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Abstract

Using left ideals, right ideals, and the smallest two sided ideal
in a compact right topological semigroup, we derive an extension of
the Main Lemma to Carlson’s Theorem. This extension involves an
infinite sequence of variable words over a finite alphabet, some of which
are required to have the variable as the first letter and others of which
are required to have the variable as the last letter.

1 Introduction

In 1988 T. Carlson published a Ramsey Theoretic result [2, Theorem 2] which
has as corollaries many earlier results in Ramsey Theory. (See [8, Section
18.4] for a relatively short presentation of Carlson’s Theorem and some of
its consequences.) FExperience suggests that Carlson’s “Main Lemma” [2,
Lemma 5.9] implies those Ramsey Theoretic corollaries of his theorem in
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which a finite collection of finite objects is partitioned into finitely many
classes. We shall state this Main Lemma after introducing some necessary
terminology.

For k € N, the set of positive integers, let W, be the free semigroup
with identity e on the alphabet {1,2,... k}. That is, W consists of all
“words with letters from {1,2,... k}’ (i.e. functions whose domain is an
initial segment of N and whose range is contained in {1,2,...,k}) together
with the empty word, with the operation of concatenation. A wvariable word
over Wy is a word on the alphabet {1,2,...,k} U {v} in which v occurs,
where v is a “variable” not in {1,2,...,k}. Given a variable word w over
Wi, and t € {1,2,...,k}, w(t) has its obvious meaning, namely the result of
replacing all occurrences of v with ¢t. (There is a potential conflict here with
the formal viewpoint which takes w to be a function. If we have occasion to
need the value of the function w at ¢ we will denote it as w;.)

Definition 1.1 Let £ € N and let (w,)°, be a sequence of variable words
over Wy. The sequence (t,)22, is a variable reduction of (w,)>, if and only
if there exist an increasing function g : N — N and a function f : N — {1, 2,
..., k}U{v} such that

(1) g(1) =1,

(2) for each n € N, v € f[{g(n),g(n)+1,...,9(n+1) —1}], and

(3) foreachn € N, t,, = Hfig&l))fl w;(f (7)), where the product is in increas-
ing order of indices.

Theorem 1.2 (Carlson) Let k € N, let the set of variable words over W,
be partitioned into finitely many classes, and let (w,)>2, be a sequence of
variable words. Then there exists a variable reduction ()52, of (w,)2,
such that all expressions of the form T[i_, t;(f(i)), where n € N, f : {1,2,
oont —{1,2,...,k} U{v}, and v € range(f), lie in the same cell of the
partition.

Proof. [2, Lemma 5.9]. O

Somewhat earlier, T. Carlson and S. Simpson had established a similar
result which partitioned W, rather than the variable words over W, and
required that most of the variable words used must have v as the leftmost
letter. Such words are left variable words. Similarly, a right variable word
must have the variable v as its rightmost letter.



Theorem 1.3 (Carlson-Simpson) Let k € N and let Wy, be partitioned
into finitely many classes. Then there ezists a sequence (w,)>, of variable
words over Wy such that for every n > 1, w, is a left variable word, and
all expressions of the form [1'; w;(f(i)), where n € N and f : {1,2,...,
n} — {1,2,...,k}, lie in the same cell of the partition.

Proof. [3, Theorem 6.3]. O

In [1], V. Bergelson, A. Blass, and the first author of the current paper
established a generalization of Theorem 1.2 by utilizing the algebraic struc-
ture of the Stone-Cech compactification of a discrete semigroup. They could
not, however, extend by these methods Theorem 1.3. The reasons involve
the algebraic constructs used in the proof, which we pause now to introduce.

Given a discrete semigroup (.5,-), we take the points of 5S to be the
ultrafilters on S, the principal ultrafilters being identified with the points of
S. Givenaset ACS, A={pepBS:Aecp} Theset {A: AC S}isa
basis for the open sets (as well as a basis for the closed sets) of 35.

