . . . , r} and
a sequence 〈um〉∞m=1 of variable words over Wk such that for every m, the leftmost letter of
wm is not the variable v, and for every n ∈ N and every f : {1, 2, . . . , n} → {1, 2, . . . , k},∏n

m=1 um

(
f(m)

)
∈ Ai.

Proof. For each m, let um = w2m−1(1)w2m(v). (By w2m(v), we mean of course simply
w2m.)

In 1988 and 1989, T. Carlson and (independently) H. Furstenberg and Y. Katznelson
established the following extension of Corollary 1.4, in which one is not restricted to prod-
ucts of initial segments of N. (Given a set A, we denote the set of finite nonempty subsets
of A by Pf (A).)
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1.5 Theorem (Carlson and Furstenberg-Katznelson). Let k, r ∈ N and let Wk =⋃r
i=1 Ai. Then there exist i ∈ {1, 2, . . . , r} and a sequence 〈um〉∞m=1 of variable words over

Wk such that for every F ∈ Pf (N) and every f : F → {1, 2, . . . , k},
∏

m∈F um

(
f(m)

)
∈

Ai.

Proof. [5, Theorem 2.5] or [2, Theorem 12] applied to ~e = 1 = (1, 1, 1 . . .).

Notice that one cannot hope to extend Theorem 1.3 in exactly the same way that
Corollary 1.4 is extended by Theorem 1.5 because of the observation already made that
one can easily prevent having a left variable word w with w(1) and w(2) in the same cell
of a partition. However, it was recently established that almost as much can be done.

1.6 Theorem. Let k, r ∈ N and let Wk =
⋃r

i=1 Ai. Then there exist i ∈ {1, 2, . . . , r} and
a sequence 〈wm〉∞m=1 of variable words over Wk such that for every m > 1, wm is a left
variable word, and for every F ∈ Pf (N) with minF = 1 and every f : F → {1, 2, . . . , k},∏

m∈F wm

(
f(m)

)
∈ Ai.

Proof. [8, Theorem 2.3].

In Section 2 of this paper we generalize Theorem 1.6 in a way that allows us to avoid
requiring that min F = 1, derive a similar result for right variable words, and then establish
a common generalization of both of these extensions. (Notice that results for right variable
words are not a consequence of a simple right-left switch. Any such switch involves writing
products in decreasing order of indices.) We also give an example showing that our results
are the best possible.

In Section 3 we investigate extensions of these results to the free semigroup on infinitely
many letters, showing that the natural extension for right variable words is valid, but that
the extension for left variable words is impossible.

We shall utilize extensively the algebraic structure of the Stone-Čech compactification
βS of a (discrete) semigroup (S, ·). We take the points of βS to be the ultrafilters on
S, the principal ultrafilters being identified with the points of S. Given a set A ⊆ S,
A = {p ∈ βS : A ∈ p}. The set {A : A ⊆ S} is a basis for the open sets (as well as a basis
for the closed sets) of βS.

There is a natural extension of the operation · of S to βS making βS a compact
right topological semigroup with S contained in its topological center. This says that
for each p ∈ βS the function ρp : βS → βS is continuous and for each x ∈ S, the
function λx : βS → βS is continuous, where ρp(q) = q · p and λx(q) = x · q. The
operation is characterized as follows. Given p, q ∈ βS and A ⊆ S, A ∈ p · q if and only if
{x ∈ S : x−1A ∈ q} ∈ p, where x−1A = {y ∈ S : x · y ∈ A}. (The notation is not intended
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to suggest that x has an inverse.) See [7] for an elementary introduction to the semigroup
βS.

Any compact Hausdorff right topological semigroup (T, ·) has a smallest two sided
ideal K(T ) which is the union of all of the minimal left ideals of T , each of which is closed
[7, Theorem 2.8], and any compact right topological semigroup contains idempotents. Since
the minimal left ideals are themselves compact right topological semigroups, this says in
particular that there are idempotents in the smallest ideal. There is a partial ordering of
the idempotents of T determined by p ≤ q if and only if p = p · q = q · p. An idempotent p

is minimal with respect to this order if and only if p ∈ K(T ) [7, Theorem 1.59]. Such an
idempotent is called simply “minimal”

1.7 Definition. Let (S, ·) be an infinite discrete semigroup. A set A ⊆ S is central if and
only if there is some minimal idempotent p such that A ∈ p.

Central sets were introduced by Furstenberg [4] and defined in terms of notions of
topological dynamics. These sets enjoy very strong combinatorial properties. (See [4,
Proposition 8.21] or [7, Chapter 14].) See [7, Theorem 19.27] for a proof of the equivalence
of the definition above with the original dynamical definition.

We shall state our results in terms of an arbitrary central subset of Wk. Partition
results automatically follow because, given a minimal idempotent p ∈ βWk and given
r ∈ N, if Wk =

⋃r
i=1 Ai, then some Ai ∈ p and is therefore central.

We would like to thank the referees for constructive reports.

2. Left and Right Variable Words over Finite Alphabets

We work throughout this section with a fixed finite alphabet {1, 2, . . . , k} for some k ∈ N.

2.1 Definition. Let k ∈ N.

(a) Y =×k
j=1βWk.

(b) I =
{(

w(1), w(2), . . . , w(k)
)

: w is a variable word over Wk

}
.

(c) J =
{(

w(1), w(2), . . . , w(k)
)

: w is a left variable word over Wk

}
.

(d) H =
{(

w(1), w(2), . . . , w(k)
)

: w is a right variable word over Wk

}
.

(e) E = I ∪
{(

w,w, . . . , w
)

: w ∈ Wk

}
.

We denote the closures of I, J , H, and E in Y by I, J , H, and E respectively.

