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This is an excellent book. This review is an attempt to convince the reader
that this verdict is not the prejudice of an enthusiast but a sober, sound judgement.

The title might suggest that the subject matter of the book is rather esoteric.
The Stone-Čech compactification is a remote object. Its elements are ultrafilters
and the existence of non-trivial ultrafilters depends on the axiom of choice. This
means that an interesting ultrafilter has never been seen, and although analysts may
not be troubled by objects which can only be imagined, a down-to-earth algebraist or
number theorist might wonder why time should be wasted reading about them. In fact
ultrafilters have a very desirable property: if the positive integers N are partitioned
into a finite number of sets, then any ultrafilter on N will pick out exactly one set
from the partition. From this observation, a really wild speculation would be that
maybe ultrafilters could be used to prove van der Waerden’s Theorem, that given an
integer ` and a finite partition of N, there is a set in the partition which contains
an arithmetic progression of length `. A proof of this kind was published in 1989 by
V Bergelson, H Furstenberg, Y Katznelson and N Hindman. It is essentially easy.
I myself have presented it to a general audience in a one hour lecture, including
background theory semigroup theorists already know.

The Stone-Čech compactification βN– the set of all ultrafilters on N with
a natural topology which happens to be compact – is an essential ingredient in this
proof. Whole books have been devoted to this compactification as a topological
object since its first appearance in 1937. But for applications to number theory, the
addition of N has to be extended to βN. Opinions differ about when this was first
done. M M Day certainly could without difficulty have added it to his 1957 paper on
amenable semigroups, but he did not. In 1963, P Civin and B Yood mentioned that
as a consequence of their study of second dual Banach algebras βZ has a natural
semigroup structure but they did nothing with it. The real beginnings of the theory
may therefore be ascribed to R Ellis [3]. He showed that βS is a semigroup for any
discrete group S using an ultrafilter approach, and he did so because he needed that
semigroup structure in topological dynamics. There is good reason even for number
theorists to consider general semigroups S : the cases (N,+), (N, ·), (Z,+) etc can
all be dealt with at the same time. Moreover if S is a semigroup under two operations
+ and · simultaneously then both extend to βS . That is why the present book is
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about algebra in Stone-Čech compactifications and not simply semigroup structure.
This book aims at, and succeeds in, taking the subject from its beginnings to

the frontiers of research. Long-standing readers of Semigroup Forum will probably
omit the first chapter, which is a good account of (a small fraction of) the elementary
algebraic structure of semigroups, in particular of the smallest ideal, but their stu-
dents will welcome it. Hard-line algebraists can discover from Chapter 2 how simple
the basic theory of compact semigroups is. The topological Stone-Čech compactifi-
cation of a discrete space is presented in the third chapter as far as it is needed for
the rest of the book.

The key construction is presented in Chapter 4. If a discrete space S is a
semigroup then so is βS. The properties of βS are at first sight discouraging, for
even if S is commutative, βS is rarely so. Indeed there is a topological version of
this observation which is even less promising; the multiplication in βS is continuous
in one variable but in nearly all cases not in the other. However βS does have
a smallest ideal, and semigroup properties of βS can often be given combinatorial
characterisations in terms of ultrafilters.

Next come indications of the spectacular achievements which can arise from
the use of βS. One fundamental example involves finite sums or products. Using the
product formulation, given a sequence 〈xn〉 in S write

FP(〈xn〉) = {xn1xn2 . . . xnk
: k is an integer and n1 < n2 < . . . < nk}.

Then if A1, . . . , Ar is a finite partition of S there exist a sequence 〈xn〉 in S and
i such that FP(〈xn〉) ⊆ Ai. The proof is very simple. The closures A1, . . . , Ar form
a partition of βS, and since any compact semigroup contains an idempotent one of
the Ai must contain an idempotent; the interpretation of ‘idempotent’ in terms of
ultrafilters gives the finite product result. This proof, due to F Galvin and S Glazer,
marks the first success of βS in this area. Neil Hindman had previously established
the conclusion for N by a hard combinatorial argument. Now βN has two semigroup
operations, one coming from addition, and one from multiplication, in N. If we take
a partition of N there exist sequences 〈xn〉, 〈yn〉 and a set in the partition which
contains both FP(〈xn〉) and also the similarly-defined set of finite sums FS(〈yn〉).
This result was first established using βN by an argument a little more subtle than
the one above, and only afterwards was an elementary proof discovered. Later in this
book it is shown that it is not possible to take 〈xn〉 = 〈yn〉 in this conclusion, a result
related to the impossibility of solving the equation p + p = p.p in βN.

Neil Hindman began investigating βN as an algebraic object with a compact
topology in the 1970s with a view to its applications in Ramsey Theory (a particular
kind of study of partitions). It was inevitable that a fascination with the intrinsic
properties of this structure would follow. Over a third of this book is devoted to
βS in its own right. An early result showed that the non-commutativity in βN is
extreme: (βN,+) contains 2c copies of the free group on 2c generators. It also has
2c minimal left ideals and the same number of minimal right ideals. Of course, 2c is
also the number of points in βN, so these numbers are as large as possible in this
context.