There is a natural extension of the operation - of S to S making 35
a compact right topological semigroup with S contained in its topological
center. This says that for each p € 3S the function p, : S — BS is
continuous and for each z € S, the function A\, : S — (S is continuous,
where p,(¢) = ¢ - p and A\.(¢) = = - ¢. The operation is characterized by the
fact that for any p and ¢ in 8S and any A C S, A € p- ¢ if and only if
{reS:z'Aeq} €p wherez 'A={yeS:z-yec A}. See [§] for an
elementary introduction to the semigroup 35.

Any compact Hausdorff right topological semigroup (7',-) has a smallest
two sided ideal K (7') which is the union of all of the minimal left ideals of T,
each of which is closed, and is also the union of all of the minimal right ideals
of T' [8, Theorem 2.8]. Given any minimal left ideal L and any minimal right
ideal R, LN R is a group (and in particular has an idempotent) [8, Theorem
2.7]. There is a partial ordering of the idempotents of 7' determined by p < ¢
if and only if p =p-q = ¢-p. An idempotent p is minimal with respect to
this order if and only if p € K(T) [8, Theorem 1.59]. Such an idempotent is
called simply “minimal”.

Members of minimal idempotents in 35S are the central subsets of S.
Central sets were introduced by H. Furstenberg in [4] and defined in terms of
notions of topological dynamics. These sets enjoy very strong combinatorial
properties. (See [4, Proposition 8.21] or [8, Chapter 14].) See [8, Theorem



19.27] for a proof of the equivalence of the definition of “central” in terms of
(S with the original dynamical definition.

The basic algebraic fact used in [1] (as well as several other papers) is
that any two sided ideal in a compact right topological semigroup 7' contains
K(T'). While variable words over W yield a two sided ideal in an appro-
priately chosen compact right topological semigroup, left variable words and
right variable words do not.

Left variable words do, however correspond naturally to a right ideal (and
right variable words correspond to a left ideal). In [7] we were able to use
these natural left and right ideals to obtain a generalization of Theorem 1.3
involving both left and right variable words. In the current paper we use
similar left and right ideals to obtain a generalization of Theorem 1.2 which
involves both left and right variable words.

2 Extending Carlson’s Main Lemma

We shall have throughout this section a fixed £ € N. We begin with the
following simple lemma from semigroup theory.

Lemma 2.1 Let S be a semigroup which has a minimal left ideal which
contains an idempotent. Let L be a left ideal of S, let R be a right ideal
of S, and let e be any idempotent in S. There is a minimal idempotent
m € LeNeR. Necessarily m < e.

Proof. Notice that if m € Le, then me = m and if m € eR, then em = m.
Thus any idempotent m € Le N eR satisfies m < e.

By [8, Lemma 1.57] S has a minimal right ideal which contains an idem-
potent. Thus, by [8, Corollary 1.47] we may presume that L is a minimal left
ideal and R is a minimal right ideal. By [8, Theorem 1.46] Le is a minimal
left ideal and eR is a minimal right ideal and so, by [8, Theorem 1.61] LeNeR
is a group. Let m be the identity of Le NeR. O

Given a set X, we denote the set of finite nonempty subsets of X by
Pr(X).

Lemma 2.2 Let S be a discrete semigroup, let A C X?illS, and let Z =
XfillﬁS Assume that (y1,vy2,. .., Yk+1) € clz(A), C C S, W € Ps(S), and



L € Ps(3S). Then there exists (a1, ag, ..., ax11) € A such that, for alll € L,
alue W, and alli € {1,2,...,k+ 1},

(uai)_lC' cleu'!Ceyl.
Proof. Forle L,ue W, and i€ {1,2,...,k+ 1}, let

C _{ C it C euyl
bl =L S\C i C ¢ uyil .

Then C;,; is a neighborhood of uy;l = A\,(pi(y:)) so pick a member U;,,; of
y; such that A\, [pi[Uiwi]] € Ciu-

Forie {1,2,...,k+ 1}, let N; = Micr, Nuew Uiwg- Pick (a1, a9, ..., ags1)
c An xHIN;. 0

Definition 2.3 (a) Y = (X'_ 8W)) x SWj1.