The proof of the following lemma is an elaboration of the method of proof introduced
by Furstenberg and Katznelson in [5] in the context of enveloping semigroups.
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2.2 Lemma. Let p be any minimal idempotent in βWk. Then p = (p, p, . . . , p) ∈ I. Also
there exist minimal idempotents q1, q2, . . . , qk and r1, r2, . . . , rk in βWk such that
(1) ~q = (q1, q2, . . . , qk) ∈ J ;
(2) ~r = (r1, r2, . . . , rk) ∈ H;
(3) for all j ∈ {1, 2, . . . , k}, pqj = p and qjp = qj;
(4) for all j ∈ {1, 2, . . . , k}, prj = rj and rjp = p;
(5) for all i, j ∈ {1, 2, . . . , k}, qiqj = qi; and
(6) for all i, j ∈ {1, 2, . . . , k}, rjri = ri.

Proof. By [7, Theorems 2.22 and 4.17] we have that E is a subsemigroup of Y , I is an
ideal of E, J is a right ideal of E, and H is a left ideal of E.

By [7, Theorem 2.23], K(Y ) =×k
t=1K(βWk). We claim that

(*) if s ∈ K(βWk), then (s, s, . . . , s) ∈ E .

To see this, let U be a neighborhood of (s, s, . . . , s) and pick A ∈ s such that A k ⊆ U .
Pick w ∈ A. Then (w,w, . . . , w) ∈ U ∩ E.

Thus we have that E ∩K(Y ) 6= ∅ so by [7, Theorem 1.65], K(Y )∩E = K( E ). Since
I is an ideal of E, we have that p ∈ K(Y ) ∩ E = K( E ) ⊆ I.

Since p is a minimal idempotent in E, pick (by [7, Theorem 2.8]) a minimal left ideal
L and a minimal right ideal R of E such that p ∈ L ∩ R. Pick, by [7, Corollary 2.6
and Theorem 2.7], a minimal right ideal R′ and a minimal left ideal L′ of E such that
R′ ⊆ J and L′ ⊆ H. Then by [7, Theorem 2.7], L ∩ R′ and L′ ∩ R are groups. Let
~q = (q1, q2, . . . , qk) be the identity of L ∩ R′ and let ~r = (r1, r2, . . . , rk) be the identity of
L′ ∩R.

By [7, Lemma 1.30], we have that ~q and p are right identities for L and ~r and p are
left identities for R. Thus conclusions (1), (2), (3), and (4) hold.

Conclusion (5) follows from conclusion (3) and conclusion (6) follows from conclusion
(4). (For example, given i, j ∈ {1, 2, . . . , k}, qiqj = (qip)qj = qi(pqj) = qip = qi.)

Notice that, while the coordinates of p are all equal, none of the coordinates of the
vectors ~q or ~r produced in Lemma 2.2 can be equal. (For example, {w ∈ Wk : the rightmost
letter of w is 1} ∈ r1 while {w ∈ Wk : the rightmost letter of w is 2} ∈ r2.)

Observe that Lemma 2.2 says in particular that {p, q1, q2, . . . , qk} and {p, r1, r2, . . . , rk}
are subsemigroups of βWk.

2.3 Lemma. Let S be a discrete semigroup and let T be a finite subsemigroup of βS. For
A ⊆ S, let A† = {x ∈ A : x−1A ∈

⋂
T}. If A ∈

⋂
T , then

(1) A† ∈
⋂

T and
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(2) for each x ∈ A†, x−1A† ∈
⋂

T .

Proof. For conclusion (1), we have that A† = A ∩
⋂

t∈T {x ∈ S : x−1A ∈ t} so it suffices
to let t, s ∈ T and show that {x ∈ S : x−1A ∈ t} ∈ s. Since st ∈ T we have that A ∈ st

and so {x ∈ S : x−1A ∈ t} ∈ s as required.
To establish conclusion (2), let x ∈ A† and let B = x−1A. Then B ∈

⋂
T and so, by

conclusion (1), B† ∈
⋂

T . It thus suffices to show that B† ⊆ x−1A†. So let y ∈ B†. Then
y ∈ B and so xy ∈ A. Also, (xy)−1A = y−1(x−1A) = y−1B ∈

⋂
T .

Theorems 2.4 and 2.5 are both corollaries of Theorem 2.7. However, the individual
proofs are simpler, and we feel it is also instructive to see how the two proofs are combined
to yield Theorem 2.7, so we present them both.

2.4 Theorem. Let k ∈ N and let B be any central subset of Wk. There exists a sequence
〈wn〉∞n=1 of variable words over Wk such that
(1) for each n ∈ ω, w2n+1 is a right variable word and
(2) for all F ∈ Pf (N) and all f : F → {1, 2, . . . , k}, if max F is even, then∏

m∈F wm

(
f(m)

)
∈ B.

Proof. Pick an idempotent p ∈ K(βWk) such that B ∈ p and let r1, r2, . . . , rk be as in
Lemma 2.2. Let M = {x ∈ Wk : x−1B ∈ p}. Since p = pp = r1p = r2p = . . . = rkp, we
have that M ∈ p∩

⋂k
j=1 rj . Let M† = {x ∈ M : x−1M ∈ p∩

⋂k
j=1 rj}. Let N1 = M†. Then

by Lemma 2.3, N1 ∈
⋂k

j=1 rj so that N1
k is a neighborhood of ~r, and hence N1

k ∩H 6= ∅.
Pick a right variable word w1 such that(

w1(1), w1(2), . . . , w1(k)
)
∈ N1

k .

Let n ∈ N and assume that we have chosen variable words w1, w2, . . . , wn satisfying
the following induction hypotheses.