One of the most remarkable features of the theory (and one which I personally
still find mysterious) is the ubiquity in semigroups of the form βS of a subsemigroup
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which the authors denote by H, a notation which appears to hint at a structure whose
importance may rival that of R or Z. It is simple to define:

H =
∞⋂

n=1

2nN,

with the closures taken in βN. If 〈xn〉 is a sequence with distinct finite products (that
is, the expression of any element in the form xn1xn2 . . . xnk

with n1 < n2 < . . . < nk

is unique) in any semigroup S then the closure FP(〈xn〉) in βS contains a copy
of H. Moreover, there is a copy of H near any right cancellable element in βG for
any discrete group G. The results about the complexity of βN mentioned above are
proved using H. H also contains an infinite decreasing sequence of idempotents in
the usual order (e ≤ f if and only if e = ef = fe). But simple questions about H
remain unanswered; for example, does it contain an infinite increasing sequence of
idempotents?

Topologists know that βN contains many – 2c – topological copies of itself.
Does (βN,+) contain any algebraic and topological copies of itself? The solution was
given in 1992 by Dona Strauss in the most dramatic of her many contributions to
the subject. Any continuous homomorphism from βN into N∗ = βN \ N must have
finite image (so in particular cannot be injective). This raises immediately another
question: which finite subsemigroups can be found in N∗? Most of the answer was
provided by E Zelenjuk in 1996: the only finite groups in βN are singletons, and
this book contains the best version available in English of his remarkable proof. Igor
Protasov has shown that any finite subgroup of βG for a countable group G is
isomorphic with a quotient of a finite subgroup of G, but this result is too recent to
have been included. The eager reader will now want to know whether βN contains
the semigroup with two elements and all products zero; this is presently the most
annoying unsolved problem in the area.

The reviewer must curb his enthusiasm for βN and not mention all the ex-
citement generated by idempotents, cancellation, chains of ideals, relationships with
the Rudin-Keisler order, consequences of Martin’s Axiom, and whether sums can be
equal to products in N∗, and describe the other vistas which the authors lay before
the readers of their book. The principal applications presented, as mentioned above,
are to Ramsey theory, with the Finite Sums Theorem and van der Waerden’s Theo-
rem being the best known examples. Precise formulations of results here tend to be
lengthy, so the reviewer can only drop names – Ramsey’s Theorem, Rado’s 1933 The-
orem on partition regular matrices, the Hales-Jewett Theorem (a much generalised
van der Waerden’s Theorem), and the even more powerful Central Sets Theorem.
(A set A ⊆ S is central if A contains a minimal idempotent in βS.) The latter has
the immediate consequence that in the van der Waerden Theorem the differences be-
tween consecutive terms in the arithmetic progressions obtained can be chosen from
the finite sums of any preassigned sequence.

Chapter 19 of the book is devoted to relationships with topological dynamics.
Of course, a treatment on the scale of de Vries’s compendious [5] is not possible in 15
pages. Discrete dynamical systems are obtained when a semigroup – or more usually,
a group – S can be indentified with a semigroup of continuous mappings on a compact
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space X. The pointwise closure of S in the set of all mappings from X to itself is a
semigroup with a compact topology called the enveloping semigroup. A remarkable
example here was given by W Ruppert: a simple action of N on the circle has βN
as its enveloping semigroup. The main results presented are that some combinatorial
notions – such as of central set – are the same as ones used in topological dynamics
but formulated in different ways there.

Another chapter is devoted to Szemeredi type theorems. The typical result
here says that if a subset of the integers is ‘large’ in some sense then it contains
abitrarily long arithmetic progressions. A proof of a main step in a establishing this
result (Furstenberg’s Correspondence Principle) is presented using βN, but in a very
rare appeal to other work, the authors do not give a complete proof of the main
result.

A final chapter takes a brief look at other compactifications of semigroups.
Again the reader who wishes to study them will need other sources, such as [1] or
[4]. These compactifications are constructed efficiently by the method in [2], but
in keeping with the spirit of this volume, alternative approaches using semigroups
of filters are described. Almost the last result in the book shows that the largest
natural semigroup compactification of R can be obtained from βZ by affixing an
interval (0, 1) between the points p and p + 1 for each point p ∈ βZ (a conclusion
due to M Filali in 1990), another indication of the important roles played by Stone-
Čech compactifications with algebraic structure.

This is a book written by the world’s two leading experts in the field which
is readily accessible to beginning graduate students yet takes them rapidly to the
frontiers of the subject. It is remarkably up to date, including results from pa-
pers which have not appeared at the time this review was written (in addition to
original results by the authors themselves). It is, however, not quite a complete
encyclopaedia of knowledge as it stood in mid 1998. For example, the reviewer’s
obsession with the topological centre {p ∈ βS : q 7→ pq is continuous } is not in-
dulged except for commutative groups S. But I cannot complain about the selection
of topics, and can only marvel at the amount the authors do include. The material
is presented very clearly and precisely (the name ‘Hindman’ on a publication is a
guarantee of accuracy, though a short list of minor errors can be found on the web-
site www.degruyter.com/highlights/hindman.html). The publishers have done a
superb job, and I found the book a delight to use and handle. Every respectable
library should have a copy. Every semigroup theorist should at least browse through
the first five chapters – these in themselves form a minibook, one that could form
the basis of a graduate course – to wonder at these applications of semigroup theory.
And we should all find ourselves inspired to tackle some apparently simple questions
which urgently need answers.
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