(b) Z = X5 BWi.
(c) I ={(w(1),w(2),...,w(k+1)): wis a variable word over W;}.
(d) J={(w(l),w(2),...,wk+1)):wis a left variable word over W;}.
(e) H={(w(1),w(2),...,w(k+1)):wis a right variable word over W;}.
(f) E=TU{(w,w,.. ):wEWk}.

Notice that each of I, J, H, and E are contained in (X?lek) X Wii1,
and consequently their closures in Y and in Z are identical.

Lemma 2.4 F is a subsemigroup of Y, I is an ideal of E, J is a right ideal
of E, and H is a left ideal of E.

Proof. [8, Theorems 2.22 and 4.17]. O

The proof of the following lemma uses an idea from [1]. This lemma is
needed so that in Theorem 2.9 the cell of the partition F can be guaranteed
to be central in Wy, 1. This fact is significant because, as we have noted,
central sets are guaranteed to contain substantial combinatorial structures.

Lemma 2.5 FNK(Y) # 0 and so

K(E)=EnN((Xj_K(BWi) x K(BWii1)) = ENK(Y).



Proof. Let s be a minimal idempotent in fW; and pick by [8, Theorem
1.60 and Corollary 2.6] an idempotent p in Wy ; such that p < s. Let
P=1(s8...,50D). B

We claim that it suffices to show that p" € I. Indeed, assume that we
have done so. We have that p’ € (X?ZIK(ﬁWk:» X K(fWy41) and by [8,
Theorem 2.23] K(Y) = (X' K(8W;)) X K(8Wis1). Thus we have that
peINK(Y)C ENnK(). Tt then follows from [8, Theorem 1.65] that
K(E)=EnNK().

To see that g€ I, let A € s and B € p be given. We need to show that
(Zk x BYNI # (. For each t € {1,2,...,k} define g; : Wi 11 — Wy by
letting g;(w) be the word obtained by replacing each occurrence of k + 1 by
an occurrence of ¢ and let g; : SWgy1 — BW, be its continuous extension.
Let t € {1,2,...,k} be given. By [8, Corollary 4.22], g; is a homomorphism
and so g;(p) < gi(s). Since g, is the identity on W), we have that g;(s) = s,
and thus g;(p) < s. Since s is minimal, we therefore have that g;(p) = s.

Since A is a neighborhood of g;(p) for each t € {1,2,...,k}, we have
that N*_, g: '[A] € p. Also, since SWjy.11\BW; is an ideal of fWy4; and p is
minimal in SWy1, we have that Wy 1 \W, € p. Pick

w€ Wit \Wi) N BNNEZ 97 A]

and let w be the variable word over W, which results from replacing each
occurrence of k + 1 by v. Then w(k + 1) = w and for each t € {1,2,...,
k} we have that ¢g;(u) = w(t). Consequently (w(1),w(2),...,w(k + 1)) €
IN (A% x B) as required. O

The proof of the following lemma uses an old idea of H. Furstenberg and
Y. Katznelson in [5]. There is some redundancy in this lemma. For example,
(5) and (13) both tell us that p - gxr1 = p.

Lemma 2.6 Let s be any minimal idempotent in SWy. There exist mini-

mal idempotents p, qry1, k1 € Wit and q1,q2, -+, Qr; 71,72, - -, Tk € BW,

$,8,...,8p) €1;

(
(2) q = (QI7QZ;-~7C]k+1) Ez
= (11,79, .. Thy1) € H;

— = —



(6) p-7=7and 7 p=p;

(7) forie{1,2,...;k+1} and j € {1,2,...,k}, ¢; - q¢; = ¢;
(8) forie{1,2,...;k+1} and j € {1,2,...k}, rj -1 =1y
(9) 8- Qe = p;

(10) Try1-5=p;

(11) Qk+1 S = qg4+15

(12) S Tpi1 = Tei1;