(a) If l ∈ {1, 2, . . . , n} is odd, then wl is a right variable word.
(b) If ∅ 6= F ⊆ {1, 2, . . . , n} and f : F → {1, 2, . . . , k}, then

∏
m∈F wm

(
f(m)

)
∈ M†

and, if max F is even, then
∏

m∈F wm

(
f(m)

)
∈ B.

Let L =
{∏

m∈F wm

(
f(m)

)
: ∅ 6= F ⊆ {1, 2, . . . , n} and f : F → {1, 2, . . . , k}

}
and let

Nn+1 = M† ∩
⋂

x∈L x−1M†. By assumption L ⊆ M† and so, by Lemma 2.3, Nn+1 ∈
p ∩

⋂k
j=1 rj .

Assume first that n is even. Then Nn+1
k is a neighborhood of ~r and so Nn+1

k∩H 6= ∅.
Pick a right variable word wn+1 such that

(
wn+1(1), wn+1(2), . . . , wn+1(k)

)
∈ Nn+1

k.
Next assume that n is odd, and let Pn+1 = Nn+1 ∩ B ∩

⋂
x∈L x−1B. Then Pn+1

k

is a neighborhood of p and so Pn+1
k ∩ I 6= ∅. Pick a variable word wn+1 such that(

wn+1(1), wn+1(2), . . . , wn+1(k)
)
∈ Pn+1

k.

6



Hypothesis (a) clearly holds. To verify hypothesis (b), let ∅ 6= F ⊆ {1, 2, . . . , n + 1}
and let f : F → {1, 2, . . . , k}. If n + 1 /∈ F , the conclusion holds by assumption, so assume
that n + 1 ∈ F . If F = {n + 1} we have that wn+1

(
f(n + 1)

)
∈ M† and if n + 1 is even,

wn+1

(
f(n + 1)

)
∈ B. So assume that G = F\{n + 1} 6= ∅. Let x =

∏
m∈G wm

(
f(m)

)
.

Then x ∈ L so wn+1

(
f(n + 1)

)
∈ x−1M† and if n + 1 is even, wn+1

(
f(n + 1)

)
∈ x−1B.

2.5 Theorem. Let k ∈ N and let B be any central subset of Wk. There exists a sequence
〈wn〉∞n=1 of variable words over Wk such that

(1) for each n ∈ N, w2n is a left variable word and

(2) for all F ∈ Pf (N) and all f : F → {1, 2, . . . , k}, if minF is odd, then∏
m∈F wm

(
f(m)

)
∈ B.

Proof. Pick p ∈ K(βWk) such that B ∈ p and let q1, q2, . . . , qk be as in Lemma 2.2.
Given A ∈ p ∩

⋂k
j=1 qj , let A‡ = {x ∈ A : x−1A ∈ p ∩

⋂k
j=1 qj}. Then by Lemma 2.3,

A‡ ∈ p ∩
⋂k

j=1 qj and for each x ∈ A‡, x−1A‡ ∈ p ∩
⋂k

j=1 qj .

Let C1 = {x ∈ B : x−1B ∈ p ∩
⋂k

j=1 qj}. Since p = pp = pq1 = pq2 = . . . = pqk,
C1 ∈ p and so C1

k is a neighborhood of p and thus C1
k ∩ I 6= ∅. Pick a variable word w1

such that
(
w1(1), w1(2), . . . , w1(k)

)
∈ C1

k.

Let D2 =
⋂k

t=1 w1(t)−1B and note that D2 ∈ p ∩
⋂k

j=1 qj . Let E2 = D2
‡. Then E2

k

is a neighborhood of ~q = (q1, q2, . . . , qk) and thus E2
k ∩ J 6= ∅. Pick a left variable word

w2 such that
(
w2(1), w2(2), . . . , w2(k)

)
∈ E2

k.

Let n ≥ 2 and assume that we have chosen variable words w1, w2, . . . , wn. Assume
also that for odd l ∈ {1, 2, . . . , n} we have chosen Cl ∈ p and that for even l ∈ {1, 2, . . . , n}
we have chosen Dl ∈ p ∩

⋂k
j=1 qj so that the following induction hypotheses are satisfied.

(a) If l ∈ {1, 2, . . . , n} is even, then wl is a left variable word and
Dl ⊆

⋂k
t=1 wl−1(t)−1B.

(b) If l ∈ {1, 2, . . . , n} is odd and t ∈ {1, 2, . . . , k}, then wl(t) ∈ Cl ⊆ C1.

(c) If ∅ 6= F ⊆ {1, 2, . . . , n}, f : F → {1, 2, . . . , k}, and 2l ≤ minF , then∏
m∈F wm

(
f(m)

)
∈ D2l

‡ and, if minF is odd, then
∏

m∈F wm

(
f(m)

)
∈ B.

For l ∈ N with 2l ≤ n, let

Gl,n =
{∏

m∈F wm

(
f(m)

)
: ∅ 6= F ⊆ {2l, 2l + 1, . . . , n} and f : F → {1, 2, . . . , k}

}
.

If n = 2s, let Cn+1 = Cn−1 ∩
⋂s

l=1(D2l
‡ ∩

⋂
x∈Gl,n

x−1D2l
‡). By induction hypoth-

esis (c), if x ∈ Gl,n, then x ∈ D2l
‡ and so, by Lemma 2.3, x−1D2l

‡ ∈ p. There-
fore Cn+1

k is a neighborhood of p. So we may pick a variable word wn+1 such that(
wn+1(1), wn+1(2), , . . . , wn+1(k)

)
∈ Cn+1

k.
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If n = 2s+1, let Dn+1 = Dn−1∩
⋂k

t=1 wn(t)−1B. By hypothesis (b), we have that each
wn(t) ∈ C1 and so Dn+1 ∈ p∩

⋂k
j=1 qj . Let En+1 = Dn+1

‡∩
⋂s

l=1(D2l
‡∩

⋂
x∈Gl,n

x−1D2l
‡).