(13) for j € {1,2,....,k+ 1}, p-q; = p;

(14) for j € {1,2,....,k+ 1}, r;-p=p;

(15) forj e {1,2,...,k}, ¢; - q+1 = qj - p; and

(16) for j € {1,2,...,k}, 1jpy1-1j =D - 15

Proof. Lets=(s,s,...,s). Thens € E. By [8, Corollary 2.6 and Theorem
2.7], every left ideal of E contains a minimal left ideal and every right ideal
of E contains a minimal right ideal. Pick a minimal left ideal L of E with
L C H and a minimal right ideal R of E with R C J. Pick by Lemma 2.1 a
minimal idempotent p < 5 in E with p’€ LsN35R.

Now 7 = (p1,p2,---,Prr1). Since p <5, we have that for each ¢t € {1,2,
..., k+1}, p < s. Since s is minimal in W}, we have in particular that p, =
sforte{1,2,...,k}. Let p=py1. Then we have p'= (s,s,...,s,p). Since
p € K(E) and, by Lemma 2.5 K(E) = E N (X}_ K(BWy) x K(BWi1)),
we have that p is minimal in SWj,1. Since p < s, we have that (4) holds.
Since p'is minimal in £ and I is an ideal of E, we have that p'€ I. That is,

(1) holds.
Since p € LsN SR, pick m € L and n € R such that p'= m3s = 3sn.
Then p = myy15 = sny4q and for j € {1,2,...,k}, s = mjs = sn;. Also

Mpg1P = Mpr1Sp = pp = p and pngy = p. For j € {1,2,...,k}, we have
that mjp = mjsp = sp = p and pn; = p. Let ¢ = rip and let 77" = p'm. Now
Qe 1Qe+1 = M1 PU1D = Npp1PP = N1 = Q1. Lhe fact that g; is an
idempotent for each j € {1,2,...,k} follows from (7) which we shall verify
below. Likewise, for each j € {1,2,... . k+ 1}, rjr; = ;.

Since 7 € R and m € L we have § € R C J and ¥ € R C H. Thus
(2) and (3) hold. Also ¢ € R C K(E) C X'_ K(BWi) x K(8Wi41), so
we have that g4 is minimal in W, and ¢; is minimal in W, for each
Jj €{1,2,...,k}. Similarly, 741 is minimal in fW;; and r; is minimal in
BW, for each j € {1,2,...,k}.



We proceed to verify the odd numbered statements from (5) through (15),
the corresponding even numbered statements being analogous.

Since p'= sn and pngy1 = p, we have that p' = pri. Therefore we have
pi=pnp=pp=pand ¢gp=npp=mnp=q. Thus (5) holds.

To verify statement (7), first let 4,5 € {1,2,...,k}. Then ¢;¢; = n;sq; =
n;s = ¢;. Now let j € {1,2,...,k}. Then gyr1¢; = nps1pn;s = ng1ps =
Np+1P = Qk+1-

Since sqgy1 = Sngr1p = pp = p we have that (9) holds. For statement
(11), we have gxy15 = ng1ps = Ng1p = qer1. Lo verify (13), let 5 € {1, 2,
...,k}. Then pg; = pn;js = ps = p. From (5) we know that pgy+1 = p. To
verify (15), let j € {1,2,...,k}. Then ¢jqps1 = njsngpp = njpp = n;p =
n;sp = ¢;p. O

In Theorem 2.9 we shall be choosing a sequence of variable words (w,)
such that whenever n = 1 (mod 3), w, is a right variable word and whenever
n =0 (mod 3), w, is a left variable word. We shall expect certain products of
these words to lie in specified cells of finite partitions of Wy and of Wi 1 \Wj.
We clearly cannot have the first word of such a product be a left variable word
nor can we have the last word be a right variable word, since one may divide
Wy, according to the first or last letter. Nor can we allow a right variable
word to be followed by a left variable word, since that allows manipulation
of adjacent occurrences of letters. (See [7] for a fuller discussion of these
points.)

Definition 2.7 A set F' € P;(N) is allowable if and only if max F # 1
(mod 3), min F' # 0 (mod 3), and for all i < j in F, if i = 1 (mod 3)
and j = 0 (mod 3), then there exists h € F such that i < h < j and
h =2 (mod 3).

Notice that if in the following lemma F' is allowable, then conclusion (1)
or (2) applies.

Lemma 2.8 Let F' € Ps(N) and assume that max F # 1 (mod 3) and for
alli < jin F, ifi =1 (mod 3) and j =0 (mod 3), then there exists h € F
such that i < h < j and h = 2 (mod 3). Let s, p, P = (p1,D2, -, Pk+1),
7= (q1,92, -, qrs1), and 7 = (ry,re, ..., 7k11) be as in Lemma 2.6 (so that
Pk+1=pandp; =s forje{1,2,...,k}). For f: F —{1,2,...,k+1} and



n € F, define
qfm) 4fn =0 (mod 3)
o(f,n) = {rf(n) ifn=1 (mod 3)
Prny if n =2 (mod 3).
(1) If min F' # 0 (mod 3) and k + 1 ¢ range(f), then [T,er ¢(f,n) = s.
(2) If min F' # 0 (mod 3) and k + 1 € range(f), then [1,cr ¢(f,n) = p.
(3) If min F' = 0 (mod 3) and k + 1 ¢ range(f), then [I,cr ¢(f,n) €
{a, a2, - -
(4) If min F = 0 (mod 3) and k + 1 € range(f), then [l,cr ¢(f,n) €
{grs1} U{ap @p, - qrp}

Proof. We proceed by induction on |F|. If F' = {m}, then m = 0 (mod 3) or
m = 2 (mod 3). If m = 0 (mod 3), then ¢(f,m) is g¢(m) and if m = 2 (mod 3),
then ¢(f, m) is prim).-

Now assume that |F| > 1, let m = min F, and let G = F\{m}. Let
[ = minG. Then the value of [[,cq ¢(f,n) is determined by fi and the
congruence class of [ using the induction hypothesis. The conclusions then

follow from Lemma 2.6 and the fact that one cannot have both m = 1 (mod 3)
and [ = 0 (mod 3). O

Notice that in the following theorem, which is our main result, the fact
that A can be any central subset of Wj, yields a stronger result than choosing
some A out of a given finite partition of W, because for any finite partition,
some cell must be central. Notice also that one cannot reverse the roles of A
and B by taking B to be an arbitrary central set in Wy, and picking A out
of a finite partition of Wy. Indeed, let R = (k + 1)Wjy41. Then R is a right
ideal of W1, and so by [8, Corollary 4.18] R is a right ideal of SWy1, so
that R is central. Given the sequence (w,)52, of variable words over Wy as
chosen in Theorem 2.9 one cannot have w;(1)wq(k + 1) € R.

Theorem 2.9 Let A be a central subset of Wy and let F be a finite partition
of Wiei1\Wk. Then there exist B € F such that B is central in Wy41 and a
sequence (wy,)o>, of variable words over Wy, such that

(1) for eachn €N, if n =1 (mod 3), then w, is a right variable word;

(2) for eachm € N, if n =0 (mod 3), then w, is a left variable word; and

(3) for every allowable F' € P¢(N) and every h : F' — {1,2,... k + 1},
if k+ 1 € h[F], then [I,cr wn(h(n)) € B, and if k + 1 ¢ h[F], then
[Thcr wn(h(n)) € A.



Proof. Pick a minimal idempotent s € (W such that A € p. Pick
P = (Pr;p2s - Prt1), € = (1, G2, -+, Qryr), and 7 = (r1,72,...,Tk41) a3
guaranteed by Lemma 2.6. Notice that, with p as in Lemma 2.6 we have
prk+1 = p and for j € {1,2,...,k}, p; = s. Since p is minimal in W4, and
Wet1\W, is an ideal of Wy, 1, we have that Wy 1 \W}; € p. Pick B € F such
that B € pry1. Let C = AU B and notice that p’ e CKZ(XfillC).