Then En+1 ∈ p ∩
⋂k

j=1 qj . Pick a left variable word wn+1 such that(
wn+1(1), wn+1(2), , . . . , wn+1(k)

)
∈ En+1

k .

Hypotheses (a) and (b) are satisfied immediately. To verify hypothesis (c), let ∅ 6=
F ⊆ {1, 2, . . . , n + 1}, let f : F → {1, 2, . . . , k}, and, if minF > 1, let 2l ≤ minF . If
n + 1 /∈ F , the conclusions hold by assumption, so assume that n + 1 ∈ F . Assume first
that F = {n+1}. If n+1 is odd, then wn+1

(
f(n+1)

)
∈ Cn+1 ⊆ D2l

‡∩B. If n+1 is even,
then wn+1

(
f(n + 1)

)
∈ En+1 ⊆ D2l

‡. Now assume that |F | ≥ 2, let K = F\{n + 1}, and
let x =

∏
m∈K wm

(
f(m)

)
. If minF > 1, then x ∈ Gl,n and so wn+1

(
f(n+1)

)
∈ x−1D2l

‡.
Therefore

∏
m∈F wm

(
f(m)

)
∈ D2l

‡. Finally, let a = min F and assume that a = 2s − 1.
Let P = F\{a}. Then we have established that

∏
m∈P wm

(
f(m)

)
∈ D2s

‡. And D2s ⊆
wa

(
f(a)

)−1
B, so

∏
m∈F wm

(
f(m)

)
∈ B.

When we deal with products including both left and right variable words, we shall be
concerned with the need to separate their occurrences.

2.6 Definition. Let 〈wn〉∞n=1 be a sequence of variable words and let F ∈ Pf (N).

(a) The set F strongly separates 〈wn〉n∈F if and only if whenever i and j are members of
F such that wi is a right variable word and wj is a left variable word, there is some
l ∈ F such that l is between i and j and wl is neither a left variable word nor a right
variable word.

(b) The set F weakly separates 〈wn〉n∈F if and only if whenever i and j are members of
F such that wi is a right variable word, wj is a left variable word, and i < j, there is
some l ∈ F such that l is between i and j and wl is neither a left variable word nor a
right variable word.

2.7 Theorem. Let k ∈ N and let B be any central subset of Wk. There exists a sequence
〈wn〉∞n=1 of variable words over Wk such that

(1) for each n ∈ ω, w4n+1 is a right variable word;

(2) for each n ∈ ω, w4n+3 is a left variable word;

(3) for each n ∈ ω, w4n+2 and w4n+4 are neither left nor right variable words; and

(4) for all F ∈ Pf (N), if F strongly separates 〈wn〉n∈F , minF 6≡ 3 (mod 4), max F 6≡
1 (mod 4), and f : F → {1, 2, . . . , k}, then

∏
m∈F wm

(
f(m)

)
∈ B.

Proof. Pick p ∈ K(βWk) such that B ∈ p. Now Wk =
⋃k

i=1

⋃k
j=1{w ∈ Wk : the leftmost

letter of W is i and the rightmost letter of w is j}, and consequently one of these sets must
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be in p. We may therefore assume that for all u, w ∈ B, the leftmost letters of u and w

are the same and the rightmost letters of u and w are the same. In particular, if w is a
variable word with {w(1), w(2), . . . , w(k)} ⊆ B, then w is neither a left variable word nor
a right variable word.

Let q1, q2, . . . , qk and r1, r2, . . . , rk be as in Lemma 2.2. Let M = {x ∈ Wk : x−1B ∈
p}. Since p = pp = r1p = r2p = . . . = rkp, we have that M ∈ p ∩

⋂k
j=1 rj . Let

M† = {x ∈ M : x−1M ∈ p ∩
⋂k

j=1 rj}.
We shall choose the sequence 〈wn〉∞n=1 inductively. Given n > 1, if we have chosen

〈wm〉nm=1, we shall let

Ln =
{∏

m∈F wm

(
f(m)

)
: ∅ 6= F ⊆ {1, 2, . . . , n} and f : F → {1, 2, . . . , k}

}
∩M† .

We shall also be choosing for each n ≡ 3 (mod 4), a set Dn ∈ p ∩
⋂k

j=1 qj . We shall let
Dn

‡ = {x ∈ Dn : x−1Dn ∈ p ∩
⋂k

j=1 qj}. Then, given l and n, if 4l − 1 ≤ n and we have
chosen 〈wm〉nm=1, we shall let

Gl,n =
{∏

m∈F wm

(
f(m)

)
: ∅ 6= F ⊆ {4l − 1, 4l, . . . , n} and f : F → {1, 2, . . . , k}

}
∩D4l−1

‡ .

Let N1 = M†. Then N1
k is a neighborhood of ~r = (r1, r2, . . . , rk) and ~r ∈ c`Y (H) so

pick a right variable word w1 such that
(
w1(1), w1(2), . . . , w1(k)

)
∈ N1

k.
Let B2 = B ∩ M† ∩

⋂
x∈L1

(x−1M† ∩ x−1B). Since L1 ⊆ M† we have that B2 ∈ p.
Let C2 = {x ∈ B2 : x−1B2 ∈ p ∩

⋂k
j=1 qj}. Since p = pp = pq1 = pq2 = . . . = pqk, we have

that C2 ∈ p and so C2
k is a neighborhood of p. Since p ∈ c`Y (I), pick a variable word

w2 such that
(
w2(1), w2(2), . . . , w2(k)

)
∈ C2

k. Since C2 ⊆ B, w2 is neither a left variable
word nor a right variable word.

Let D3 =
⋂k

t=1 w2(t)−1B2. Then D3 ∈
⋂k

j=1 qj . Let E3 = D3
‡. Then E3

k is a
neighborhood of ~q = (q1, q2, . . . , qk) and ~q ∈ c`Y (J) so pick a left variable word w3 such
that

(
w3(1), w3(2), . . . , w3(k)

)
∈ E3

k.
Let n ≥ 3 and assume that we have chosen variable words w1, w2, . . . , wn. Assume

also that for l ∈ {1, 2, . . . , n}, if l is even we have chosen Bl and Cl in p with Bl ⊆ B and
if l ≡ 3 (mod 4) we have chosen Dl ∈ p ∩

⋂k
j=1 qj . Assume that the following induction

hypotheses are satisfied. (We also assume that the sets we construct are constructed in
the same way at each stage.)

(a) If l ∈ {1, 2, . . . , n} and l ≡ 1 (mod 4), then wl is a right variable word.
(b) If l ∈ {1, 2, . . . , n} and l ≡ 3 (mod 4), then wl is a left variable word.
(c) If l ∈ {1, 2, . . . , n} is even then wl is a variable word which is neither a left

variable word nor a right variable word and if t ∈ {1, 2, . . . , k}, then wl(t) ∈ Cl

and Cl = {x ∈ Bl : x−1Bl ∈ p ∩
⋂k

j=1 qj}.
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(d) If ∅ 6= F ⊆ {1, 2, . . . , n}, f : F → {1, 2, . . . , k}, l ∈ N with 4l−1 ≤ minF < 4l+3,
and for all m ∈ F , m 6≡ 1 (mod 4), then

∏
m∈F wm

(
f(m)

)
∈ D4l−1

‡.

(e) If ∅ 6= F ⊆ {1, 2, . . . , n}, f : F → {1, 2, . . . , k}, a = minF is even, and for all
m ∈ F , m 6≡ 1 (mod 4), then

∏
m∈F wm

(
f(m)

)
∈ Ba.

(f) If ∅ 6= F ⊆ {1, 2, . . . , n}, f : F → {1, 2, . . . , k}, minF 6≡ 3 (mod 4), and F strongly
separates 〈wm〉m∈F , then

∏
m∈F wm

(
f(m)

)
∈ M†. If also maxF 6≡ 1 (mod 4),

then
∏

m∈F wm

(
f(m)

)
∈ B.

Notice that w1(1) ∈ Ln and for each l ∈ N with 4l − 1 ≤ n, w4l−1(1) ∈ Gl,n, so these
sets are nonempty.

Assume first that n is odd, and pick s such that 4s− 1 ≤ n < 4s + 3. Let

Bn+1 = Bn−1 ∩
⋂k

t=1 wn−1(t)−1Bn−1 ∩
⋂

x∈Ln
(x−1M† ∩ x−1B) ∩⋂s

l=1(D4l−1
‡ ∩

⋂
x∈Gl,n

x−1D4l−1
‡) .

By hypothesis (c) we have that wn−1(t)−1Bn−1 ∈ p for each t ∈ {1, 2, . . . , k}. Since
Ln ⊆ M† and each Gl,n ⊆ D4l−1

‡, we have by Lemma 2.3 that Bn+1 ∈ p. Let Cn+1 =
{x ∈ Bn+1 : x−1Bn+1 ∈ p ∩

⋂k
j=1 qj}. Since p = pp = pq1 = pq2 = . . . = pqk, Cn+1 ∈ p.

Pick a variable word wn+1 such that
(
wn+1(1), wn+1(2), . . . , wn+1(k)

)
∈ Cn+1

k. Since
Cn+1 ⊆ B we have that wn+1 is neither a left variable word nor a right variable word.

Now assume that n = 4s for some s ∈ N. Let Nn+1 = M† ∩
⋂

x∈Ln
x−1M†. Then

Nn+1
k is a neighborhood of ~r so pick a right variable word wn+1 such that(

wn+1(1), wn+1(2), . . . , wn+1(k)
)
∈ Nn+1

k.

Finally assume that n = 4s + 2 for some s ∈ N. Let

Dn+1 = Dn−3 ∩
⋂k

t=1(wn(t)−1Bn ∩ wn−2(t)−1Bn−2) .

By hypothesis (c) we have that Dn+1 ∈ p ∩
⋂k

j=1 qj . Let

En+1 = Dn+1
‡ ∩

⋂s
l=1

⋂
x∈Gl,n

x−1D4l−1
‡ .

Since each Gl,n ⊆ D4l−1
‡, we have by Lemma 2.3 that En+1 ∈ p ∩

⋂k
j=1 qj . Then En+1

k

is a neighborhood of ~q so pick a left variable word wn+1 such that(
wn+1(1), wn+1(2), . . . , wn+1(k)

)
∈ En+1

k.