Let L = {e,p,s,q1,92, -, Qer1, 1D, Q2P - - - , @+1P}. For notational con-
venience, let py = qo = ro = e. Also, if w is a variable word, we let w(0) = e.
IfnenN, f:{1,2,...,3n} = {0,1,...;k+ 1}, and i € {1,2,...,3n}, define
o(f,1) as in Lemma 2.8 (with the obvious extension of the definition when
f(i) =0). Given 0 € L, we say that the pair (f,0) is admissible if and only
if for every j € {1,2,...,3n}, we have (H?ﬁj o(f,7))0 € L. Notice that, if
n > 1, (f,0) is admissible, and g is the restriction of f to {1,2,...,3n — 3},
then (g, 7 f(3n—2)Pf(3n-1)25(3n)0) is also admissible.

We construct the sequence (w,)2?; inductively, three terms at a time.
Let Wy = {e} and for each i € N, as soon as we have chosen w;, let W; =
Lo wi(f(5) = f:AL,2,...,i} —{0,1,... bk + 1}}.

Let n € NU {0} and assume that we have chosen w; for all i € N with
i < 3n (if any) so that, if n > 1,0 € L, f:{1,2,...,3n} = {0,1,...,k+ 1},
and (f,0) is admissible, then

)1 n—
(%) (H?ﬁl wi(f(l))) CebeCc (Hi:ol Tf(3i+1)pf(3i+2)Qf(3i+3)> 0.

Now 7 € H, so pick by Lemma 2.2 a right variable word ws,; over W
such that for all [ € L, all u € W3, and all t € {1,2,... k+ 1},

(a)(uwsnr (1)) 'C el & u™C eryl.

Since ws,41(0) = e = 1y we have also that (a) holds for ¢t = 0.

Since p’ € I, pick by Lemma 2.2 (and the observation above about the case
t = 0) a variable word w3, ;2 over Wy such that for all [ € L, all u € Wy, 41,
and all t € {0,1,...,k+ 1},

(b) (uwsna(t)) 'C €l o u™C € pi.

Since ¢ € J, pick by Lemma 2.2 a left variable word ws, 3 over W, such
that for all [ € L, all u € W3,19, and all t € {0,1,... k+ 1},

() (uwsnss5(t)'C el e u™C e ql.

10



Now let € L, let f:{1,2,...,3n+3} — {0,1,...,k+ 1}, and assume
that (f,0) is admissible. We verify that (x) holds. Notice that, since (f,0)
is admissible, we have that

{arn+3)0: Pr3n+2)T53n+3)0, T 1@n+1)PF3n+2) Ap3ns3)0F S L.
(In the following, if n = 0 we interpret [[>", w;(f(i)) as e.)
( (f (i) ) Ced
((Hgnl w;(f (1) ) W3n1(f(3n + 1)) wsn2(f(3n + 2)))_1 C € qrints)l
((H?’”l w;(f(4) ) W31 (f(3n + 1)))71 C € pri3nt2)qr3n+3)0
(T, wi(f (Z))) C € T43n+1)Prnr2)ds (3nr3)0
& Ce (H?:o Tf(3i+1)pf(3i+2)Qf(3i+3)) 0.

Here the first three double implications hold by (c¢), (b), and (a) respectively.
If n = 0, the last double implication is a tautology. Otherwise, it is a
consequence of the induction hypothesis.

H3n+3

S

The construction being complete, we claim that the sequence (w,)5°, is
as required. The first two conclusions are immediate. So let F' € Pf(N) be
allowable and let h : F' — {1,2,...,k+1}. Choose the least n € N such that
F C{1,2,...,3n}. Define f:{1,2,...,3n} — {0,1,...,k+ 1} by

. hi) ifieF
1) = { 0 ifie{l,2,....3n\F
Then we have immediately that [T;cp wi(h(i)) = [12%, wi( £(i)).