Hypotheses (a), (b), and (c) are satisfied directly. To verify hypothesis (d), assume
that ∅ 6= F ⊆ {1, 2, . . . , n + 1}, f : F → {1, 2, . . . , k}, 4l − 1 ≤ minF < 4l + 3, and
for all m ∈ F , m 6≡ 1 (mod 4). If n + 1 /∈ F , the conclusion holds by assumption,
so we assume that n + 1 ∈ F . Assume that F = {n + 1}. If n + 1 is even, we have
wn+1

(
f(n + 1)

)
∈ Cn+1 ⊆ Bn+1 ⊆ D4l−1

‡. If n + 1 is odd, in which case n + 1 = 4l − 1,
we have wn+1

(
f(n + 1)

)
∈ En+1 ⊆ D4l−1

‡.
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To conclude the verification of hypothesis (d), assume that |F | ≥ 2. Let K =
F\{n+1}, and let x =

∏
m∈K wm

(
f(m)

)
. By assumption, x ∈ D4l−1

‡ and so x ∈ Gl,n.
If n + 1 is even, we have wn+1

(
f(n + 1)

)
∈ Cn+1 ⊆ x−1D4l−1

‡. If n + 1 is odd, we have
wn+1

(
f(n + 1)

)
∈ En+1 ⊆ x−1D4l−1

‡. Thus, in either case,
∏

m∈F wm

(
f(m)

)
∈ D4l−1

‡.

To verify hypothesis (e), assume that ∅ 6= F ⊆ {1, 2, . . . , n}, f : F → {1, 2, . . . , k},
a = min F is even, and for all m ∈ F , m 6≡ 1 (mod 4). We may assume that n + 1 ∈ F .
If F = {n + 1}, we have wn+1

(
f(n + 1)

)
∈ Cn+1 ⊆ Bn+1, so assume that |F | ≥ 2 and

let T = F\{a}. Pick s and l in N such that 4s − 1 ≤ minT < 4s + 3 and either a = 4l

or a = 4l + 2. If l < s we have
∏

m∈T wm

(
f(m)

)
∈ D4s−1

‡ ⊆ D4l+3 ⊆ wa

(
f(a)

)−1
Ba.

So assume that l = s. Then since 4l + 1 /∈ F we have a = 4l and minT = 4l + 2. Thus∏
m∈T wm

(
f(m)

)
∈ B4l+2 ⊆ w4l

(
f(4l)

)−1
B4l.

To verify hypothesis (f), assume that ∅ 6= F ⊆ {1, 2, . . . , n}, f : F → {1, 2, . . . , k},
minF 6≡ 3 (mod 4), and F strongly separates 〈wm〉m∈F . Again, we may assume that
n+1 ∈ F . Assume first that F = {n+1}. If n+1 is even, we have that wn+1

(
f(n+1)

)
∈

Cn+1 ⊆ Bn+1 ⊆ B2 ⊆ M† ∩B. If n + 1 is odd, in which case n + 1 ≡ 1 (mod 4), we have
wn+1 ∈ Nn+1 ⊆ M†.

Now assume that |F | ≥ 2. Assume first that n+1 6≡ 3 (mod 4), let K = F\{n+1}, and
let x =

∏
m∈K wm

(
f(m)

)
. Then K strongly separates 〈wm〉m∈K and minK 6≡ 3 (mod 4),

so by assumption x ∈ M† and so x ∈ Ln. If n + 1 ≡ 1 (mod 4), then wn+1

(
f(n+1)

)
∈

Nn+1 ⊆ x−1M† and so
∏

m∈F wm

(
f(m)

)
∈ M†. If n + 1 is even, then wn+1

(
f(n + 1)

)
∈

Cn+1 ⊆ x−1M† ∩ x−1B and so
∏

m∈F wm

(
f(m)

)
∈ M† ∩B.

Finally assume that n + 1 ≡ 3 (mod 4). Since F strongly separates 〈wm〉m∈F and
minF 6≡ 3 (mod 4), some member of F is even. Let b = max{t ∈ F : t is even}. Let
P = {t ∈ F : t ≥ b} and notice that for all m ∈ P , m 6≡ 1 (mod 4). Then by hypothesis
(e), we have

∏
m∈P wm

(
f(m)

)
∈ Bb. If P = F , then since Bb ⊆ B2 ⊆ M† ∩ B, we are

done. Assume then that P 6= F and let K = F\P . Let x =
∏

m∈K wm

(
f(m)

)
. Then K

strongly separates 〈wm〉m∈K and minK 6≡ 3 (mod 4) so by assumption x ∈ M† and thus
x ∈ Lb−1. Therefore ∏

m∈P wm

(
f(m)

)
∈ Bb ⊆ x−1M† ∩ x−1B

and so
∏

m∈F wm

(
f(m)

)
∈ M† ∩B.

We see that as an immediate consequence of Theorem 2.7, we do not need to demand
that there be a separator between a left variable word and a following right variable word.
(The reason for this lies in the fact that, if p, ~q, and ~r are as in Lemma 2.2, then ~q ~r = ~q p~r.)

2.8 Corollary. Let k ∈ N and let B be any central subset of Wk. There exists a sequence
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〈un〉∞n=1 of variable words over Wk such that

(1) for each n ∈ ω, u3n+1 is a right variable word;

(2) for each n ∈ ω, u3n+3 is a left variable word;

(3) for each n ∈ ω, u3n+2 is neither a left nor right variable word; and

(4) for all F ∈ Pf (N), if F weakly separates 〈un〉n∈F , minF 6≡ 3 (mod 3), max F 6≡
1 (mod 3), and f : F → {1, 2, . . . , k}, then

∏
m∈F um

(
f(m)

)
∈ B.

Proof. Let 〈wn〉∞n=1 be as guaranteed by Theorem 2.7. For n ∈ ω, let u3n+1 = w4n+1,
u3n+2 = w4n+2, and u3n+3 = w4n+3w4n+4. Then conclusions (1), (2), and (3) hold
immediately.

Let F ∈ Pf (N) be given such that F weakly separates 〈un〉n∈F , minF 6≡ 3 (mod 3),
and maxF 6≡ 1 (mod 3), and let f : F → {1, 2, . . . , k}. Let

G = {4n + 1 : n ∈ ω and 3n + 1 ∈ F} ∪
{4n + 2 : n ∈ ω and 3n + 2 ∈ F} ∪
{4n + 3 : n ∈ ω and 3n + 3 ∈ F} ∪
{4n + 4 : n ∈ ω and 3n + 3 ∈ F} .

Then G strongly separates 〈wn〉n∈G, minG 6≡ 3 (mod 4), and maxG 6≡ 1 (mod 4). Define
g : G → {1, 2, . . . , k} by g(4n + 1) = f(3n + 1), g(4n + 2) = f(3n + 2), and g(4n + 3) =
g(4n + 4) = f(4n + 3). Then

∏
m∈F um

(
f(m)

)
=

∏
m∈G wm

(
g(m)

)
∈ B.

We conclude this section by observing that it is necessary to separate right variable
words from following left variable words.

2.10 Theorem. Assume that k ≥ 2. Then there is a two cell partition of Wk such that
there do not exist a right variable word w1 and a left variable word w2 such that both

(a) w1(1)w2(1) and w1(1)w2(2) lie in the same cell of the partition and

(b) w1(2)w2(1) and w1(2)w2(2) lie in the same cell of the partition.

Proof. For w ∈ Wk, let ϕ(w) count the number of occurrences in w of a 1 followed
immediately by a 2. For i ∈ {1, 2}, let Ai = {w ∈ Wk : ϕ(w) ≡ i (mod 2)}. Suppose that
we have i, j ∈ {1, 2} such that w1(1)w2(1), w1(1)w2(2) ∈ Ai and w1(2)w2(1), w1(2)w2(2) ∈
Aj .

Then ϕ
(
w1(1)

)
+ ϕ

(
w2(1)

)
= ϕ

(
w1(1)w2(1)

)
≡ i ≡ ϕ

(
w1(1)w2(2)

)
= ϕ

(
w1(1)

)
+ 1 +

ϕ
(
w2(2)

)
, so that ϕ

(
w2(1)

)
6≡ ϕ

(
w2(2)

)
(mod 2).

But also ϕ
(
w1(2)

)
+ ϕ

(
w2(1)

)
= ϕ

(
w1(2)w2(1)

)
≡ j ≡ ϕ

(
w1(2)w2(2)

)
= ϕ

(
w1(2)

)
+

ϕ
(
w2(2)

)
, so that ϕ

(
w2(1)

)
≡ ϕ

(
w2(2)

)
(mod 2), a contradiction.
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3. Extensions to Infinite Alphabets

In this section we shall deal with possible extensions of our earlier results to W∞, the free
semigroup over a countably infinite alphabet, which we take to be N. The kind of extension
we are concerned with is illustrated by the following (already known) generalization of
Theorem 1.5. (The fact that some cell B of any finite partition of W∞ satisfies the
conclusion of Theorem 3.1 is a consequence of [2, Theorem 15].)

3.1 Theorem. Let B be a central subset of W∞. There exists a sequence 〈um〉∞m=1 of
variable words over W∞ such that for every F ∈ Pf (N) and every f : F → N for which
f(n) ≤ n for all n ∈ F ,

∏
m∈F um

(
f(m)

)
∈ B.

Proof. This is an immediate consequence of the non-commutative Central Sets Theorem
[7, Theorem 14.15]. To apply that theorem, let for each l, n ∈ N, yl,n = l. Let the sequences
〈m(n)〉∞n=1, 〈 ~an〉∞n=1, and 〈 ~Hn〉∞n=1 be as guaranteed by that theorem. For each n ∈ N, let

un =
(∏m(n)

i=1 an,i · v|Hn,i|
)
· an,m(n)+1 .

The reader wishing to verify Theorem 3.1 without going through the proof of the
non-commutative Central Sets Theorem should note that Theorem 3.1 is a corollary to
Theorem 3.5 below. We see now that no similar extension of Theorem 2.5 is possible.

3.2 Theorem. There exists a two cell partition {A1, A2} of W∞ such that there do not
exist i ∈ {1, 2} and a sequence 〈wn〉∞n=1 of variable words such that

(1) for each n > 1, wn is a left variable word, and

(2) for each n > 1 and each l ∈ {1, 2, . . . , n}, w1(1)wn(l) ∈ Ai.

Proof. For w ∈ W∞, let ϕ(w) count the number of occurrences of l as the lth letter.
Thus, if w = a1a2 · · · am where each ai is a letter, ϕ(w) = |{l ∈ {1, 2, . . . ,m} : al = l}|.
For i ∈ {1, 2}, let Ai = {w ∈ W∞ : ϕ(w) ≡ i (mod 2)}.

Suppose we have i ∈ {1, 2} and a sequence 〈wn〉∞n=1 of variable words such that

(1) for each n > 1, wn is a left variable word, and

(2) for each n > 1 and each l ∈ {1, 2, . . . , n}, w1(1)wn(l) ∈ Ai.

Let l be the length of w1 and let n = l + 1. Then ϕ
(
w1(1)wn(l + 1)

)
= ϕ

(
w1(1)wn(l)

)
+ 1,

which is a contradiction.

Of course Theorem 3.2 also provides a counterexample to the corresponding assertion
involving central sets, since necessarily one of A1 and A2 must be central. In fact both A1

and A2 are central. To see this, notice that 13W∞ is a right ideal of W∞ and thus 13W∞ is
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a right ideal of βW∞ by [7, Corollary 4.18]. Consequently there is a minimal idempotent
p in 13W∞. Now consider the isomorphism τ from W∞ to itself which interchanges
the letters 1 and 2 and leaves all other letters fixed. Then the continuous extension
τ̃ : βW∞ →W∞ is an isomorphism by [7, Corollary 4.22] and thus τ̃(p) is also a minimal
idempotent. Given any w ∈ 13W∞, ϕ(w) = ϕ

(
τ(w)

)
+ 1. Consequently A1 ∈ p if and

only if A2 ∈ τ̃(p). (We are grateful to Dona Strauss for providing us with this simple
argument.)