By Lemma 2.8 we have that the pair (f,e) is admissible. Recall that we
identify e with the principal ultrafilter generated by e. Thus by (x), we have
that

[ wi(f(i) e C & Cellly T £(3i+1)Pf(3i+2)qf (3i+3) -
Again by Lemma 2.8 we have that

s if k+1 ¢ range(f)

n—1 _
Hizo Tf(3i+1)pf(3i+2)qf(3i+3) - {p if k +1€ range(f) )

In either case, we have that C' € [/, T @it )P (3i42)df(3i4+3), and so
[, wi(f(i)) € C. If k+1 ¢ range(h), then [[3", wi(f(i)) € CNW,, = A. If
k+1 € range(h), then [[2", wi(f(i)) € C\W) = B. O

We conclude by showing that Carlson’s Main Lemma is a consequence of
Theorem 2.9.

11



Corollary 2.10 (Carlson) Let k € N, let the set of variable words over
Wi be partitioned into finitely many classes, and let (w,)5, be a sequence
of variable words. Then there exists a variable reduction (t,)52, of (w,)2,
such that all expressions of the form [[i_,t;(f(i)), where n € N, f : {1,2,
ooon}t —{1,2,...,k} U{v}, and v € range(f), lie in the same cell of the
partition.

Proof. Let W;, be the set of variable words over W, let F be a finite
partition of Wy, and let (w,):>, be a sequence of variable words. Define
a function ¥ : W1 \Wy — Wy, as follows. If u = ajas---a;, where each
a; € {1,2,...)k+ 1}, let b = a; if a; #k+ 1 and b; = v if a; = k + 1; then
let ©(u) = [T\, w(b;).

Let F = {¢7'[H] : H € F}. Then F is a finite partition of Wy 1\W.
Let A be any central subset of W, and pick B € F and a sequence (w],)>
of variable words as guaranteed by Theorem 2.9. Pick H € F such that
B =v1[H].

For each n € N, let [,, be the length of w}, _; and write w}, ; = ap1an2---
an,, where each a,; € {1,2,...,k}U{v}. (For this corollary, we are avoiding
both left and right variable words.) Let ap = 0 and for n € N, let o, =

m i lm. Foreachn € N, let t,, = [1"_, Wa, ,tm(Gnm). Then (,)%°, is a
variable reduction of (w, )% .

To see that (t,)22, is as required, let n € N and let f : {1,2,...,n} —
{1,2,...,k} U {v} with v € range(f). Define g : {1,2,...,n} — {1,2,...,
k+ 1} by g(i) = f(i), if f(i) # v and ¢g(i) = k+ 1 if f(i) = v. Then

[Ty wy;_1(9(i)) € B and so [Ty t:(f (i) = ¥ (H?=1 wéiq(g(i))) cH. DO

References

[1] V. Bergelson, A. Blass, and N. Hindman, Partition theorems for spaces
of variable words, Proc. London Math. Soc. 68 (1994), 449-476.

[2] T. Carlson, Some unifying principles in Ramsey Theory, Discrete Math.
68 (1988), 117-1609.

[3] T. Carlson and S. Simpson, A dual form of Ramsey’s Theorem, Ad-
vances in Math. 53 (1984) 265-290.

12



[4] H. Furstenberg, Recurrence in ergodic theory and combinatorial number
theory, Princeton University Press, 1981.

[5] H. Furstenberg and Y. Katznelson, Idempotents in compact semigroups
and Ramsey Theory, Israel J. Math. 68 (1989), 257-270.

[6] A. Hales and R. Jewett, Regularity and positional games, Trans. Amer.
Math. Soc. 106 (1963), 222-229.

[7] N. Hindman and R. McCutcheon, Partition theorems for left and right
variable words, manuscript.

[8] N. Hindman and D. Strauss, Algebra in the Stone-Cech compactification,
Walter de Gruyter, Berlin, 1998.

[9] R. McCutcheon, Two new extensions of the Hales-Jewett Theorem, Elec-
tronic J. of Combinatorics 7 (2000), R49.

13