An attempt to modify the proof of Theorem 2.5 to apply to W∞ must, of course, fail.
The reason is that the set A‡ produced there would now refer to membership in infinitely
many ultrafilters. A similar objection about M† prevents the direct extension of the proof
of Theorem 2.4. However, we are able to change the proof somewhat. We shall need a
modification of Lemma 2.2.

3.3 Definition.

(a) Y =×∞
j=1βW∞.

(b) I =
{
(w(1), w(2), w(3), . . .) : w is a variable word over W∞

}
.

(c) H =
{
(w(1), w(2), w(3), . . .) : w is a right variable word over W∞

}
.

(d) E = I ∪
{
(w,w,w, . . .) : w ∈ W∞

}
.

The entire analogue of Lemma 2.2 remains valid, but we shall only need a small part.

3.4 Lemma. Let p be any minimal idempotent in βW∞. Then p = (p, p, p, . . .) ∈ I. Also
there exist idempotents r1, r2, r3, . . . in βW∞ such that

(1) ~r = (r1, r2, r3, . . .) ∈ H and

(2) for all j ∈ N, rjp = p.

Proof. By [7, Theorems 2.22 and 4.17] we have that E is a subsemigroup of Y , I is an
ideal of E, and H is a left ideal of E.

By [7, Theorem 2.23], K(Y ) =×t∈NK(βW∞). We claim that

(*) if s ∈ K(βW∞), then (s, s, s, . . .) ∈ E .

To see this, let U be a neighborhood of (s, s, s, . . .), pick k ∈ N and for each i ∈ {1, 2, . . . ,

k}, pick Ai ∈ s such that
⋂k

i=1 πi
−1[Ai ] ⊆ U . (Here πi is the projection from Y onto its

ith coordinate.) Pick w ∈
⋂k

i=1 Ai. Then (w,w,w, . . .) ∈ U ∩ E.

Thus we have that E ∩K(Y ) 6= ∅ so by [7, Theorem 1.65], K(Y )∩E = K( E ). Since
I is an ideal of E, we have that p ∈ K(Y ) ∩ E = K( E ) ⊆ I.

Since p is a minimal idempotent in E, pick (by [7, Theorem 2.8]) a minimal right ideal
R of E such that p ∈ R. Pick, by [7, Corollary 2.6], a minimal left ideal L of E such that
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L ⊆ H. Then L ∩ R is a group. Let ~r = (r1, r2, r3, . . .) be the identity of L ∩ R. By [7,
Lemma 1.30], we have that ~r and p are left identities for R.

3.5 Theorem. Let B be any central subset of W∞. There exists a sequence 〈wn〉∞n=1 of
variable words over W∞ such that

(1) for each n ∈ ω, w2n+1 is a right variable word and

(2) for all F ∈ Pf (N) and all f : F → N, if f(n) ≤ n for each n ∈ F and max F is even,
then

∏
m∈F wm

(
f(m)

)
∈ B.

Proof. Pick an idempotent p ∈ K(βW∞) such that B ∈ p and let r1, r2, r3, . . . be as in
Lemma 3.4. Let M = {x ∈ W∞ : x−1B ∈ p}. Since p = pp = r1p = r2p = r3p = . . .,
we have that M ∈ p ∩

⋂∞
j=1 rj . In particular, π1

−1[M ] is a neighborhood of ~r and so
π1

−1[M ] ∩H 6= ∅. Pick a right variable word w1 such that w1(1) ∈ M .

Now let n ∈ N and assume that we have chosen variable words w1, w2, . . . , wn such
that

(1) if l ∈ {1, 2, . . . , n} is odd, then wl is a right variable word;

(2) if ∅ 6= F ⊆ {1, 2, . . . , n} and f : F → N so that f(l) ≤ l for each l ∈ F , then∏
m∈F wm

(
f(m)

)
∈ M ; and

(3) if ∅ 6= F ⊆ {1, 2, . . . , n}, f : F → N so that f(l) ≤ l for each l ∈ F , and max F is
even, then

∏
m∈F wm

(
f(m)

)
∈ B.

Let L = {
∏

m∈F wm

(
f(m)

)
: ∅ 6= F ⊆ {1, 2, . . . , n} and f : F → N so that f(l) ≤ l

for each l ∈ F}. Given x ∈ L, we have that x ∈ M and so x−1B ∈ p = pp = r1p = r2p =
r3p = . . ., and hence

x−1M = {y ∈ W∞ : xy ∈ M} = {y ∈ W∞ : y−1(x−1B) ∈ p} ∈ p ∩
⋂∞

j=1 rj .

Let D = M ∩
⋂

x∈L x−1M .

Assume first that n is even. Then we have
⋂n+1

i=1 πi
−1[D ] is a neighborhood of ~r, so

pick a right variable word wn+1 such that {wn+1(1), wn+1(2), . . . , wn+1(n+1)} ⊆ D. Then
hypotheses (1) and (2) are satisfied.

Now assume that n is odd. Let E = D∩B∩
⋂

x∈L x−1B. Since L ⊆ M , we have that
E ∈ p. Thus we have

⋂n+1
i=1 πi

−1[E ] is a neighborhood of p, so pick a variable word wn+1

such that {wn+1(1), wn+1(2), . . . , wn+1(n + 1)} ⊆ E. Then all hypotheses are satisfied.
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